
.

A.D.S.

System Design

on behalf of
Eurosun Inc.

 CSC340 - UTM
 Professor: Arnold Rosenbloom
 TA: C. Jull
 April 16, 2001

 Nelson Arruda
 Eric De Paolis
 Michael Scrivo

.

 2

Table of Contents

1. Introduction... 7

2. The Current System... 7

2.1. Description:.. 7
2.2. Problems: .. 7
2.3. Problem Scope and Solution:.. 7

3. Software Architecture ... 8

3.1. Alternatives:... 8
3.1.1. Repository Based Architecture: 8
3.1.2. Client Server Architecture:... 8

3.1.2.1. Two-Tier Client Server Architecture: 8
3.1.2.2. Three-Tier Client Server Architecture: 9

3.2.1. Comparison between 2-Tier and 3-Tier Architectures:.... 9
3.2.1.1. Criteria: ... 9
3.2.1.2. Results: .. 9

3.2. Recommendation: ... 10

4. Global Architecture Design.. 11

4.1. Global Architecture Overview:... 12
4.2. Distribution Issues: .. 12
4.3. Process Cycles:... 12
4.4. Data Distribution: ... 12
4.5. Process Distribution: ... 12

5. Selections.. 13

5.1. Hardware Classes: .. 13
5.2. Hardware Selection: .. 13

5.2.1. Database Server Selection Criteria: 13
5.2.2. Database Server Recommendation:.............................. 13
5.2.3. Client/Workstation Node Recommendation:.................. 14

5.3. Software: ... 14
5.3.1. Database Server Operating System:............................. 14
5.3.2. Client/Workstation Systems:.. 14
5.3.3. Database:... 14

5.3.3.1. Overview: ... 14

 3

5.3.3.1.1. IBM DB2:... 15
5.3.3.1.2. Oracle: .. 15
5.3.3.1.3. Microsoft SQL Server: 15
5.3.3.1.4. Microsoft Access:.. 15

5.3.3.2. Recommendation: .. 16
5.3.4. Programming Language: ... 16

5.3.4.1. Overview: ... 16
5.3.4.1.1. Microsoft Visual Basic:................................ 16
5.3.4.1.2. Microsoft Visual J++: 16
5.3.4.1.3. Microsoft Visual C++:.................................. 16
5.3.4.1.4. Microsoft Visual Basic & Visual C++: 16

5.3.4.2. Recommendation: .. 17
5.4. Network ... 17

5.4.1. Type: .. 17
5.4.2. Network Interface Cards: ... 17
5.4.3. Connectivity: .. 17

5.4.3.1. Overview: ... 17
5.4.3.1.1. Workgroup Hub:.. 17
5.4.3.1.2. Workgroup Switch:...................................... 17
5.4.3.1.3. Router: .. 18

5.4.3.2. Recommendation: .. 18
5.4.4. Network Wiring:.. 18

6. Input/Output Procedures:... 18

6.1. System Modules: ... 18
6.1.1. Administration Module: .. 18

6.1.1.1. Add Employee: ... 19
6.1.1.2. Add Supplier: .. 19
6.1.1.3. Add Flight: .. 19

6.1.2. Financial/Reports Module: ... 19
6.1.2.1. Pay Supplier: .. 19
6.1.2.2. View Financial Reports:.. 19

6.1.3. Booking Module: .. 20
6.1.3.1. Create New Booking: ... 20
6.1.3.2. Cancel Booking: ... 20
6.1.3.3. Add Flight to Booking: .. 20
6.1.3.4. Add Hotel Reservation to Booking: 20
6.1.3.5. Add Car Rental to Booking:.................................. 20

.

 4

6.1.3.6. Add Customer Account: 20
6.1.3.7. Look Up Customer Account: 21

6.2. Security.. 21

7. Database Design:... 21

7.1. E-R Diagram:... 21
7.1.1. E-R Diagram Optimization Overview: 21
7.1.2. Database Schema: .. 22

7.1.2.1. Entities:... 22
7.1.2.2. Relationships:... 23

8. Interface Design ... 24

8.1. Designing the Interface: .. 24

9. Conclusion ... 25

Appendix A1: Repository Based Software Architecture 27

Appendix A2: Two-Tier Client Server Architecture................................. 28

Appendix A3: Three-Tier Client Server Architecture.............................. 29

Appendix B1: Server Comparison ... 30

Appendix B2: Client System Configuration ... 31

Appendix C: Database Comparison .. 32

Appendix D1: ACID Compliant Database ... 33

Appendix D2: Relational Schema using Normal Forms 34

Appendix E1: Database Cost Model .. 35

Accesses: ... 35

Appendix E2: Cases of Redundancy... 38

Cost Comparison:... 40
Results:... 40

Appendix F1: Initial E-R Diagram .. 41

Appendix F2: Optimized E-R Diagram (Tables in Database)................. 42

Appendix F3: E-R Data Dictionary ... 43

Appendix G1: Revised Use Case Diagram... 45

Appendix G2: Use Case Diagram Data Dictionary.................................. 46

Appendix H1: Revised Class Diagram .. 47

 5

Appendix H2: Class Diagram Data Dictionary... 48

Appendix I1: State Diagram - Add Hotel Reservation To Booking 50

Appendix I2: State Diagram – Add Flight to Database........................... 51

Appendix J: Sequence Diagram – Generate Supplier Report............... 52

Appendix K: Collaboration Diagram – Creating a New Booking......... 53

Appendix L: Characteristics of a Good Interface.................................... 54

Appendix M1: User Interface – Main Program... 55

Appendix M2: User Interface – Flights Window 56

Appendix M3: User Interface – Querying Database/Sorting/Filtering . 57

Appendix M4: Administration Tools.. 58

Appendix N: Requirements Analysis .. 59

1. Functional Requirements: .. 59
1.1. Input: ... 59

1.1.1. New Supplier Information: 59
1.1.2. New Customers:.. 59
1.1.3. Create Bookings:... 59
1.1.4. Financial Management: ... 59

1.2. Data Management: ... 59
1.2.1. Bookings:... 60
1.2.2. Cost of Goods Sold and Inventory: 60
1.2.3. Monitor Sales for Time Periods: 60
1.2.4. Customer and Travel Agencies: 60
1.2.5. Transactions: ... 60

1.3. Output: .. 60
1.3.1. Reports: ... 60
1.3.2. Cheques: ... 60

2. Non-Functional Requirements:... 60
2.1. Interface: ... 61
2.2. Performance: .. 61

2.2.1. Reliability: .. 61
2.2.2. Usability: .. 61
2.2.3. Resources: .. 61
2.2.4. Efficiency: .. 61
2.2.5. Security:... 61

.

 6

2.3. Operating: ... 62
2.3.1. Maintenance: ... 62
2.3.2. Backup:.. 62
2.3.3. Restart Requirements: .. 62
2.3.4. Environmental Conditions: 62

2.4. Life Cycle: ... 62
2.4.1. Quality of Design: .. 62
2.4.2. Limits on Development:... 62

2.5. Economic: ... 62
2.6. Server Platform: .. 63

2.6.1. Operating System:... 63
2.6.2. Memory:... 63
2.6.3. Storage: ... 63
2.6.4. CPU: .. 63
2.6.5. Peripherals: ... 63
2.6.6. Network: .. 63

2.7. Client Systems: ... 64
2.7.1. Operating System:... 64
2.7.2. Memory:... 64
2.7.3. Storage: ... 64
2.7.4. CPU: .. 64
2.7.5. Network: .. 64

 7

1. Introduction

In designing a good Information System, it is necessary to review the requirements outlined
during the requirements analysis phase. It is a well known fact that many errors in designing
an Information System occur in determining the requirements. It is also a well known fact
that fixing errors in the requirements and design stage are much more cost effective than
fixing them during the implementation phase. Thus, the main goal of this study is to consider
architectural alternatives along with hardware and software as proposed by the requirements
analysis. In the process of doing this, the requirements will be refined and built upon as
needed, and a viable, carefully planned out system design will emerge.

2. The Current System

2.1. Description:

The current system in place is based on a two-tier client server model. There are twelve
systems in total, which include two main servers: one application server and one
Internet/Domain server. As mentioned above, the heart of the system, which is integral to
business operations, is the proprietary Holiday Booking Program. This program was created
using GW Basic in 1987 and took two years to develop. Note that for the purposes of this
study, we will ignore the Internet portion of the global architecture since it is not a factor in
designing this particular system. However, we will consider security issues pertaining to the
fact that the system may be accessible from the Internet.

The application server is a Windows based system that requires legacy support to run GW
Basic programs. The Holiday Booking Program along with its proprietary database are both
stored and run from this server. Each employee, using a Windows based client system, has
access to this program and uses it to make bookings and store client information. The
program stores information such as flight departures, flight arrivals, hotel accommodations
and car rentals. Monetary information is also stored so that invoices and vouchers can be
generated by Management.

2.2. Problems:

The problems with the current system stem from using a program based on an old DOS
programming language: GW Basic. First and foremost, the Holiday Booking program does
not have a coherent software architecture. As a result, it is not clear how the underlying
system operates. All that is known about its architecture is that it operates only from a single
machine where the program itself and all its related data are stored. Because each client
directly executes the program from the server, 100% of the processing occurs on the server.
Furthermore, the program suffers from instabilities with newer Operating Systems which
cause the server to crash very often. Some other issues are a lack of features required by
Eurosun and a poor security implementation. See the Feasibility Study for a more detailed
analysis of the problems with the system.

2.3. Problem Scope and Solution:

To solve the problems mentioned above, it was determined that the best alternative would be
to create a whole new software package to replace the current GW Basic Holiday Booking
program. There was no justification in trying to patch and add features to the Holiday
Booking program (as noted in the Feasibility Study). Amongst the various alternatives
presented, it was decided that custom software based on industry standards would be
developed to replace the current system.

.

 8

3. Software Architecture

The software architecture defines the components (or subsystems) of the software system and
how they use each other’s functionality and data.

3.1. Alternatives:

As determined in the requirements analysis (see Appendix N: Requirements Analysis:
Section 1.2) a DBMS (Database Management System) is best suited to handle the data
management needs of Eurosun Inc. A DMBS is the best choice since Eurosun requires a
centralized database which multiple users can use simultaneously. With that said, the
following architectures will be considered as possible solutions:

 3.1.1. Repository Based Architecture:

A repository architecture consists of a central data structure (often a database) and a
collection of independent components which operate on the central data structure. The
repository architecture is geared towards environments which have many other different
systems using the centralized data for different jobs (see Appendix A1: Repository Based
Architecture).

 3.1.2. Client Server Architecture:

A client server architecture consists of components which are service consumers (clients)
and service providers (servers). All communication between clients and servers is
accomplished through messages. There are three protocols for exchanging messages:

a) Remote Procedure Call (RPC)
The client invokes a remotely located procedure. This procedure is then executed and the
results are sent back to the client.

b) Remote Data Access (RDA)
The client invokes a remotely located procedure. Here the invoked procedure is a
database query and the response is often a large set of data (usually in the form of a
table).

c) Queued Message Processing
Here requests are queued on the server and processed whenever possible.

Once the type of message passing is chosen, a specific client server model must be
chosen. The two types which will be considered for this application are the two-tier and
three-tier models:

 3.1.2.1. Two-Tier Client Server Architecture:

In a two-tier system, the service consumers interact directly with the service
provider; there is no middle processing layer (see Appendix A2: Two-Tier Client
Server Architecture). In this particular application, the client would contain the
necessary code to query the database. The DBMS tier would contain all the data and
business logic to carry out the queries and perform integrity checks.

 9

 3.1.2.2. Three-Tier Client Server Architecture:

In a three-tier client server architecture, there is a processing layer between the
service consumer and the service provider (see Appendix A3: Three-Tier Client
Server Architecture). The user can only communicate with the processing tier and
the server can only communicate with the processing tier. Hence, the processing tier
contains most of the business components and logic and is the most critical part of
the system. The advantage of using the three-tier model is that the processing tier is
separate from the data tier which means that modifications to the processing tier are
more easily accomplished with as little changes as possible to the data tier.
Furthermore, upgrades to the data tier are simpler as well, since there is no integrated
business code to worry about. The processing and data tiers may reside on the same
server to save space and money, or they may be on separate servers.

3.2.1. Comparison between Two-Tier and Three-Tier Architectures:

 3.2.1.1. Criteria:

a) Development Time:
How long will it take to develop in relation to the other alternatives?
(Short, Same, Long)

b) Component Upgradeability:
 How easy will it be to upgrade a component in the system?
 (Easy, Difficult)

c) Maintenance Costs:
 How much will it cost to fix bugs and maintain the system?
 (Low, Medium, High)

3.2.1.2. Results:

a) Development Time:
Developing the application using a three-tier model will take slightly longer than
using a two-tier model. The three-tier model requires that more care be placed on
specifying communication protocols between the three tiers and precise module
specifications. The two-tier model only requires using the communication model
provided by the DBMS and places less emphasis on modularization.

b) Component Upgradeability:
As stated in the previous section, three-tier applications put more emphasis on
modularization. Thus components can easily be upgraded so long as they still
conform to specification. Furthermore, if in the future the data tier is required to be
upgraded or changed, a three-tier model facilitates a swap with greater ease.

c) Maintenance Costs:
Because a three-tier model provides a higher-level of modularization and abstraction,
maintenance is easier to perform since there is a clear boundary of where each stage
of processing occurs and it is easier to pinpoint the location where maintenance is to
be performed. Furthermore, the business rules and processing can easily be tweaked
without affecting the data tier since they are not tightly integrated with the DBMS.
Simple independent modules are easier to maintain since other parts of the system
rarely have to be modified.

.

 10

Table 1: Summary - Client Server Model Comparison

3.2. Recommendation:

A repository based solution does not make much sense for this system. Repository based
systems are usually used in situations where the input from one of the departments is used by
another department. In this application, all data must be available to all users simultaneously,
thus the client server architecture is the most viable solution. Next, it is necessary to choose a
client server model. From the comparison given above, it was determined that a three-tier
model is the best solution for the system. Thus the system will use a three-tier architecture
based on the RDA protocol.

Model Development Time Component
Upgradeability

Maintenance Costs

2-tier Short Difficult Medium
3-tier Long Easy Low

 11

4. Global Architecture Design

Database Server

Client Node

Laser Printer

Ethernet Network - 192.168.0.x

Client NodeClient Node

Client Node:
Intel Celeron 600, 128MB Ram, 10 GB Hard

Drive, OS: Windows 2000 Professional

Intel Pentium III
800, 256MB Ram,

2x40GB Hard
Drive(Raid 0+1),

OS: Windows
2000 Server.

Client Node Client Node

COL-
ACT-
STA-

1 2 3 4 5 6 7 8 9101112
HS1 HS2 OK1 OK2 PS

CONSOLE 8 Port Switch
COL-
ACT-
STA-

1 2 3 4 5 6 7 8 9101112
HS1 HS2 OK1 OK2 PS

CONSOLE 8 Port Switch

UPS

Client Node

Microsoft Access
Database

Ethernet Network - 192.168.0.x

Cheque Printer

Print Server

Link/Rx LPT1 LPT2 COMPower/TX Print Server

Client Node

Sales
Department

Finance
Manager

Sales
Manager

Adminstrator

Tape Backup

Figure 1: Global Architecture (with existing and new equipment)

.

 12

4.1. Global Architecture Overview:

The above diagram provides a physical representation of the global architecture at Eurosun
Inc. The actual distribution of machines and network structure has only been modified
slightly from their original layout. In particular, the 10Mbps Ethernet network will be
replaced with a high performance 100Mbps Ethernet network with switches instead of hubs.
Also, the existing client machines will be upgraded to meet the specifications outlined in the
Requirements Analysis (see Appendix N: Requirements Analysis: Section 2.7). The laser
and cheque printers will be connected to a print server which will allow the printers to be
independent of any one machine. This reduces overhead and allows any machine to print to
these printers without having to go through any other systems. The server will be connected
to a UPS system and a Tape Backup system as per requirements 2.3.2 and 2.6.3.

It should be noted that although each user has a specific client machine assigned to him, any
user can login at any terminal. Security privileges will be assigned to the user’s ID rather
than a specific access location.

4.2. Distribution Issues:

This deals with how the system on a high level, handles inputs and outputs. The various
possibilities are as follows:

Batch Mode: Process a batch of inputs/outputs together.

On-Line Mode: Process inputs/outputs as they become available.

Remote Batch: Data are input on-line on several machines, then fed in batch mode to a
centralized database.

From the functional requirements analysis, (see Appendix N: Requirements Analysis: Section
1.2), it was determined that all data exchanged with the database must be available to all users
instantaneously, thus I/O will be handled using an On-Line protocol.

4.3. Process Cycles:

Because the system uses an online mode for handling input and output, there are no periodical
batch jobs for the system to process. Therefore all processes need to be run as soon as
possible with respect to the order that processes are requested.

4.4. Data Distribution:

The number of users expected to use the system at present and in the near future is not
expected to be over twenty-five. Thus, all data will be stored in one central location on the
Database Server. A centralized database is better suited than a distributed database due to the
much lower cost, easier implementation and lower maintenance requirements. The benefit of
using a distributed database is the ability to allocate heavy loads amongst many systems.
However, since the requests to the database are expected to be relatively low, the added
performance does not outweigh the larger cost. Furthermore, a centralized database meets the
performance requirements specified in the Requirements Analysis (see Appendix
Requirements Analysis: Section 1.2)

4.5. Process Distribution:

There is no need for a distributed set of services since it is not likely that the maximum

 13

number of users will ever warrant the need for such a system. Distributed processes are
reserved for cases in which the database and/or program are expected to be used by a large
number of users, simultaneously or in cases where heavy processing is required (such as a 3D
rendering farm).

5. Selections

5.1. Hardware Classes:

It is necessary to first select a class of hardware systems which will form the basis of the
hardware platform. The various possibilities are:

• Mainframes

• Commercial Minicomputers

• Microcomputers

• Embedded Systems

Mainframes and Commercial Minicomputers are for much larger operations with either a very
large number of users or large amounts of processing. Today, microcomputers, specifically
PC’s, have become powerful enough and inexpensive enough to handle all the needs of small
and medium sized businesses with low maintenance and easy upgrade paths. Embedded
systems, such as integrated mobile communication devices, are not yet required by Eurosun
Inc. and will not be considered at this time.

Using standard PC components gives us a very open standard to work with. PC components
are manufactured by a very wide array of companies. The server that will be selected will be
from a large manufacturer such as Dell or IBM, so the level of openness is slightly reduced
since support will come directly from the manufactures. The client systems will be
completely open and when a component fails, finding and replacing it with the same or better
component will pose no problems at all.

5.2. Hardware Selection:

5.2.1. Database Server Selection Criteria:

The server is the backbone of the entire system. It must be very reliable and powerful
enough to handle the current load and future expansion. The server should have a
modularized design, preferably with hot-swappable components so that if a component
such as a hard drive or power supply fails, it can be replaced with no downtime. An off-
the-shelf server such as those from Dell, Compaq and IBM is preferred over building a
server simply because of the better and faster support available from these companies.
These high-grade servers are usually very reliable as well.

Things to consider when choosing a server are (in order of decreasing importance):
reliability, support, warranty, price, performance, features, and availability.

5.2.2. Database Server Recommendation:

All the systems were configured with relatively the same components and therefore have
very similar prices (see Appendix B1: Server Comparison). As a consequence, the most
important categories for making the final choice are reliability and support. Since we

.

 14

have no prior experience with any of these servers, we researched opinions of credible
people on the Internet and contacted people who have had experience with these servers.
The overwhelming response was that the Dell PowerEdge Servers were the favourites.
Dell PowerEdge servers are heralded as very reliable and in the rare cases when they
failed, support was top notch.

5.2.3. Client/Workstation Node Recommendation:

The purpose of each client machine will be to allow the users of the system to have
access to the data stored on the server. Small amounts of processing will take place on
the client nodes, so relatively little power is needed. Each client will be outfitted with an
Intel Celeron 600, 128 MB of RAM, and a 10GB hard drive as determined by the non-
functional requirements in Appendix N. The systems will be built by a local computer
shop or brand-name systems will be purchased. This decision will be left to Eurosun Inc.
as either option fits the requirements and is only a matter of preference. See Appendix
B2: Client System Configuration, for a breakdown of the required components along
with estimated pricing.

5.3. Software:

5.3.1. Database Server Operating System:

The Operating System (OS) is one of the most important parts of the system as a whole.
The OS bridges the communication between the hardware and the applications running
on top of the OS. It also handles the bulk of the network communications in conjunction
with the network hardware (switches and routers). It is very important that the OS
provides excellent reliability and robust networking. Eurosun Inc. has recently purchased
a Windows 2000 Server + 10 CAL license which they wish to make use of. Fortunately,
Windows 2000 Server is a very reliable OS with excellent networking capabilities and
should fit well into the system.

5.3.2. Client/Workstation Systems:

As stated above, Eurosun Inc. has a 10 CAL license for Windows 2000 Server, so each
client system will be installed with Windows 2000 Professional. Since each system has
128MB of RAM, Windows 2000 Professional will perform very well on the client
systems with a high degree of stability. Windows 9x should not be used on any of the
client systems. The 9x series provides a very poor degree of stability and does not
support true domain connectivity.

5.3.3. Database:

5.3.3.1. Overview:

The database market has become a very large one in the past ten years. There are several
widely used and supported DBMS’ on the market from companies like IBM, Interbase,
Oracle, Sybase and Microsoft. In the past few years, we have even seen the advent of
free databases such as MySQL and PostgreSQL. These two packages are gaining in
popularity, especially for web driven applications. However, these free DBMS’ are not
mature enough to consider for this system.

 15

 5.3.3.1.1. IBM DB2:

IBM’s DB2 is a highly scalable and reliable system backed by many years of
development and refinement by IBM’s superb engineers. It is available on wide
variety of platforms including: Windows, Linux, Solaris, HP-UX, NUMA-Q, AIX,
OS/2 and even handheld systems such as Windows CE and the Palm platform.
Having a database that works on multiple platforms is good for future expandability.
If in the future, Eurosun would like to run its server on a different platform, this is a
possibility. Besides being available on multiple platforms, DB2 also has a wide
range of utilities and applications built for it.

DB2 is an Acid Compliant Database system (see Appendix D1: Acid Compliant
Database). ACID compliant databases are essential in situations where transactions
are crucial to business operations such as E-commerce sites. DB2 was ranked first in
Service and Responsiveness, Scalability and Industry Expertise. DB2 is not the most
cost-effective solution; it fits somewhere between MS SQL Server on the
inexpensive end and Oracle on the expensive end.

 5.3.3.1.2. Oracle:

Oracle is considered to superior to most databases. It is available on many platforms
and has a suite of applications designed to work with it to customize the database to
the company’s exact requirements. Oracle was ranked first in Features and
Innovation and ranked high in all other categories. Performance and Scalability are
considered to be amongst the best in the industry. Unfortunately, Oracle is notorious
for being difficult to setup and administer and requires a highly trained staff to tune it
and keep it running well. Like DB2, Oracle is an ACID compliant database. Lastly,
Oracle is the most expensive of all database solutions.

 5.3.3.1.3. Microsoft SQL Server:

Microsoft is somewhat of a newcomer to the database market, because of this, their
market share is significantly lower than IBM’s or Oracle’s. The most recent versions
of SQL Server have caught up with DB2 and Oracle in terms of performance and
features but still lag behind in a few areas. SQL server was ranked first in
Programming Expertise and Pricing and Value. MS SQL Server builds on
Microsoft’s expertise in developing programming applications which are easy to use.
MS SQL Server integrates tightly with Microsoft’s popular Visual Studio
development package. It is also an ACID compliant database, but unlike Oracle and
DB2, it is currently only available on the Windows platform. Lastly, MS SQL
Server can easily replace a smaller MS Access database because of the way
Microsoft has designed the ADO (Access Data Objects) API (Application
Programming Interface) to work seamlessly between Access and SQL Server by
providing a level of abstraction.

 5.3.3.1.4. Microsoft Access:

Microsoft Access is the cheapest of the database solutions (besides the free ones).
Eurosun Inc. already has Microsoft Office 2000 licenses for each user, so using
Access as a database comes free. Access is not an ACID compliant database, nor
does it have nearly as many features as any of the other database solutions.
However, Access is practical for a small number of users and for companies on a low
budget. Furthermore, an Access application can be created using Microsoft’s ADO
API which provides a good level abstraction. Using ADO, Eurosun can upgrade the

.

 16

server to MS SQL Server by simply importing the Access database. ADO provides
enough abstraction so that only a very minimal amount of code needs to be changed
in the software to perform this upgrade.

5.3.3.2. Recommendation:

The most important factor in choosing a database for this application is the price.
Database products can be extremely expensive, usually much more expensive than
hardware. With that said, Oracle or DB2 would be overkill for this application and
would not make sense budget-wise. Microsoft SQL Server is the best solution for
Eurosun Inc., however, it is still quite expensive and not needed with less than ten
employees using the system concurrently. We recommend that Eurosun use a Microsoft
Access database where transactions are performed using the ADO API. This will allow
Eurosun Inc. to upgrade easily to MS SQL Server in the future if the situation warrants it.

5.3.4. Programming Language:

5.3.4.1. Overview:

Since the chosen Operating System for both the Server and the Clients is Microsoft Windows
2000, and since access to the ADO API is required by the chosen Access database, there is
little choice in the programming environment that can be used. The choices are as follows:

 5.3.4.1.1. Microsoft Visual Basic:

Microsoft Visual Basic is the de facto standard is rapid application development. It is an
event-driven system which is very easy to program since it provides a high level of
abstraction from the Win32 API (the Application Programming Interface to the Windows
Family of Operating Systems). Visual Basic also provides decent levels of performance
and has relatively good customization capabilities. Visual Basic 6 and later versions
support ADO.

5.3.4.1.2. Microsoft Visual J++:

Like Visual Basic, Microsoft Visual J++ provides a good rapid application development
environment, although with a bit more control than Visual Basic. One disadvantage of
J++ is that Microsoft has discontinued it in favour of their C# language. The other
disadvantage of J++ 6 is its poor performance compared to C++. Visual J++ 6 supports
ADO.

 5.3.4.1.3. Microsoft Visual C++:

Microsoft Visual C++ is the most widely used C++ programming environment. Visual
C++ provides the highest levels of performance and customization. However, Visual
C++ requires deep knowledge of the Win32 API and development usually takes much
longer. Visual C++ 6 and later versions support ADO.

 5.3.4.1.4. Microsoft Visual Basic & Visual C++:

This option involves using Visual Basic to create the interface and any rudimentary
functions which do not require high performance. The data or middle tier will then be

 17

created using Visual C++. This tier involves making the ADO/SQL calls and performing
heavy I/O and/or calculations.

5.3.4.2. Recommendation:

We recommend that the application be created using a mix of Microsoft Visual Basic and
Visual C++. This option provides the best of both worlds: rapid application development and
high performance. Furthermore, it allows for much better modularization and clearly defined
tiers which two programmers (or groups) can work on independently.

 5.4. Network

5.4.1. Type:

10/100Mbps Ethernet (IEEE 802.3u) is the standard LAN implementation for almost all
businesses today. Ethernet hardware and wiring is very inexpensive and provides very good
performance over moderate distances. Also, a large number of Ethernet devices are supported
on many platforms. Eurosun Inc. already has a 10Mbps Ethernet network which will be
replaced by an upgraded 10/100Mbps network. The following section will outline which
devices and wiring will be used:

5.4.2. Network Interface Cards:

There are a wide variety of network cards available. Feature-wise, they are all relatively the
same. Prices for 10/100 PCI Ethernet cards range from $20 to $100. The more expensive
variants usually provide slightly higher transfer rates and higher reliability. The clients will
not be overstressing the network cards, so a lower-end card will suffice. Each client will be
equipped with a D-Link DFE-530+TX network card. This card costs approximately $35.
These cards provide good reliability and a lifetime warranty.

5.4.3. Connectivity:

5.4.3.1. Overview:

The clients and server must all be connected together in some way. There are three classes of
hardware which accomplish this task: a workgroup hub, a workgroup switch, or a router.

 5.4.3.1.1. Workgroup Hub:

A workgroup hub provides the most basic level of performance and routing. Hubs
operate based on the source and destination addresses of the computers involved in the
communication. Furthermore, only one message can be sent through a hub at a time, thus
network throughput is relatively low. Occasional lag, when performing queries to the
server, will be noticed when multiple people are using the system.

 5.4.3.1.2. Workgroup Switch:

A workgroup switch provides much higher levels of performance than a hub. A switch
transfers data based on the MAC addresses of each network card. The Ethernet standard
requires each network card manufactured to have a unique MAC address. Switches are

.

 18

able to transfer data between more than two nodes at a time and have a peak network
throughput of 200Mbps.

 5.4.3.1.3. Router:

Routers provide the highest level of network performance and manageability. Routers
operate in the same manner as switches but essentially are a computer in themselves
(sometimes they are actually entire computers systems running a UNIX based OS).
Regular hardware routers have a small operating system built in that allows for precise
filtering rules, which directs certain traffic to certain nodes and stops unwanted traffic.

5.4.3.2. Recommendation:

The system is heavily network based, so high network performance and reliability is essential.
Having relatively high-powered systems and a slow network provide an unbalanced and
wasteful environment. Because of this requirement, workgroup switches will be used. A
router is not necessary since there is no special routing that must be done. Furthermore,
routers require extra maintenance which is not desirable. We specifically recommend two D-
Link DSS-8+ 8-port switches. These switches will allow for future expansion and come at a
very affordable price ($150 each).

5.4.4. Network Wiring:

The network will be wired using Category 5e (CAT5e) Ethernet copper wire (EIA/TIA 568
100-ohm STP). The interface connectors will be RJ-45 in the straight-through configuration.
All wires will be less than one hundred feet in length, although the Ethernet specification
states that CAT5 wiring can be used in lengths of up to 100 Metres.

6. Input/Output Procedures:

In all I/O procedures, the client application is responsible for making sure basic inputs are in
valid formats and are acceptable inputs (i.e. a variable must be greater than 0). The
processing tier is then responsible for making additional integrity checks to ensure the data
has not been corrupted and the transaction is allowed to take place. The first level of
constraint validation (on the client) takes a good portion of the load off the processing tier
since the data has already been verified to be in the proper format.

The system will be designed using a modularized methodology and will be proportioned to fit
nicely into the three-tier client server model. Each module will represent a basic department
within Eurosun Inc. These modules will facilitate upgrading and allow for easy maintenance
of the system as stated in the system architecture section.

The following system modules were derived from the data input and output requirements
defined in the requirements analysis. (See Appendix N: Functional Requirements. We will
refrain from further referencing of the appendix in the following sections to avoid clutter.)

6.1. System Modules:

6.1.1. Administration Module:

The Administration Module captures the I/O interaction between the Sales Manager and
the system. This module will be built so that only the Sales Manager class will have

 19

privileges to access this sensitive information. See the security section below for further
security details.

6.1.1.1. Add Employee:

An existing Sales Manager enters the new employee’s name, address, phone number,
and any other personal information that may be required. Furthermore, the Sales
Manager is also required to indicate the new employee’s title. The system then
gathers this new information, encrypts it, and places it into the Employee table in the
database.

6.1.1.2. Add Supplier:

An existing Sales Manager inserts a new supplier into the database. The supplier can
be a flight, a hotel, or a car rental agency. Each supplier is assigned a supplier ID
which is automatically generated by the system. Furthermore, a supplier name,
contact name, and the suppliers address are required to complete the transaction. All
this information is encrypted and stored in the Supplier table.

6.1.1.3. Add Flight:

An existing Sales Manager inserts the new flight information into the database. This
information contains the flight ID, departure time, departure date, as well as the
number of seats available on the plane. The system then makes sure the airline
associated with the flight exists in the Supplier table. If the airline does not exist, the
system will not allow the transaction to succeed, and will notify the Sales Manager.
If the airline does exist, then the system creates a record for the new flight in the
FlightOfferedBy table, and the flight is inserted in the Flight table. The same
procedure is followed when adding a new hotel season and car rental agency.

6.1.2. Financial/Reports Module:

The Financial/Reports Module captures the I/O interaction between the Financial Manager
and the system. This module deals with financial matters at Eurosun Inc.

6.1.2.1. Pay Supplier:

An existing Financial Manager accesses the Supplier table in the database to acquire the
supplier’s outstanding amount. Then the Financial Manager enters the amount to be paid
to the supplier and the system generates a corresponding cheque. Furthermore, the
cheque number and the amount paid are stored in the Pays table for future reference.
Finally, the current account is then updated in the suppliers field.

6.1.2.2. View Financial Reports:

This I/O procedure is simply a request of data from the system. If the Financial Manager
wishes to view any financial reports, the system accesses the Pays table. Within this
table, the system has the ability to access and display the amount paid to a certain
supplier. Note that the Financial Manager also has the ability to print the report if
desired.

.

 20

6.1.3. Booking Module:

The Booking Module captures the I/O interactions between the Sale Representatives and the
system. This module is by far the most extensive and highly used. It is within this module
that customer input is handled by the database

6.1.3.1. Create New Booking:

The Sales Representative creates a new booking which is stored in the Booking table.
The booking is assigned a booking ID. The customers who are involved with the
booking are added to CustomerWithBooking table.

6.1.3.2. Cancel Booking:

The Sales Representative simply indicates the booking that is marked for cancellation by
accessing the booking ID via the Manages table. The system then takes the required steps
to adjust all other quantities in tables associated the particular booking (see Appendix K:
Collaboration Diagram – Creating a New Booking for a collaboration diagram that
corresponds to this operation). Once the adjustment is done, the booking is removed.

6.1.3.3. Add Flight to Booking:

The Sales Representative queries the system for a particular booking ID. If this ID does
not exist the transaction will fail. If the booking ID exists, the system accesses the
corresponding booking through the Manages table. The system then acquires the flight
ID from the Flight table, and inserts the flight into the booking by adding the flight ID
and booking ID to the FlightWithBooking table.

6.1.3.4. Add Hotel Reservation to Booking:

The Sales Representative queries the system for a particular booking ID. If this ID does
not exist the transaction will fail. If the booking ID exists the system accesses the
corresponding booking through the Manages table. The system then acquires the
information about the requested hotel from the Hotel Season table. Then a new hotel
reservation is created in the Hotel Reservation table, and room ID and the booking ID are
stored in the ReservationWithBooking table.

6.1.3.5. Add Car Rental to Booking:

This procedure is similar to the one above.

6.1.3.6. Add Customer Account:

The Sales Representative queries the system to see if the customer currently exists in the
system. It the customer does exist the transaction is cancelled, otherwise the customer’s
personal information is entered into the Customer table and the system automatically
assigns the customer a unique ID.

 21

6.1.3.7. Look Up Customer Account:

The Sales Representative queries the system to obtain the customer information. The
system searches the Customer table to find a customer that matches the query. If a
customer is found, the system returns the information of the customer to the Sales
Representative. If a customer is not found, the transaction is cancelled and the Sales
Representative is alerted of the missing customer.

6.2. Security

All passwords will be encrypted and strict security rules will be implemented since the
network is connected to the Internet. The database will be placed in a non-shared folder
which can only be accessed by the DBMS using a user ID and password. Employee, supplier,
and customer information will be encrypted along with passwords. In the unlikely event that
a ‘hacker’ manages to get access to the database, this will ensure that sensitive data will be
very difficult to extract.

7. Database Design:

7.1. E-R Diagram:

The preliminary E-R diagram can be viewed in Appendix F1: Initial E-R Diagram.
The optimized E-R diagram can be viewed in Appendix F2: Optimized E-R Diagram.

The following is a detailed design and construction of the database. The task is to capture the
information found in the revised Class diagram (see Appendix H: Revised Class Diagram),
and translate it into a corresponding E-R diagram. The initial E-R diagram is then analyzed
for partitioning, generalizations and redundancies, resulting in an optimized E-R diagram.
This final E-R diagram corresponds to the database schema below. This schema represents
the actual tables, along with the attributes and their primary identifiers which make up the
physical database.

7.1.1. E-R Diagram Optimization Overview:

The logical design steps required to transform the E-R Diagram to a corresponding
database schema are as follows:

a) Analysis of Redundancies
In order to determine whether it is beneficial to maintain or remove redundancies in our
relational database, we compared the cost of each operation associated with the redundant
information. In Appendix E, you will find the performance analysis. In this analysis we
determined that the absence of redundant information in our E-R Diagram improved
overall performance.

b) Removing Generalizations
The relational database model does not support generalizations found within E-R
diagrams. The most suitable way to remove generalizations from the initial E-R diagram
was to delete the child entities and add a Type attribute to the parent. This could easily
be done since there was no real distinction between child entities and their parent.

.

 22

7.1.2. Database Schema:

The following schema corresponds to the optimized E-R diagram and represents the
entities and relationships which will form the tables in the Eurosun Inc. database (see
Appendix F3: E-R Data Dictionary for further details). The schema complies with 1NF
standards (see Appendix D2: Relational Schema using Normal Forms) , where no relation
contains any multiple valued attributes. Compliance with any higher forms of
normalization would cause a decrease in performance .

7.1.2.1. Entities:

Employee (EmployeeID, Name, Phone, Address, Type)

Customer (CustID, Name, Phone, Type)

• CustID: The unique ID that each customer is assigned.
• Name: Contains the name of the customer.
• Phone: Contains the contact phone number of the customer.
• Type: One of: Vacationer or Travel Agent.

Booking (BookingID, TotalCost)

• BookingID: The unique ID that each individual booking is assigned.
• TotalCost: Contains the current cost of the booking to be billed to the

 customer.

Flight (FlightID, NumSeatsAvail, DepartCity, DepartDate, DepartTime, ArrivalCity)

• FlightID: The unique ID that each flight is assigned.
• NumSeatsAvail: Contains the number of seats currently available for sale

 on the flight.
• DepartCity: Contains the name of the city from which the flight departs.
• DepartDate: Contains the date on which the flight will depart.
• DepartTime: Contains the time of day on which the flight will depart.
• ArrivalCity: Contains the name of the city from which the flight will

 arrive.

Supplier (SupplierID, Name, AmountOwed, Phone, Address, City, Country,
ContactName, Type)

• SupplierID: The unique ID that each supplier is assigned.
• Name: Contains the name of the supplier.
• Phone: Contains the business phone number of the supplier.
• Address: Contains the address of the supplier.
• City: Contains the city in which the supplier is located.
• Country: Contains the country in which the supplier is located.
• AmountOwed: Contains the current amount owed to the supplier.
• Type: One of: Airline, a Hotel, or a Car Rental Agency.

HotelReservation (RoomID, RoomType, StartDate, EndDate)

• RoomID: The unique ID that each Hotel Reservation is assigned.
• RoomType: Contains a description of the type of room.

 23

• StartDate: Contains the date on which the vacationer is to arrive at the
 hotel.

• EndDate: Contains the date on which the vacationer is to depart from
 the hotel.

RentalCar (CarID, CarType, StartDate, EndDate)

• CarID: The unique ID that each Rental Car is assigned.
• CarType: Contains a description of the type of Car.
• StartDate: Contains the date on which the vacationer is to obtain the

 car.
• EndDate: Contains the date on which the vacationer is to return the

 car.

7.1.2.2. Relationships:

Reports (DateRange, DateStamp, Type, Supplier, Employee).

• DateRange: Contains the date range (start date and end date) of this
 report.

• DateStamp: Contains the date this report was prepared.
• Type: The template used by this report.
• Supplier: Contains the ID of the supplier that this report is about.
• Employee: Contains the ID of the employee who prepared this report.

Pays (DateStamp, ChequeNumber, AmountPaid, Supplier, Employee).

• DateStamp: Contains the date this cheque was prepared.
• ChequeNumer: Contains the cheque number of the cheque prepared.
• AmountPaid: Contains the amount paid by cheque.
• Supplier: Contains the ID of the supplier that is being paid.
• Employee: Contains the ID of the employee who prepared the cheque.

Enters (DateStamp, Supplier, Employee).

• DateStamp: Contains the date the supplier was entered in the database.
• Supplier: Contains the ID of the supplier entered.
• Employee: Contains the ID of the employee who entered the supplier.

FlightsOfferedBy (Supplier, Flight).

• Supplier: Contains the ID of the supplier that offers this flight.
• Flight: Contains the ID of the flight offered.

HotelSeason (Rating, RoomRate, SeasonStartDate, SeasonEndDate, Supplier,
HotelReservation).

• Rating: Contains the star rating of the hotel.
• RoomRate: Contains the price rate for the rooms offered.
• SeasonStartDate: Contains the date on which the season begins.
• SeasonEndDate: Contains the date on which the season ends.
• Supplier: Contains the ID of the hotel, which is a supplier.
• HotelReservation: Contains the ID of the reservation for this hotel.

.

 24

CarRentalSeason (CarRate, SeasonStartDate, SeasonEndDate, Supplier, RentalCar).

• CarRate: Contains the price rate for the rental car offered.
• SeasonStartDate: Contains the date on which the season begins.
• SeasonEndDate: Contains the date on which the season ends.
• Supplier: Contains the ID of the car rental agency, which is a

 supplier.
• RentalCar: Contains the ID of the rental car.

Manages (Employee, Booking).

• Employee: Contains the ID of the employee managing the booking.
• Booking: Contains the ID of the booking being managed.

FlightWithBooking (Flight, Booking).

• Flight: Contains the ID of the flight that is included in the booking.
• Booking: Contains the ID of a booking that contains this flight.

ReservationWithBooking (Booking, HotelReservation).

• Booking: Contains the ID of a booking that contains this hotel

 reservation.
• HotelReservation: Contains the ID of the hotel reservation included in this

 booking.

RentalCarWithBooking (Booking, RentalCar).

• Booking: Contains the ID of a booking that contains this rental car.
• RentalCar: Contains the ID of the rental car included in this booking.

CustomerWithBooking (Customer, Booking).

• Customer: Contains the ID of the customer associated with this booking.
• Booking: Contains the ID of a booking that contains this customer.

8. Interface Design

After developing a well designed system infrastructure, it is necessary to develop a user
interface which harnesses the capabilities and speed of the infrastructure. A poorly designed
interface can lead to low productivity and user frustration even though the underlying system
may have been well designed. Because of this, it is imperative that great emphasis be put into
designing an interface which takes full advantage of the system and makes it as intuitive as
possible for users to carry out their tasks.

8.1. Designing the Interface:

There will be a client application which will be the only interface to the system. All
classes of users (including management) will use this program to access the processing
tier of the system. Having a single client application supporting all functionality of the
system with user class privileges will be easiest to maintain since there is only one code
base. However, security may be an issue if a malicious employee decides to try to gain
access to another higher user class to gain additional privileges. Though this situation is
unlikely, care must be taken to place the appropriate safeguards into the application to

 25

prevent this. Also, the system should log all activities by all users in case such an event
occurs.

The client interface will be designed using the guidelines in Appendix G: Characteristics
of a Good Interface. The prototype client interface that has been created adheres closely
to these guidelines. See Appendix H for screenshots of the prototype. Instead of
highlighting interface characteristics here, they have been placed below each screenshot
to facilitate easier reading.

9. Conclusion

The above system recommendations are a solid basis for the implementation of the system.
Each of the recommendations provided was carefully chosen so as to satisfy the requirements
determined in the requirements analysis. Beyond the requirements, recommendations were
chosen based on price, interoperability and degree of upgradeability. Once completed, this
system will remedy all of the problems Eurosun Inc. had with their old software system. It
will also provide them with more features and plenty of performance to satisfy their
requirements well into the future.

.

 26

.

Appendices

 27

Appendix A1: Repository Based Software Architecture

The following is a representation of a repository based system applied to this Eurosun Inc.
Typically one process should be completed before another one begins. Although this is
generally going to be the case in this application, operations will not always work this way, so
a repository system is not well suited to this system.

Database

Enter
Customer Info

Create Booking

Pay Suppliers

Print Cheques

Generate Reports

.

 28

Appendix A2: Two-Tier Client Server Architecture

Tier 1

Database

Logical Representation

Tier 2

Application
(Possibly Thick)

Physical Representation

Database Server

Database

Client Node

Network

Tier 1 Tier 2

User Services Data Services

 29

Appendix A3: Three-Tier Client Server Architecture

Tier 1

Data Services

Database

Logical Representation

Tier 2

Application
(Usually "Thin")

Physical Representation - Tier 2 & 3 Separate

Processing Server

Client Node

Network

Tier 1 Tier 2

Business Services
(Processing)

Tier 3

User Services

Database Server

Tier 3

Network

Database

Physical Representation - Tier 2 & 3 Together

Client Node

Network

Tier 1

Processing/Database Server

Tier 2 & 3 Database

.

 30

Appendix B1: Server Comparison

Database Server Comparison

 Dell Power 1400
(Customized)

Compaq ProLiant
ML330

IBM Netfinity 5100

Form Factor Medium Tower Medium Tower Medium Tower

Processor Single Intel Pentium III
800MHz (133MHz Bus)

Single Intel Pentium III
800MHz (133MHz Bus)

Single Intel Pentium III
866MHz (133MHz Bus)

Hard Drives 2 x 9GB, 7200RPM,
Ultra160 SCSI

2 x 9GB, 7200RPM,
Ultra2 SCSI

2 x 9GB, 7200RPM,
Ultra160 SCSI

Hard Drive
Configuration

C3, Add-In RAID 1 RAID 1 RAID 1

RAM 256MB SDRAM (1x256)
133MHz

256MB SDRAM (2x64,
1x128) 133MHz

256MB SDRAM (2x64)
ECC 133MHz

Controller Card Perc2-DC, 64MB, 2-
Internal Channels

Smart Array 431 RAID
Controller

ServerRAID-4L Ultra160

Network Cards On-Board NIC + Intel
Pro 100 Plus NIC

Compaq 10/100 TX UTP Integrated 10/100
Ethernet Controller

Warranty 3 Year Next Business
Day On-Site Service

Compaq 3 Year Limited
Warranty

Not Mentioned

Support DirectLine, 3 Res/Expire
3 Years

9am - 5pm 4 hour on-site
coverage-3 years

Not Mentioned

Operating System None None None

Tape Backup Seagate 20GB Int SCSI 12/24 GB DAT Tape
Drive.

Seagate 20GB Int SCSI

Uninterruptible
Power Supply

UPS 700VA, 120
Standalone

Compaq UPS T700 Smart-UPS 1000

Price $4,562.00 $4,152.00 $5,016.00

Table 1: Server Comparison

 31

Appendix B2: Client System Configuration

Category Chosen Component

CPU Intel Celeron 600MHz

Case Medium Tower ATX

Motherboard ASUS CUV4X-E

Memory 128MB PC133 SDRAM

Hard Drive 10GB Fujitsu UltraDMA/66 5400RPM

CD-ROM Drive Creative Labs 52X IDE

Sound Card Ensoniq PCI

Video Card ATI Xpert 98 8MB AGP

Monitor KDS 17” SVGA 1280x1024 Max

Network Card D-Link DFE-530+TX

Total $ 934.90 Each

Table 2: Client Systems Configuration

.

 32

Appendix C: Database Comparison

 Oracle IBM DB2 MS SQL Server Microsoft
Access

Service &
Responsiveness

Very Good Excellent Good Good

Features &
Innovation

Excellent Very Good Good Poor

Industry Expertise Very Good Excellent Good Excellent

Pricing & Value Poor Fair Good Excellent

Programming
Expertise

Good Very Good Excellent Good

Reliability Very Good Excellent Good Poor

Scalable And VLDBs Excellent Excellent Very Good Poor

Table 3: Database Comparison

References:

Whiting, Rick. “Database Grudge Match” InformationWeek.com. 4 December 2000.
<http://www.informationweek.com/815/database.htm>.

http://www.informationweek.com/815/database.htm

 33

Appendix D1: ACID Compliant Database

Atomicity

Results of a transaction's execution are either all committed or all rolled back. All changes
take effect, or none do. That means, for Joe User's money transfer, that both his savings and
checking balances are adjusted or neither are.

Consistency

The database is transformed from one valid state to another valid state. This defines a
transaction as legal only if it obeys user-defined integrity constraints. Illegal transactions
aren't allowed and, if an integrity constraint can't be satisfied then the transaction is rolled
back. For example, suppose that you define a rule that, after a transfer of more than $10,000
out of the country, a row is added to an audit table so that you can prepare a legally required
report for the IRS. Perhaps for performance reasons that audit table is stored on a separate
disk from the rest of the database. If the audit table's disk is off-line and can't be written, the
transaction is aborted.

Isolation

The results of a transaction are invisible to other transactions until the transaction is complete.
For example, if you are running an accounting report at the same time that Joe is transferring
money, the accounting report program will either see the balances before Joe transferred the
money or after, but never the intermediate state where checking has been credited but savings
not yet debited.

Durability

Once committed (completed), the results of a transaction are permanent and survive future
system and media failures. If the airline reservation system computer gives you seat 22A and
crashes a millisecond later, it won't have forgotten that you are sitting in 22A and also give it
to someone else. Furthermore, if a programmer spills coffee into a disk drive, it will be
possible to install a new disk and recover the transactions up to the coffee spill, showing that
you had seat 22A.

References:

Greenspun, Phillp. Phillip and Alex’s Guide to Web Publishing. Chapter 12
<http://www.arsdigita.com/books/panda/index.html>.

http://www.photo.net/photo/pcd1359/universal-city-rules-42.tcl

.

 34

Appendix D2: Relational Schema using Normal Forms

Normal forms are used as criteria to judge whether a schema is “better” than another. In the
general case, a schema with a higher NF rating is considered to be “better” than those
schemas with a lower rating. Normalization helps reduce the number of redundancies and
anomalies in the relational schema.

The standard normalization forms are:

a) First Normal Form (1NF):
A relational schema is in this form if it does not include any multiple valued attributes or
composite attributes.

b) Second Normal Form (2NF):
A relational schema is in this form if it is in 1NF and all non-key attributes depend on all
elements of its key, rather than a subset.

c) Third Normal Form (3NF):
A relational schema is in this form if it is in 2NF and none of its non-key attributes
depends on any other non-key attribute.

 35

Appendix E1: Database Cost Model

Concept Type Volume
Sales Rep. E 5
Sales Manager E 1
Financial Manager E 1
Supplier E 75
Flight E 3500
Hotel Reservation E 3000
Rental Car E 1250
Customer E 5030
Hotel Season R 300
Flight Offered By R 3500
Car Rental Season R 300
Booking R 1500
Entered To DB R 4175
Pay Supplier R 2000

Table 1: Volumes

Operation Type Frequency
Add flight to database I 50/month
Add flight to booking I 20/day
Print Report I 2/month
Pay Supplier I 15/month
Add Hotel to database I 5/month
Add Car Agency to database I 5/month
Add Airline to database I 5/month
Add Hotel Season I 120/year
Add Car Rental Season I 120/year
Create New Booking I 10/day
Cancel Booking I 2/day
Add Hotel Reservation to Booking I 20/day
Add Car Rental to Booking I 20/day
Look Up Customer I 25/day

Table 2: Operations

Accesses:

Concept Type Accesses Type
Sales Manager Entity 1 R
Entered to DB Relationship 1 W
Supplier Entity 1 R
Flight Offered By Relationship 1 W
Flight Entity 1 W

Table 3: Add Flight to Database

.

 36

Concept Type Accesses Type
Sales Rep Entity 1 R
Booking Relationship 1 RW
Flight Entity 1 RW
Customer Entity 4 (avg) RW

Table 4: Add Flight to Booking

Concept Type Accesses Type
Financial Manager Entity 1 R
Report Relationship 1 W
Supplier Entity 75 R

Table 5: Print Report

Concept Type Accesses Type
Financial Manager Entity 1 R
Pay Supplier Relationship 1 W
Supplier Entity 1 RW

Table 6: Pay Supplier

Concept Type Accesses Type
Sales Manager Entity 1 R
Entered to DB Relationship 1 W
Supplier Entity 1 W

Table 7: Add Hotel to Database

Concept Type Accesses Type
Sales Manager Entity 1 R
Entered to DB Relationship 1 W
Supplier Entity 1 W

Table 8: Add Car Rental Agency to Database

Concept Type Accesses Type
Sales Manager Entity 1 R
Entered to DB Relationship 1 W
Supplier Entity 1 W

Table 9: Add Airline to Database

Concept Type Accesses Type
Sales Manager Entity 1 R
Entered to DB Relationship 1 W
Supplier Entity 1 R
Hotel Season Relationship 1 W

Table 10: Add Hotel Season to Database

 37

Concept Type Accesses Type
Sales Manager Entity 1 R
Entered to DB Relationship 1 W
Supplier Entity 1 R
Car Rental Season Relationship 1 W

Table 11: Add Car Rental Season to Database

Concept Type Accesses Type
Sales Rep Entity 1 R
Booking Relationship 1 W
Customer Entity 4 (avg) W

Table 12: Create New Booking

Concept Type Accesses Type
Sales Rep. Entity 1 R
Booking Relationship 1 RW
Hotel Reservation Entity 2 (avg) RW
Hotel Season Relationship 1 RW
Rental Car Entity 2 (avg) RW
Car Rental Season Relationship 1 RW
Flight Entity 2 (avg) RW
Customer Entity 4 (avg) RW

Table 13: Cancel Booking

Concept Type Accesses Type
Sales Rep. Entity 1 R
Booking Relationship 1 RW
Hotel Season Relationship 1 R
Customer Entity 4 (avg) RW
Hotel Reservation Entity 1 W

Table 14: Add Hotel Reservation to Booking

Add Car Rental to Booking

Concept Type Accesses Type
Sales Rep. Entity 1 R
Booking Relationship 1 RW
Car Rental Season Relationship 1 R
Customer Entity 4 (avg) RW
Car Rental Entity 1 W

Table 15: Add Car Rental to Booking

.

 38

Concept Type Accesses Type
Sales Rep Entity 1 R
Booking Relationship 1 R
Customer Entity 1 R

Table 16: Look Up Customer Account

Appendix E2: Cases of Redundancy

Presence of redundancy: There is an AmountOwed attribute.

Absence of redundancy: There is no AmountOwed attribute.

Operation 1: Look up Customer account.
Operation 2: Create New Booking.
Operation 3: Add Flight to Booking
Operation 4: Add Hotel to Booking
Operation 5: Add Car Rental to Booking

Assume Read(R) has cost of 1, Write(W) has cost of 2, and ReadWrite(RW) has cost of 3

Concept Type Accesses Type
Sales Rep Entity 1 R
Booking Relationship 1 R
Customer Entity 1 R

Table 17: Look Up Customer Account (Presence of Redundancy)

Concept Type Accesses Type
Sales Rep Entity 1 R
Booking Relationship 1 W
Customer Entity 4 (avg) W

Table 18: Create New Booking (Presence of Redundancy)

Add Car Rental to Booking (Presence of redundancy)

Concept Type Accesses Type
Sales Rep. Entity 1 R
Booking Relationship 1 RW
Car Rental Season Relationship 1 R
Customer Entity 4 (avg) RW
Car Rental Entity 1 W

Table 19: Add Car Rental to Booking (Presence of Redundancy)

Concept Type Accesses Type
Sales Rep. Entity 1 R
Booking Relationship 1 RW

 39

Hotel Season Relationship 1 R
Customer Entity 4 (avg) RW
Hotel Reservation Entity 1 W

Table 20: Add Hotel Reservation to Booking (Presence of Redundancy)

Concept Type Accesses Type
Sales Rep Entity 1 R
Booking Relationship 1 RW
Flight Entity 1 RW
Customer Entity 4 (avg) RW

Table 21: Add Flight to Booking (Presence of Redundancy)

Concept Type Accesses Type
Sales Rep Entity 1 R
Booking Relationship 5 (avg) R
Customer Entity 1 R

Table 22: Look Up Customer Account (Absence of Redundancy)

Concept Type Accesses Type
Sales Rep Entity 1 R
Booking Relationship 1 W
Customer Entity 4 (avg) W

Table 23: Create New Booking (Absence of Redundancy)

Concept Type Accesses Type
Sales Rep. Entity 1 R
Booking Relationship 1 RW
Car Rental Season Relationship 1 R
Car Rental Entity 1 W

Table 24: Add Car Rental to Booking (Absence of Redundancy)

Concept Type Accesses Type
Sales Rep. Entity 1 R
Booking Relationship 1 RW
Hotel Season Relationship 1 R
Hotel Reservation Entity 1 W

Table 25: Add Hotel Reservation to Booking (Absence of Redundancy)

Concept Type Accesses Type
Sales Rep Entity 1 R
Booking Relationship 1 RW
Flight Entity 1 RW

Table 26: Add Flight to Booking (Absence of Redundancy)

.

 40

Cost Comparison:

Cost of Operation 1 “Look Up Customer”:
Presence of Redundancy: (3R + 0W) × 25/day = 75 accesses per day
Absence of Redundancy: (7R+ 0W) × 25/day = 175 accesses per day

Cost of Operation 2 “Create New Booking”:
Presence of Redundancy: (1R + 5W) × 10/day = 110 accesses per day
Absence of Redundancy: (1R + 5W) × 10/day = 110 accesses per day

Cost of Operation 3 “Add Car Rental to Booking”:
Presence of Redundancy: (2R + 1W + 5RW) × 20/day = 380 accesses per day
Absence of Redundancy: (2R+ 1W + 1RW) × 20/day = 140 accesses per day

Cost of Operation 4 “Add Hotel Reservation to Booking”:
Presence of Redundancy: (2R + 1W + 5RW) × 20/day = 380 accesses per day
Absence of Redundancy: (2R+ 1W + 1RW) × 20/day = 140 accesses per day

Cost of Operation 5 “Add flight to booking”:
Presence of Redundancy: (0R + 1W + 6RW) × 20/day = 400 accesses per day
Absence of Redundancy: (0R+ 1W + 2RW) × 20/day = 160 accesses per day

Total Cost (Presence of Redundancy) = 1345 accesses per day
Total Cost (Absence of Redundancy) = 725 accesses per day

Results:

As evident in the above data, the absence of redundancy improves performance of the
database.

41

Appendix F1: Initial E-R Diagram

Sales Rep

Booking

1:N

1:1

Employee Sales Manager

Supplier

Hotel

Flight

Car Rental
Agency

Hotel
Reservation

Rental Car

Customer

Travel Agent Vacationer

Enters

1:1

0:N

Hotel Season

1:N

1:N

Car Rental
Season

1:N

1:N0:1

0:N

Name

Address

Phone

ContactName

EmployeeID

Name

DepartDate

FlightID

SupplierID

DepartCity

DepartTime

Address

Phone

NumSeatsAvail

Features

StartDate

SeasonEndDate

EndDate

CarID

Rating

CarSeasonID

CarType

Country

City

RoomRates

SeasonStartDate

Phone

SeasonStartDate

SeasonEndDate

CarRates

CustID

Name

BookingID

TotalCost

AmountOwed

ArrivalCity

Financial Manager

Pays 0:N

0:N

Reports

0:N
0:N

DateStamp

DateStamp

ChequeNumber

Type
DateRange

DateStamp

1:1

AmountPaid

OutstandingAmount

1:N

.

42

Appendix F2: O
ptim

ized E-R Diagram
 (Tables in Database)

Employee

1:N

1:1

Supplier

Flight
Hotel

Reservation

Rental Car

Customer

Enters

0:N

Hotel Season

1:N

1:N

Car Rental
Season

1:N

1:N

1:N

0:N

DepartDate

FlightID

DepartCity

DepartTime
NumSeatsAvail

StartDate

SeasonEndDate

EndDate

CarID

Rating

CarType

RoomRates

SeasonStartDate

Phone

SeasonStartDate

SeasonEndDate

CarRates

CustID

Name

BookingID TotalCost

ArrivalCity

Pays

0:N

Reports

0:N

DateStamp

DateStamp ChequeNumber

Type

DateRange DateStamp

1:1

Flights Offered
By

1:NName

Address

Phone

EmployeeID ContactName

NameSupplierID

Phone

Country

City

EndDate

StartDate

RoomType RoomID

Type0:N

0:N

0:N

Type

Type

Address

Booking

Manages

Customer with
Booking

1:N

Flight with
Booking

0:N

Rental Car with
Booking

Reservation with
Booking

0:N

0:N

1:1

1:1

OutstandingAmount

AmountPaid

 43

Appendix F3: E-R Data Dictionary

Entities
Entity Description Attributes Identifier

Employee Employee contains information
pertaining to each employee at
Eurosun Holiday’s.

EmployeeID, Name, Phone,
Address, Type

EmployeeID

Customer Customer contains information
pertaining to each customer of
Eurosun Inc.

CustID, Name, Phone, Type CustID

Booking Each customer of Eurosun Inc.
is associated with a certain
number of bookings. The
Booking is used to acquire all
the information for each
customer’s vacation.

BookingID, TotalCost BookingID

Flight Flight contains information
about each flight that Eurosun
offers or has offered to their
customers in the past.

FlightID, NumSeatsAvail,
DepartCity, DepartDate,
DepartTime, ArrivalCity

FlightID

Supplier Supplier contains the
information of each supplier of
Eurosun Inc. This information
may be used to contact
suppliers.

SupplierID, Name, Phone,
Address, City, Country,
AmountOwed, Type

SupplierID

Hotel Reservation Hotel Reservation contains
information for each hotel
reservation that a vacationer of
Eurosun Inc. makes.

RoomID, RoomType,
StartDate, EndDate

RoomID

Rental Car Rental Car contains
information for each car rental
that a vacationer of Eurosun
obtains.

CarID, CarType, StartDate,
EndDate

CarID

Relationships
Relationship Description Entities Involved Attributes

Reports Reports contains information
about each report made by an
employee about a certain
supplier.

Supplier(0,N), Employee
(0, N)

DateRange,
DateStamp, Type

Pays Pays contains records about
each payment that Eurosun
has issued to its suppliers.

Supplier(0, N), Employee
(0, N)

DateStamp,
ChequeNumber,
AmountPaid

Enters Enters keeps track of which
employees enter which
suppliers in the database.

Supplier(0, N), Employee
(0, N)

DateStamp

Flights Offered
By

FlightsOfferedBy contains
information about which flights
certain suppliers offer.

Supplier(0, N), Flight(0, N)

Hotel Season HotelSeason contains
information about which hotel
reservations are within certain
seasons for a specific supplier.

Supplier(1, N), Hotel
Reservation(1, N)

Rating,
RoomRate,
SeasonStartDate,
SeasonEndDate

.

 44

Car Rental
Season

CarRentalSeason contains
information about which cars
are available for rent in a
specific season for a specific
supplier.

Supplier(1, N), Rental Car
(1, N)

CarRate,
SeasonStartDate,
SeasonEndDate

Manages Manages contains information
about which employees are
handling certain bookings.

Employee(1, N), Booking
(1, 1)

Flight With
Booking

FlightWithBooking contains
information about which flights
are included in certain
bookings.

Flight(0, N), Booking(0, N)

Reservation With
Booking

ReservationWithBooking
contains information about
which reservations are
included in certain bookings.

Hotel Reservation(1,1),
Booking(0, N)

Rental Car With
Booking

RentalCarWithBooking
contains information about
which rental cars are included
in certain bookings.

Rental Car(1, 1), Booking
(0, N)

Customer With
Booking

CustomerWithBooking table
contains information about
which customers are included
in certain bookings.

Customer(1, N), Booking
(1, N)

 45

Appendix G1: Revised Use Case Diagram

Find Flight

Find Supplier

Find Booking

Print Report

Add Employee

Add Flight

<<include>>

Add Supplier
<<include>>

Add Hotel Season

<<include>>

Add Car Rental Season

Sales Manager

Create New Booking

Add Flight To Booking

Add Hotel Reservation to Booking

Add Car Rental To Booking

Lookup Customer Account

<<extend>>

Add Customer Account

Cancel Booking

Sales Representative

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

View Financial Results

<<extend>>

Pays Supplier

Finance Manager

<<include>>

<<include>>

<<include>>

.

 46

Appendix G2: Use Case Diagram Data Dictionary

Use Case Description

Add Employee Sales Manager adds a new employee to the system, and sets there status to active

Add Flight Sales Manager adds a new flight to the system. The flight is added by specifying a
unique flight ID.

Add Supplier Sales Manager adds a new supplier to the database. The supplier may be an actual
Hotel, Airline or Car Rental Agency.

Add Hotel Season Because this is a hotel season, we already how the hotel is in the system or we would
not get this information. The Manager then searches for the associated hotel, and
proceeds to enter the new season. The system searches for a matching hotel season,
doesn’t find one, in which case, the hotel season is added.

Add Car Rental Season Sales Manager initiates procedure to add a Car Rental Agency. The Manager then
proceeds to search for an existing record. The system performs this search, doesn’t find
one, in which case the Manager enters the information and the car rental agency is
added.

Pay Supplier Manager initiates the procedure to print a cheque. The system generates the cheque
provided that funds are available. A transaction record is stored and funds are adjusted.

View Financial Results Finance Manager initiates the procedure to view a report. He chooses which type of
report to view and has the option to print or close it.

Print Report Prints any report specified by the Financial manager.
Create New Booking Sales Representative initiates procedure to create a new booking. Information is

exchanged between Sales Rep and customer and the Sales Rep finds any of the flights,
hotels and car rentals that match the customers requests. If each request is met and
the customer confirms, the booking is created, otherwise it is cancelled

Cancel Booking Sales Representative initiates the procedure to cancel a booking, by searching using
some field. The system finds the booking and removes it, replacing all resources that
were assigned to it.

Add Flight To Booking Sales Representative initiates the procedure to add a flight to the booking. He searches
for the flight. The system performs the search, finds the flight, in which case it is added
to the booking and the appropriate seats are deducted from the flight.

Add Hotel Reservation To
Booking

Sales Representative initiates the procedure to add a hotel reservation to the booking.
He searches for the hotel and date range requested. The system performs the search
and determines
that there are rooms available, in which case it is added to the booking.

Add Car Rental To
Booking

Sales Representative initiates the procedure to add a car rental to the booking. He
searches for available rentals. The system performs the search, finds available rentals,
in which case the Sales Representative adds a car rental to the booking.

Look Up Customer
Account

Sales Representative initiates procedure to find customer account.
 He enters in information to search for. The system performs the search, and if found,
allows the Sales Representative to edit the record.

Add Customer Account New customer or travel agent calls or walks in. Sales Representative initiates
procedure to add a new customer. The Sales Representative enters in their
information, and if the system does not find a match, the customer is added as either a
travel agent or vacationer.

 47

Appendix H1: Revised Class Diagram

C
ar

 R
en

ta
l S

ea
so

n
ca

rR
at

e
s :

 m
on

ey
se

as
on

S
ta

rtD
at

e
 :

da
te

se
as

o
nE

nd
D

at
e

 :
da

te

ad
dS

ea
so

n(
)

ch
ec

kA
va

il(
)

ge
tD

a
te

R
an

ge
()

ge
tR

a
te

()

Ho
te

l S
ea

so
n

ra
ti

ng
 :

st
rin

g
ro

o
m

Ra
te

s :
 m

on
ey

se
as

on
S

ta
rtD

at
e

 :
da

te
se

as
o

nE
nd

Da
te

 :
da

te

ad
dS

ea
so

n(
)

ch
ec

kA
va

i(
)

ge
tD

a
te

R
an

ge
()

ge
tR

a
te

()

S
up

p
lie

r
su

pp
lie

rID
 :

in
te

ge
r

na
m

e
 :

st
rin

g
co

nt
ac

tN
am

e
: s

tri
ng

ad
dr

e
ss

 :
st

rin
g

ph
o

ne
 :

st
rin

g
ci

ty
 :

st
rin

g
co

un
try

 :
st

rin
g

ty
pe

 :
st

rin
g

O
ut

st
a

nd
in

gA
m

ou
nt

 :
m

o.
..

ad
dH

ot
el

()
ad

dA
ge

nc
y(

)

0.
.n

1

+O
w

ne
d

0.
.n

+O
w

n
s

1

0.
.n1 +O

w
ne

d
0.

.n+O
w

n
s

1

Fl
ig

h
t

fli
gh

tID
 :

in
te

ge
r

ar
riv

al
C

ity
 :

st
rin

g
de

pa
rtC

ity
 :

st
rin

g
de

pa
rtD

at
e

 :
st

rin
g

de
pa

rtT
im

e
 :

tim
e

nu
m

S
ea

ts
A

va
il

 :
in

te
ge

r

ad
dF

lig
ht

()
ch

ec
kA

va
il(

)
a

dj
us

tS
ea

ts
()

0.
.n

1

+O
w

ne
d

0.
.n

+O
w

n
s

1

Re
nt

al
 C

a
r

st
ar

tD
at

e
 :

da
te

en
dD

at
e

: d
at

e
ca

rT
yp

e
 :

st
rin

g

bo
ok

R
en

ta
l(

)

0.
.n

1 +O
w

ne
d

0.
.n

+O
wn

s
1

H
ot

el
 R

e
se

rv
at

io
n

ro
om

ID
 :

in
te

ge
r

ro
om

T
yp

e
 :

st
rin

g
st

ar
tD

at
e

 :
da

te
en

dD
at

e
 :

da
te

m
ak

eR
es

e
rva

tio
n(

)

0.
.n1 +O
w

ne
d

0.
.n+O

w
n

s
1

C
us

to
m

e
r

na
m

e
 :

st
rin

g
ph

o
ne

 :
st

rin
g

cu
st

ID
 :

in
te

ge
r

ty
pe

 :
st

rin
g

ad
dT

ra
ve

lA
ge

nt
()

ad
dV

a
ct

io
n

er
()

R
ep

or
t

da
te

R
an

ge
 :

da
te

da
te

S
ta

m
p

 :
da

te
ty

pe
 :

st
rin

g

ge
ne

ra
te

R
ep

or
t(

)
pr

in
tR

ep
or

t(
)

vi
ew

M
on

th
ly

R
ep

or
t(

)
vi

ew
Y

e
ar

ly
R

ep
or

t(
)

vi
e

wS
up

pl
yC

os
tR

ep
or

t(
)

1
0.

.n
+I

nc
lu

de
d

1
+C

on
ta

in
s

0.
.n

Bo
ok

in
g

bo
ok

in
gI

D
 :

in
te

ge
r

to
ta

lC
os

t :
 m

on
ey

cr
ea

te
N

ew
Bo

ok
in

g(
)

op
na

m
e(

)
cl

o
se

B
oo

ki
ng

()
ca

n
ce

lB
oo

ki
ng

()
as

sig
nV

ac
at

io
n

er
()

ch
e

ck
Fl

ig
ht

()
ch

ec
kH

ot
el

()
ch

ec
kC

ar
R

en
ta

l(
)

as
sig

nF
lig

ht
()

a
ss

ig
nH

ot
el

()
as

sig
nC

ar
R

en
ta

l(
)

no
C

ar
R

en
ta

l(
)

ge
tB

oo
ki

ng
()

0.
.n

0.
.n

+C
on

ta
in

s
0.

.n

+I
nc

lu
de

d
In

0.
.n

1

0.
.n

+A
ss

ig
n

s
1

+A
ss

ig
ne

d
T

o
0.

.n

0.
.n

1

+A
ss

ig
ne

d
T

o
0.

.n

+A
ss

ig
n

s
1

1.
.n

0.
.n

+
He

ld
 B

y

1.
.n

+H
a

s
0.

.n

Em
pl

oy
ee

em
pI

D
 :

in
te

ge
r

na
m

e
 :

st
rin

g
ad

dr
e

ss
 :

st
rin

g
ph

o
ne

 :
st

rin
g

ty
pe

 :
st

rin
g

ad
d

Em
pl

oy
ee

()

0.
.n

1

+C
re

at
ed

 B
y

0.
.n

+
Cr

ea
te

s
1

0.
.n

1

+M
a

na
ge

d
B

y
0.

.n

+
M

an
ag

es

1

.

 48

Appendix H2: Class Diagram Data Dictionary

Class Description Attributes Operations

Employee

This class contains all personal
information for each employee
of Eurosun Inc. Each employee
has their own unique employee
ID that corresponds to what
access rights they have on the
system. All employees also
have a password for the new
system.

- empID
- name
- address
- phone
- type (Financial
 Manager,
 Sales Manager,
 Sales Rep)

- addEmployee() : adds an employee to the
database.

Customer This class contains all personal
information for each customer
of Eurosun Inc.

- name
- phone
- custID
- type (Vacationer,
 Travel Agent)

- addTravelAgent() : adds a travel agent to
the database.
- addVacationer() : adds a vacationer to the
database.

Report This class is responsible for
assisting the Finance Manager.
It creates many different reports
for the major areas of the
system.

- dateRange
- dateStamp
- type (Sales,
 Supplies,
 Costs)

- generateReport() : generates a variety of
financial reports base on data in the
database.
- printReport(): prints any report generated
by the system.
- viewMonthlyReport() : a report generated
on a monthly basis that captures recent
sales figures.
- viewYearlyReport() : a report generated on
a yearly basis that captures recent sales
figures.
- viewSupplyCostReport(): a report that
captures all the supply costs of business.

Booking This class represents the
bookings for Eurosun Inc. Each
booking has all the information
about a customer’s vacation.
This includes the vacationers,
hotel reservations, rental cars,
and flights. Each booking is
given a unique identification
number for tracking purposes.

- bookingID
- totalCost

- reateNewBooking() : creates a new
booking in the database.
- getBooking() : opens an existing booking
in the database.
- closeBooking() : close an open booking
after changes have been made to it.
- cancelBooking() : removes a booking from
the database.
- checkFlight() : checks whether a specific
flight is available, and determines how
many seats are on the flight.
- checkHotel() : checks whether there are
any vacancies at a specific hotel.
-checkCarRental() : checks whether there a
specific location that offer rental car service.
- assignVacationer() : assigns a vacationer
to a booking,.
- assignFlight() : assigns a flight to a
booking, if it exists.
- assignHotel() : assigns a hotel to a
booking, if it exists.
- assignCarRental() : assigns a rental car to
a booking, if it exists.
- noCarRental() : sets no rental car status
on a booking.

Supplier This class contains general
information about each supplier
that provides goods and
services to Eurosun Inc.

- supplierID
- name
- address
- phone
- type (Airline,
 Hotel,
 Car Rental

- addHotel() : adds a new hotel to the
database.
- addAgency() : adds a new car rental
agency to the database.
- addAirline() : adds a new airline to the
database

 49

 Agency)
- outAmount

Flight This class extends the Supplier
class and holds information that
is specific to flights such as
arrival city, departure city,
times, dates, and seat prices.

- flightID
- arrivalCity
- departCity
- departDate
- departTime
- numSeatsAvail

- addFlight() : adds the specific flight to the
database. The flight must be offered by one
of the airlines known by the database..
- adjustSeats() : adjusts the number of
seats on a particular flight.
- checkAvail() : checks if a particular flight is
available.

HotelSeason This class keeps track of hotels
prices over certain periods of
time (seasons). It includes
information about room rates,
availability and dates.

- rating
- roomRates
- seasonStartDate
- seasonEndDate

- addSeason() : adds a hotel season to the
database.
- getDateRange() : determines the number
of days that the hotel room must be booked
for.
- getRate() : determines the proper room
rate depending on the current season.
- checkAvail() : checks if a particular hotel
has vacant rooms.

Hotel
Reservation

This class keeps track of a
vacationer’s stay at a hotel and
the total price of the
reservation.

- roomID
- roomType (one,
 two, etc.
 bedroom,
 honeymoon)
- startDate
- endDate

MakeReservation() : assigns a hotel
reservation to a booking

CarRental
Agency

This class extends the Supplier
class and holds information that
is specific to Car Rental
Agencies such as category of
car.

- category (airport,
 touring,
 business)
- carRates
- seasonStartDate
- seasonEndDate

- addSeason() : adds a car rental season to
the database.
- getDateRange() : determines the number
of days that the rental car must be booked
for.
- getRate() : determines the proper car rate
depending on the current season.
- checkAvail() : checks if a particular car
agency has available rental cars.

RentalCar This class keeps track of a
vacationer’s car rental, if they
choose to rent one. It has the
total price of the rental and the
date range in which they have
rented the car.

- startDate
- endDate
- carType
 (economy,
 mid-size,
 sports,
 luxury)

BoorRental() : assigns a rental car to a
booking.

.

 50

Appendix I1: State Diagram - Add Hotel Reservation To Booking

Query Booking Query Hotel Season

Add Hotel Reservation
Cancel Transaction

If Booking Found

If Booking Not Found
If Hotel Found

If Hotel Not Found

Hotel Reservation Added To Booking

Cancel

The above state diagram captures all the states that occur in the system when adding a hotel
reservation to a booking.

The initial state begins with the Sales Representative being asked to add a particular hotel
reservation to a booking. The next state, Query Booking, is entered when the Sales
Representative first queries the system to check if such a booking exists. If the booking does
not exist, the transaction is cancelled and the end state is reached. If the booking does exist,
we enter a new state, Query Hotel Season, that queries the system on a particular hotel season.
This state must check if the requested hotel exists. If the hotel does not exist, the transaction
is cancelled and we reach the end state. If the hotel does exist, we enter a new state, Add
Hotel Reservation, and add the hotel reservation to the booking.

 51

Appendix I2: State Diagram – Add Flight to Database

Get New Flight Information Query For Airline

Cancel Transaction

Insert Flight Into Database

New Flight To Be Added

Check For Existing Airline

Existing Airline Found

Existing Airline Not Found

The above state diagram models all the states that occur in the system when adding a flight to
a database.

The initial state begins with the Sales Manager adding a flight to the database. The next state,
Get New Flight Information, is entered and the system is asked to check the given flight
information. Once the information is read, we enter the Query For Airline state which queries
the database for the airline. If the airline does not exist, the transaction is cancelled and the
final state is reached. If the airline does exist, we enter the final state, Insert Flight Into
Database, which allows the Sales Manager to insert the new flight information into the
database.

.

 52

Appendix J: Sequence Diagram – Generate Supplier Report

Financial Manager

Check Financial Report()

Report SupplierReport Window

Query Supplier List()

getList()

returnList()

Supplier Chosen()

Enter Start Date()

Enter End Date()

generateReport()

accesSupplierAccount()

returnResult()

displayResult()

CyberTravel Supplier Report

Choose Supplier

Start Date

End Date OK

Results

The above diagram shows the
interaction between the Financial
manager and the database system.
This sequence diagram is similar to
the sequence diagram in the
Requirements Analysis. However,
this diagram implements the
application interface that the
Financial Manager will use to
generate a supplier report.

 53

Appendix K: Collaboration Diagram – Creating a New Booking

Sales Representative

Booking

CustomerFlight

Hotel Reservation

Rental Car

Hotel Season

Car Rental Season

1. createBooking()

2. addVactioner()3. checkAvail()

4. adjustSeats()

5. m
akeReservation()

6. checkAvail()

7.
 b

oo
kR

en
ta

l()

8. checkAvail()

The above collaboration diagram models how the Sales Representative actor uses the Create
New Booking use case. The diagram shows the interaction between the Sales Representative
and the system components.

A Sales Representative takes the customer request and proceeds to create a new booking in
the system. The Sales Representative asks for a list of vacationers that will be attending the
trip. The list of vacationers is then assigned to the booking. The Sales Representative then
searches for the requested flight(s). If the required flights are available, the flights are
assigned to the booking and the availability is adjusted.

Next the Sales Representative checks for Hotel availability. If the required number of hotel
rooms is available, the Sales Representative assigns the Hotel reservations to the booking.

If the customer requires a rental car, the Sales Representative checks the local Car Rental
Agencies for available vehicles. If a rental car is available, then we assign it to a booking.

The system has completed the required steps to create a new booking.

.

 54

Appendix L: Characteristics of a Good Interface

 a) Affordances:
This refers to the level in which the functions provided by the interface are self-
explanatory and easy to locate. For example, is a function hidden deep within a menu?

b) Mapping:
This refers to how well the interface relates an action performed by the system to what
the user expects the system to do. For example, does the image on a button sufficiently
describe the function it performs?

c) Feedback:
This refers to the level in feedback the interface provides to user’s actions. For example,
if a user clicks a button, they are provided with a dialog box which asks them whether or
not they would like to continue.

d) Mental Model:
This refers to the level in which the interface can relate with the user’s understanding of
what is going on in the system when they perform an action. For example, the send
button in an email application provides a good mental model of what happens when the
button is clicked.

e) Forcing Functions:
This refers to the level in which the interface hides functionality until that function is
allowed to be performed. For example, if the interface contains a list with no data, then
the delete action should be greyed out to let the user know they cannot delete anything.

f) Automatic Learning:
This refers to the level in which the interface facilitates in the user’s learning its functions
quickly. To accomplish this, the interface should remain consistent and remember the
user’s settings.

 55

Appendix M1: User Interface – Main Program

The following screenshot displays what the program looks like when it is started for the first
time.

Automatic Learning:
When the program is started for the first time, no windows are shown, however any windows that are
still on screen when closing the program, will appear in the exact same location on the next loading of
the program, providing a type of bookmarking function that allows the user to quickly pick up where
they left off.

Affordances:
The main interface has very little clutter which makes it easy to find functions, also the application
uses icons and menus standard to many Windows based programs.

Mapping:
The menus are appropriately labelled to help the user find the action they want to perform quickly. If
the user wants to perform a fast search, they use the Query menu. If they want to manage the flights
table, they go to Activities>Flights.

.

 56

Appendix M2: User Interface – Flights Window

The following screenshot demonstrates the interface to the flights table, accessible through the
Activities>Flights menu.

Affordances:
The form uses standard windows components, which most users are very comfortable with using.

Mapping:
All the buttons have clear and simple icons which explain exactly what they do. The navigation buttons
have arrows, the insert button has a picture of a record, the delete has an X. Most people, through their
experiences with other programs and devices such as VCR’s have a good understanding of what these
buttons do. For those users that don’t, they can simply move their mouse over the button to get a
description of what it does.

Forcing Functions:
Depending on which record the user is currently looking at, the navigation buttons in the top left hand
corner are active or inactive. For example, when the user is on the first record the first two buttons (which
go to previous records) are disabled.

Mental Model:
This form provides two views of the data. Some users prefer to view the data in tables, while others prefer
to only see one record at a time. The form layout provides excellent mental models of what the system is
doing for different types of users.

 57

Appendix M3: User Interface – Querying Database/Sorting/Filtering

The following screenshot demonstrates the querying abilities of the system. It allows for
querying by any field. Once the results are returned, filters may be applied to any field to
narrow down the results. Furthermore, the data can be sorted by any field (including multiple
fields).

Forcing Functions:
The sorting fields in the Sort dialog are greyed out until the user chooses the number of fields they want to
sort by on the right hand side. Only one of these buttons can be clicked at any time.

.

 58

Appendix M4: Administration Tools

The following screenshot demonstrates tools available to management/administration to allow
adding, editing and removing of users of the system. The final version of the tools will allow
administrators to pick and choose which components of the system certain classes of
employees are allowed to access.

 59

Appendix N: Requirements Analysis

The following is a condensed version of the Requirements Analysis which only includes the
revised Functional and Non-Functional Requirements.

1. Functional Requirements:

In what follows, we will outline the functional requirements of the new system. Functional
requirements describe what processing the system must provide, for example how inputs are
handled and what output is provided. The functional requirements have been broken down to
Input, Data Management, and Output requirements.

1.1. Input:

1.1.1. New Supplier Information:

The software must allow the Sales Manager to insert flight, hotel, hotel season, car rental
agency, and car rental season information. They must also have the ability to update this
information when necessary. The system must store standard information for each of
these items. This information was obtained by looking at company standards and
document standards. The results can be found in Class Diagram.

1.1.2. New Customers:

The software must allow the Sales Representatives to add information about new
customers. Customers include vacationers and travel agents. Customers will contact the
Sales Representatives either in person or by phone.

1.1.3. Create Bookings:

The software must allow the Sales Representatives to create new bookings for both new
and existing customers. The bookings must be able to accommodate groups and special
tours. Input will come from customer phone calls/faxes, in person or through a form on
the company web site.

1.1.4. Financial Management:

The software must allow the Financial Manager to view and print monthly and yearly
reports about various aspects of the system. They must also be able to mange
commissions for travel agents and pay for resources used from suppliers.

1.2. Data Management:

To manage all data in the system, the software will employ the use of a commercial DMBS
(Database Management System). Commercial DBMS’ are widely used and proven
technologies and will allow development to progress at a much quicker rate, since almost all
I/O is taken care of by the DBMS.

.

 60

1.2.1. Bookings:

The system must be able to track information about individual bookings. The
information must include the vacationers, flight information, hotel reservations, etc.

1.2.2. Cost of Goods Sold and Inventory:

The system must keep track of the costs of items sold, and what is available in inventory
to sell.

1.2.3. Monitor Sales for Time Periods:

The system must track sales information so that management can use this information for
future decisions.

1.2.4. Customer and Travel Agencies:

The system must be able to keep track of all customer information, and customer
feedback. Information about Travel Agencies also must be kept to be able to contact
them about sales and promotions.

1.2.5. Transactions:

Records of all transactions must be stored in a database for an indefinite amount of time.
Old records should not be deleted under any circumstance. Storage and performance
issues will be discussed in the non-function requirements.

1.3. Output:

1.3.1. Reports:

The software must allow the Finance Manager to be able to generate monthly and yearly
reports regarding figures from sales, supplies, and costs.

1.3.2. Cheques:

The software must allow the Finance Manager to generate, review, and print cheques.
These cheques need to be sent to suppliers, and travel agents who are owed commission.

2. Non-Functional Requirements:

Non-Functional requirements describe aspects of the system that are concerned with how well
it supports the functional requirements. It is broken down into the following categories:
Interface, Performance Operating, Life Cycle, Economic and Platform Requirements.

 61

2.1. Interface:

To aid in a quick transition period and to allow for as little training as possible, the software
must have a well designed, user friendly, GUI interface developed for the Windows family of
Operating Systems.

2.2. Performance:

2.2.1. Reliability:

The system, comprising of the software, hardware, and network components must have a
99% uptime. The business relies completely on this system, so it must be running
continuously. The system shall exhibit a Mean Time To Repair (MTTF) of no more than
one hour. During the testing phase of our software development we will use the technique
of bebugging. A number of seeded bugs will be placed in the code so to help use identify
any other bugs within the software. This approach has its roots in the Monte Carlo
statistical analysis techniques for random events. The final software will have no more
than twenty bugs per thousand lines of code.

2.2.2. Usability:

To reduce the time that it takes to enter and retrieve information, there should be a
minimal amount of screens required to perform a specific task. A well-designed interface
will facilitate this requirement.

2.2.3. Resources:

Although resources are cheap and plentiful in this day and age, resource usage should
still be kept as low as possible (i.e. Memory & Disk Space). Putting constraints on the
amount of resources used helps develop a more bug-free and robust system.

2.2.4. Efficiency:

Will measure the level at which a software system uses scare resources.
Capacity: The company network will be able to handle at least 25 simultaneous
connections. The software and database backend will be able to handle at least 25
simultaneous users.
Degradation of Service: When the network receives more than 25 simultaneous
connections, the system will continue to run with degraded performance.

2.2.5. Security:

Only allow management to add or adjust information about flights, car rentals, and hotels.
Furthermore, only management will have access to financial records concerning sales and
costs of operations. Most importantly the Finance Manager will have exclusive access to
matters concerning payments.

.

 62

2.3. Operating:

2.3.1. Maintenance:

Maintenance (if required) must be done after regular hours and on weekends.

2.3.2. Backup:

The system must perform a nightly tape backup of the entire database. To save space,
incremental daily backups can be used, but a full backup must be performed at least once
per week. The system shall have an Uninterruptible Power Supply that provides no less
than 45 minutes of uptime for the server and clients in the event of a power outage.

2.3.3. Restart Requirements:

In the event of an operating system or database error, the server will disregard all current
uncompleted transactions and will restart itself. The server will be back online within
five minutes. In the event of a prolonged power outage, the server will start itself upon
the restoration of electricity.

2.3.4. Environmental Conditions:

The system must be installed in a location with good ventilation, sub 23° Celsius
temperatures, and low dust levels to minimize hardware failure.

2.4. Life Cycle:

2.4.1. Quality of Design:

The development software tools must be standardized, widely used and actively
supported. The system will be designed in such a way that each component is
modularized. If functionality is needed in the future, a module can be easily written to
plug into the existing system with minimal modification and interruption to business.
The program shall provide a life span of no less than ten years. Portability is an
additional benefit but is not required in this case. It is only required that the client front-
end runs optimally on the Windows platform. It is likely that the backend can be written
to run on multiple platforms such as Windows and Unix. If this fits into the development
schedule and will not hinder functionality or performance, this should be done.

2.4.2. Limits on Development:

Development must take no longer than one year. This includes the period of building the
system to delivering and installing the system.

2.5. Economic:

Development costs of the system shall not exceed $85,000, and maintenance costs must
remain below $5000 annually.

 63

2.6. Server Platform:

2.6.1. Operating System:

The server will run Windows 2000 Server as its Operating System. The company already
has a 10-Client license for this OS, and it is the most secure and reliable release of the
Windows Server family to date, so it is a good choice.

2.6.2. Memory:

Memory is incredibly cheap at present, so there is no sense in being conservative. Thus,
the server shall be equipped with 512MB, which will satisfy all the memory requirements
of Windows 2000 Server and the RDBMS overhead. However, the system board chosen
should support more than 1GB for future expandability.

2.6.3. Storage:

The server shall have 40GB of storage spread across two high-speed 40GB hard disk
drives setup in a RAID 0+1 configuration. An inexpensive IDE RAID configuration
allows the data to be mirrored across two 40GB drives, so that if one fails, it can easily be
replaced without any disruption to service or data loss.

The server will also have a large Tape Backup to perform nightly backups just in case
both hard drives should fail.

2.6.4. CPU:

The server shall use an 800MHz Pentium III CPU. Databases rely much more heavily on
the Input/Output component of the system, so an 800MHz CPU is more than enough to
handle the load. The system board should support dual processors, so that a second
processor can be added in the future for expandability.

2.6.5. Peripherals:

The server will require two printers. One laser printer is required to print invoices,
itineraries, and reports. A second specialized printer is required to print cheques.
Fortunately, the company already possesses these printers for these tasks.

2.6.6. Network:

A network upgrade would have been required to supply the necessary bandwidth for a
multi-user database application. Conveniently, the company has a modern network in
place that was recently upgraded. It is based on a 100Mbps Ethernet network and is
connected by high-speed switches.

.

 64

2.7. Client Systems:

2.7.1. Operating System:

Each client will run Windows 2000 Professional since the company owns a 10-Client
license when they purchased Windows 2000 Server. Windows 2000 Professional is a
robust and very stable operating system, so it is ideal for this setting.

2.7.2. Memory:

Again, since memory is currently available for such a low cost, each machine shall be
equipped with no less than 128MB. Windows 2000 Professional does not run well with
any less, but runs very well with 128MB.

2.7.3. Storage:

Each client shall have at least 10GB hard disk drives. The storage space is only required
for the operating system and installing any applications. 10GB are the smallest drives
available for purchase and are very cheap.

2.7.4. CPU:

Each client shall use at least a Pentium II/Celeron class CPU of 500MHz or higher.

2.7.5. Network:

Each client requires a PCI 10/100Mbps network card (NIC) to connect to the company
Ethernet network.

	1. Introduction
	2. The Current System
	2.1. Description:
	2.2. Problems:
	2.3. Problem Scope and Solution:

	3. Software Architecture
	3.1. Alternatives:
	3.1.1. Repository Based Architecture:
	3.1.2. Client Server Architecture:
	a) Remote Procedure Call (RPC)
	b) Remote Data Access (RDA)
	c) Queued Message Processing

	3.1.2.1. Two-Tier Client Server Architecture:
	3.1.2.2. Three-Tier Client Server Architecture:
	3.2.1. Comparison between Two-Tier and Three-Tier Architectures:
	3.2.1.1. Criteria:

	b) Component Upgradeability: �	How easy will it be to upgrade a component in the system?� 	(Easy, Difficult)
	3.2.1.2. Results:��a) Development Time:�Developing the application using a three-tier model will take slightly longer than using a two-tier model. The three-tier model requires that more care be placed on specifying communication protocols between th
	3.2.1.2. Results:��a) Development Time:�Developing the application using a three-tier model will take slightly longer than using a two-tier model. The three-tier model requires that more care be placed on specifying communication protocols between th
	3.2. Recommendation:

	4. Global Architecture Design
	4.1. Global Architecture Overview:
	4.2. Distribution Issues:
	4.3. Process Cycles:
	4.4. Data Distribution:
	4.5. Process Distribution:

	5. Selections
	5.1. Hardware Classes:
	5.2. Hardware Selection:
	5.2.1. Database Server Selection Criteria:
	5.2.2. Database Server Recommendation:
	5.2.3. Client/Workstation Node Recommendation:

	5.3. Software:
	5.3.1. Database Server Operating System:
	5.3.2. Client/Workstation Systems:

	5.3.3. Database:
	5.3.3.1. Overview:
	5.3.3.1.1. IBM DB2:
	5.3.3.1.2. Oracle:
	5.3.3.1.3. Microsoft SQL Server:
	5.3.3.1.4. Microsoft Access:
	5.3.3.2. Recommendation:

	5.3.4. Programming Language:
	5.3.4.1. Overview:
	5.3.4.1.1. Microsoft Visual Basic:
	5.3.4.1.2. Microsoft Visual J++:
	5.3.4.1.3. Microsoft Visual C++:
	5.3.4.1.4. Microsoft Visual Basic & Visual C++:
	5.3.4.2. Recommendation:

	5.4. Network
	5.4.1. Type:
	5.4.2. Network Interface Cards:

	5.4.3. Connectivity:
	5.4.3.1. Overview:
	5.4.3.1.1. Workgroup Hub:
	5.4.3.1.2. Workgroup Switch:
	5.4.3.1.3. Router:
	5.4.3.2. Recommendation:
	5.4.4. Network Wiring:

	6. Input/Output Procedures:
	6.1. System Modules:
	6.1.1. Administration Module:
	6.1.1.1. Add Employee:
	6.1.1.2. Add Supplier:
	6.1.1.3. Add Flight:

	6.1.2. Financial/Reports Module:
	6.1.2.1. Pay Supplier:
	6.1.2.2. View Financial Reports:

	6.1.3. Booking Module:
	6.1.3.1. Create New Booking:
	6.1.3.2. Cancel Booking:
	6.1.3.3. Add Flight to Booking:
	6.1.3.4. Add Hotel Reservation to Booking:
	6.1.3.5. Add Car Rental to Booking:
	6.1.3.6. Add Customer Account:
	6.1.3.7. Look Up Customer Account:

	6.2. Security

	7. Database Design:
	7.1. E-R Diagram:
	7.1.1. E-R Diagram Optimization Overview:
	a) Analysis of Redundancies
	b) Removing Generalizations

	7.1.2. Database Schema:
	7.1.2.1. Entities:
	7.1.2.2. Relationships:

	8. Interface Design
	8.1. Designing the Interface:

	9. Conclusion
	Appendix A1: Repository Based Software Architecture
	Appendix A2: Two-Tier Client Server Architecture
	Appendix A3: Three-Tier Client Server Architecture
	Appendix B1: Server Comparison
	Appendix B2: Client System Configuration
	Appendix C: Database Comparison
	Appendix D1: ACID Compliant Database
	Appendix D2: Relational Schema using Normal Forms
	a) First Normal Form (1NF): �A relational schema is in this form if it does not include any multiple valued attributes or composite attributes.
	b) Second Normal Form (2NF): �A relational schema is in this form if it is in 1NF and all non-key attributes depend on all elements of its key, rather than a subset.
	c) Third Normal Form (3NF): �A relational schema is in this form if it is in 2NF and none of its non-key attributes depends on any other non-key attribute.
	Appendix E1: Database Cost Model
	Accesses:

	Appendix E2: Cases of Redundancy
	Cost Comparison:
	Results:

	Appendix F1: Initial E-R Diagram
	Appendix F2: Optimized E-R Diagram (Tables in Database)
	Appendix F3: E-R Data Dictionary
	Appendix G1: Revised Use Case Diagram
	Appendix G2: Use Case Diagram Data Dictionary
	Appendix H1: Revised Class Diagram
	Appendix H2: Class Diagram Data Dictionary
	Appendix I1: State Diagram - Add Hotel Reservation To Booking
	Appendix I2: State Diagram – Add Flight to Database
	Appendix J: Sequence Diagram – Generate Supplier Report
	Appendix K: Collaboration Diagram – Creating a New Booking
	Appendix L: Characteristics of a Good Interface
	
	
	a) Affordances:
	b) Mapping:
	c) Feedback:
	d) Mental Model:
	e) Forcing Functions:
	f) Automatic Learning:

	Appendix M1: User Interface – Main Program
	Automatic Learning:�When the program is started for the first time, no windows are shown, however any windows that are still on screen when closing the program, will appear in the exact same location on the next loading of the program, providing a type o
	Affordances:�The main interface has very little clutter which makes it easy to find functions, also the application uses icons and menus standard to many Windows based programs.
	Mapping: �The menus are appropriately labelled to help the user find the action they want to perform quickly. If the user wants to perform a fast search, they use the Query menu. If they want to manage the flights table, they go to Activities>Flights.
	Appendix M2: User Interface – Flights Window
	Affordances:�The form uses standard windows components, which most users are very comfortable with using.
	Mapping:�All the buttons have clear and simple icons which explain exactly what they do. The navigation buttons have arrows, the insert button has a picture of a record, the delete has an X. Most people, through their experiences with other programs a
	Forcing Functions:�Depending on which record the user is currently looking at, the navigation buttons in the top left hand corner are active or inactive. For example, when the user is on the first record the first two buttons (which go to previous recor
	Mental Model:�This form provides two views of the data. Some users prefer to view the data in tables, while others prefer to only see one record at a time. The form layout provides excellent mental models of what the system is doing for different types
	Appendix M3: User Interface – Querying Database/Sorting/Filtering
	Forcing Functions:�The sorting fields in the Sort dialog are greyed out until the user chooses the number of fields they want to sort by on the right hand side. Only one of these buttons can be clicked at any time.
	Appendix M4: Administration Tools
	Appendix N: Requirements Analysis
	1. Functional Requirements:
	1.1. Input:

	1.1.1. New Supplier Information: ��The software must allow the Sales Manager to insert flight, hotel, hotel season, car rental agency, and car rental season information. They must also have the ability to update this information when necessary. The
	1.1.2. New Customers: ��The software must allow the Sales Representatives to add information about new customers. Customers include vacationers and travel agents. Customers will contact the Sales Representatives either in person or by phone.
	
	1.1.3. Create Bookings:
	1.1.4. Financial Management:

	1.2. Data Management:
	1.2.1. Bookings:
	1.2.2. Cost of Goods Sold and Inventory:
	1.2.3. Monitor Sales for Time Periods:
	1.2.4. Customer and Travel Agencies:
	1.2.5. Transactions:

	1.3. Output:
	1.3.1. Reports:
	1.3.2. Cheques:

	2. Non-Functional Requirements:
	2.1. Interface:
	2.2. Performance:
	2.2.1. Reliability:
	2.2.2. Usability:
	2.2.3. Resources:
	2.2.4. Efficiency:
	2.2.5. Security:

	2.3. Operating:
	2.3.1. Maintenance:
	2.3.2. Backup:
	2.3.3. Restart Requirements:
	2.3.4. Environmental Conditions:

	2.4. Life Cycle:
	2.4.1. Quality of Design:
	2.4.2. Limits on Development:

	2.5. Economic:
	2.6. Server Platform:
	2.6.1. Operating System:
	2.6.2. Memory:
	2.6.3. Storage:
	2.6.4. CPU:
	2.6.5. Peripherals:

	2.6.6. Network:
	2.7. Client Systems:
	2.7.1. Operating System:
	2.7.2. Memory:
	2.7.3. Storage:
	2.7.4. CPU:
	2.7.5. Network:

