DATA PEAR SYSTEMS

Danielle Lottridge
Simon Hatch

Joshua Collings

Detailed Design:
The HMV
Information System Interface

CSC 340S

Monday, April 16", 2001

TA: Afsaneh Fazli




Table of Contents

Introduction 5
Part A: Global Architecture 6
- Specification of the computer network 6
- Specification of the Hardware 6
- Specification of the Software Platform 7
- Specification of the Software Architecture 11
- Sub-Systems and Major Components 12
- Justification of Design 13
Part B: Program Design: 14
- Class Diagrams
" Description of Interface Classes 15
" Interface Class Diagram 15
" Glossary of Interface Classes 16
" Description of Application Classes 20
" Application Class Diagram 20
" Glossary of Application Classes 21
" Description of Database Classes 24
" Database Class Diagram 24
" Glossary of Database Classes 25
" Justification of Class Design 32
- Sequence Diagrams 33
" Description of Product Search Sequence 34
" Product Search Sequence Diagram 34
" Glossary of Product Search Classes 35
" Description of Interface Sequence 39
" Interface Sequence Diagram 39
" Glossary of Interface Classes 40
" Description of Product Inventory Sequence 43
" Product Inventory Sequence Diagram 43
" Glossary of Product Inventory Classes 44
" Description of Product Selection Sequence 47
" Product Selection Sequence Diagram 47
" Glossary of Product Selection Classes 48
“ Justification of Sequence Diagram Design 50
- State Diagrams 52
" Description of Interface State 53
" Interface State Diagram 53
" Glossary of Interface State Classes 54
" Description of Radio Button State 55




" Radio Button State Diagram 55

" Glossary of Radio Button State Classes 56

" Description of Result Dialog State Diagram 57

" Result Dialog State Diagram 57

" Glossary of Result Dialog State Classes 58

" Description of Artist Search State Diagram 59

" Aurtist Search State Diagram 59

" Glossary of Artist Search State Classes 60

" Description of Touch Screen Dialog State Diagram 61

“ Touch Screen Dialog State Diagram 61

" Glossary of Touch Screen Dialog State Classes 61

" Justification of State Diagram Design 62

Part C: The Database Component 63

- Class Diagram Without Redundancy 63

- Identifiers of Database Class 64

- Database Constraints 64

- Workload Data 65

-Redundancy Analysis 65

-Workload Analysis 67

- Class Diagram with redundancy 67

- Generation of Relational Schema 68

" Removing Generalizations 68

" Partitioning and Merging Classes 68

" Selection of Primary Identifiers 69

" Relational Schema 71

- Normalization 72

" ONF Table 72

" INF Table 73

" 2NF Table 74

" 3NF Table 75

- Justification that the Design Meets Requirements 76

Part D: Interface Design 77

- The Target Users 77

Description of the Interface Dialog State Diagram 77

State Diagram Describing Interface Dialog 78

The Mock-ups 78

Input/Output Design 83

The Relevant Requirements to Interface Design 83

Justi_fication that the Interface Design meets these 84
requirements




Conclusion 85

Appendix A: Justifications for Network/Hardware/Software

) 86
Choices
Appendix B: Functional and Non-Functional Requirements 92
Appendix C: Justifications for Interface Design Decisions 93
Appendix D: Summary of Team Meetings 95
Appendix E: Team Report Form 96




Introduction:

The objective of this report is to provide a detailed design for the HMV Kiosk Search
system as proposed by the Requirements Analysis Phase (see Appendix D). This detailed
design includes our specification of our selection of hardware, networking, and software,
for our system. The program design consists of: a three-tiered architecture composed of
an Interface, an Application, and a Database component. These components are
described in class diagrams. The functionality of our system is described with sequence
diagrams and statechart diagrams. Analysis was done on the database component to
create the most efficient and cost effective solution. We emphasized the creation of the
interface as described in our class and statechart diagrams, so that it is user-friendly and
easy to use.



Part A: Global Architecture

Network

Our system will interface with the current system using a network card and twisted-pair
cabling. The current system is a Local Area Network running off an IBM AS/400 server
using the IPX/SPX standard protocol, with a portal to the Wide Area Network
administered by the HMV head office (which uses TCP/IP protocol for its inter-network
communication). There is an additional network in the store, the transaction handling
system, which runs from an IBM AS/400 “Cash-Controller series” server, but the new
system does not interact with this network.

Hardware
The key areas of concern for the hardware of the new system are speed, durability,
economy and storage.

The most important component of the hardware is the touch-screen. All other aspects of
the system will be dependent upon the requirements of the screen chosen. The top three
considerations for the screen vendor are listed in the table below.

Vendor Price Durability  Aesthetics Complete Customisable
adj. Price)* System
EZScreen N/A Excellent Good Yes Yes
($1800)
Acma $575 Poor Good No Yes
($1375)
Mass $879 Good Poor No Yes
Multimedia ($1679)

*Price adjustment reflecting the inclusion of all additional components required for the system, i.e. the
CPU, memory, etc.

It is the opinion of this report, after considering many options, that purchasing complete
RxKiosk systems from Ezscreen is the best alternative.
The RxKiosk system addresses the criteria in the following areas:

- Speed and storage requirements — The system has a 533
Celeron processor, 64 Mb of RAM and a 10.4 Gb Hard-
drive, which exceeds all the speed and storage
requirements.

- Durability requirements - The RxKiosk system’s physical
design is ideally suited to the demanding environment of a
retail store.

- Economy requirements - Ezscreen’s willingness to tailor
the systems to HMV and give quantity discount pricing
makes them a very economical choice.



Software

The two software components that will be used in our design and are
commercially available are the operating system, and the web browser.
Various options were considered for both with the results summarized
below.

Operating System

The two main possibilities for consideration as operating systems are tabulated below.

Operating GUI Stability Price Maturity Driver
System Avalil.
Windows Very Good | Good No cost** 7.5 years | Excellent
2000 (NT)

Linux Average Excellent Free 9.5 years Good *

* Depends on distribution.
** HMV has an existing corporate license for Windows 2000

Based on these criteria, Windows is the best operating system for use on the kiosks.
Windows 2000 is fast, reliable (99.999% advertised “up time”), and extremely easy to
maintain. Additionally, many users would be more comfortable working in a Windows
environment, since the majority of home users run some version of Windows on their
computer(s).

Web Browser

There are several different browsers available for Windows and Linux platforms. Among
the best known are Internet Explorer, Netscape, and Mozilla. Each browser has its
strengths and weaknesses, including ease of use, familiarity, and stability. The analysis
of the browsers does not lend itself to a tabular comparison.



Internet Explorer 5.5
Internet Explorer is produced by Microsoft Inc. It is packaged with the Windows
operating system.

Advantages: Internet Explorer is reliable, fast, easy to use and cost-effective.

IE has been proven to be an exceedingly reliable software package. (see
Appendix A)

Speed is another advantage with Internet Explorer. It loads web pages very
quickly, and runs Java faster than other browsers.

Customers will easily adopt IE because it is the most commonly used browser by
home users. Its familiarity allows the users to feel comfortable and empowered.
Many features are included to make the program more user-friendly, including
"Autocomplete” which is a feature that remembers urls, passwords and form text.
Also, autocomplete automatically adds or completes entries for you.

Lastly, Internet Explorer is freeware.

Disadvantages: IE has poor portability and has various bugs.

IE is restricted to the Windows platform.

IE’s bugs include but aren’t restricted to the following: fonts are often oversized,

bold is overused, font colours are inconsistent, and table formatting is poorly
implemented.



Netscape 6.01

Netscape Navigator is produced by Netscape Communications Corporation. It is
distributed over the internet.

Advantages: Netscape is familiar to users, stable and portable.
Netscape is widely used and thus well-known to users.

Netscape is reliable when compared with other browsers, although not as reliable
as IE.

It is also available for many different platforms, including Windows 9x/NT, many
versions of UNIX, and Linux.

Disadvantages: Netscape is relatively slow, has a substantial cost, does not
conform to protocol standards and is not memory efficient.

When compared with Internet Explorer, Netscape does not load graphics and
large pages as quickly.

Netscape is free for personal use only. Commercial use of the software requires
an expensive licensing fee.

In Netscape, Javascript and DHTML implementations do not conform to
established standard; as a result, some pages do not load correctly.

Netscape is a memory intensive application. It requires more memory to run than
IE.



Mozilla 0.8.1
Mozilla is an open-source web browser, designed for standards compliance, performance
and portability.

Advantages: The advantages of Mozilla are that it is flexible, portable and
aesthetically pleasing.

Mozilla is flexible because is that it is open-source and easily modified. The
browser is constantly under development, and problems can be fixed without
having to wait for the next patch.

Mozilla is portable, and like Netscape, it is available on Linux or Windows.

Mozilla’s user interface is streamlined and easy to use, and the browser is
"skinnable", allowing for a customised look.

Disadvantages: The disadvantages of Mozilla are its immaturity, and its speed.

Mozilla is a relatively new project. The latest version released is 0.8.1. It has not
had much time to develop and thus it can be very unreliable.

Mozilla loads web pages slower than Internet Explorer or Netscape.

Conclusion of Web Browser Comparison

In the previous section, we had chosen Windows 2000 to be our Operating system. Based
on this choice of OS, and on the abundant advantages of Internet Explorer over other
browsers, the best choice of browser would be Internet Explorer.

10



Software Architecture

The kiosk system will be integrated with the existing HMV system, which uses Three-
Tier Client/Server Architecture design. The kiosks will be an addition to the interface (or
user) tier, acting as clients to the stores local server (processing or application tier).

This architecture was chosen because, in general, client-server is simpler to implement
and maintain, as the sub-systems are less tightly coupled then they are when peer-to-peer
or other similar architectures are used.

Request Eequest

Eesponse

Client Server Client Resgonse

Hetver

11



Sub-Systems and Major Components

AT
Scfwaze Symbtom

Conepintrafn L 0Y e

i R LR
Compora bl ——
— - - i 1 "8
Int=fans | ETEER R LT 1 Davabaiss | | Opsvating dyet s
Componemit Componst Comporenl | ComparaTt
comporven LTL ) 4 L | e T
;i J cooponati Tl o gL O - i .
T l_F“-i- e e P 4 R A
= ¥ -~ - TR i TRET)
Catafmaz Exambang HNFW
| 1) i
IntEraos Mol 1 ROEL dast b iomy HoalilE CataLEES Erivee
[ it O )
F CERLEW N Coopoiyentor
Bragd Imuepfacs 0
Moo L — Wirdows

1 Bubkstbng 1 s
R il | Applica®ion Module |

T ETTHAL I Wn!h!l:lr ——— e e e e ——

s dwsy |

= i =
Eficrenn Tolchacsoe |
Is

Description of Sub-Systems and Major Components

The HMV Kiosk Software System has four main components: the Interface Component,
the Application Component, the Database Component, and the Operating System
Component.

The Interface Component is composed of four modules: the DataPear Interface
Module, the Staff Interface Module, the Internet Explorer module and the
EZScreen Touchscreen Module. The DataPear Interface Module consists of the
interface classes that DataPear will create for HMV. The Staff Interface Module
exists already, and provides assistance in interfacing with the existing HMV
Application and Database modules. The Internet Explorer module allows the
interface to exhibit browser functionality. The EZScreen Touchscreen Module is
a software module included in the purchase of the EZScreen Touchscreen.

The Application Component has two sub-systems: the DataPear Application
Module and the existing Application Module. The DataPear Application Module
comprises the application classes that DataPear will write for HMV. These
classes will work with the existing Application Module to provide quick and
efficient searches for users.

The Database Component of the Kiosk Software System is simply the existing
HMV Database.

The Operating System Component is composed of the Windows 2000 software
package, in addition to the EZScreen Touchscreen drivers that are included in the
purchase of the EZScreen Touchscreen.

12



Justification That the Design Meets the Relevant Requirements
The relevant design requirements for the Global Architecture of the system would be:

1. Interface Requirements
The system must be user friendly with an intuitive and unambiguous interaction
mechanism. The system must have a familiar design so customers will feel
comfortable using the system.

2. Efficiency Requirements
The system must be fast because customers can be very impatient.

3. Durability Requirements
The system must be able to survive heavy daily use, and be resistant to petty
vandalism.

4. Lifecycle Requirements
There is no foreseeable obsolescence of the service provided by the system so a
long life span is required. The system must be able to have both the hardware and
the software upgraded.

5. Economic Requirements
The system must be implemented in over one hundred stores, which means any
savings that do not detract from the quality of the system are of great value.
Additionally the system should have a low maintenance and replacement cost for
the same reason.

The Interface requirements are addressed in a few ways: by having the touch screen input
device users have a simple and unambiguous input device and by using a browser style
program users have a software interface they are familiar and comfortable with.
Additionally, as Windows is the dominant OS of home users, customers will feel more
comfortable using a Windows based system.

The Efficiency Requirements are met because the system is actually overpowered for the
operations it will be performing; there should be no lag in system performance.

The Durability Requirements are met because the RxKiosk system uses bulletproof
plastic in its construction, it should be able to withstand daily use and any minor acts of
vandalism.

The Lifecycle Requirements of the system are met because all the components of the
RxKiosk can be upgraded, and our software design is focused on ease of development
and maintenance with the eventual replacement of the local stores system in mind.

The Economic Requirements are met because although the RxKiosk is slightly more

expensive than the other systems, the increased durability it has compared to the other
systems makes it a more cost-effective system in the long run.

13



Part B: Program Design
The following section outlines the design of the system using Class diagrams, Sequence

diagrams and State diagrams. All diagrams are preceded by a general description and
followed by the relevant definitions from the Data Dictionary for this system.

14



Class diagrams

There are three relevant Class diagrams, the Interface class diagram, the Application class
diagram and the Database class diagram.

Description for the Interface Classes

The initial screen that the user sees is a welcome screen displayed from the DataWindow
class. The user can touch the screen, and the TouchscreenDialog class detects this.
Then, a search screen is shown with a keyboard displayed from the KeyboardWindow
class. The user can touch the keyboard, which is broken up into Key: LetterKey and
FunctionKey. Selecting these keys will input text into the Textfield, saved in its
InputText attribute. To complete the search, the user must select one of the RadioButtons
(specifying the type of search), and select the GoButton. The top half of the screen that
comprises these elements is the DataWindow. There is an Advert displayed in this
portion of the screen.

Upon selecting the GoButton, the user will see the results of their query (generated from
the ResultDialog class). The results display also shows a new Advert based on the results
of the search.

Interface Class Diagram

Forararrearliaieng

coatdlar

[l o & i :
gt
1
1ami :',-"|.'\-:|'|-'.rl"I

| i bt s
| Wur il |
e i T
|-| i
contimy
"
ey . = "_ Eeau st Eialon | I'
ST T | »
Pl e |  contminy | DSEplLEYCE)eSE |
o e g i et ks o
'_'_4| s al Bas® ~itE
i i |
B mpeam Bl i 1 =
1.4 Myt brmdurtDtmi lm 1| o
= L 3
| Eayines s duirasa: | |
I} 1
Vo
14t
LASL LRy El
b sopwrt e _ _
Bia Lz | YT | T T T T
< ARLD [T 1 e Tl D L "
15 0m | L L TR T wpduae r 1
ity # ireat - Teambailn
. S P | I-.--l.l-.uu.ll.l-ll oy Ttk £
gl verllaetetaLa i | X N 1 Mprs Bl TR |
1 |_i-n-|r\.-:.r|u.-n|-—r|-n|.|-|.
_ahiad |
Esy . 1
=1 Fazizber GePukion
ramir B laionles = —
Lami ' e s, tTmE g |
e B g Wy g rfmacr |
" Srrhietatl] | etttk s i}

15



Glossary of Interface Classes

TouchScreenDialog - represents a generalization of the physical touchscreen with
abilities to analyze user input.

Public Attributes:
isActive : boolean
Stores whether or not the touchscreen is active.
screenHeight : Integer
The vertical resolution of the screen.
screenWidth : Integer
The horizontal resolution of the screen.
touchXcoordinate : Integer
The x-coordinate of a user touch.
touchYcoordinate : Integer
The y-coordinate of a user touch.

Public Operations
getTouchcoordinate()
Operation to determine the screen coordinates of a touch, when the screen is touched.
selectWindow(Integer X, Integer y)
Operation to determine which window is being accessed.
activate()
Operation to activate the touchscreen.
deactivate()
Operation to deactivate the touchscreen.

KeyboardwWindow - represents the software application emulating an on-screen
keyboard for the touch screen.

Public Attributes:
key[*] : Key[]
An array of all the keys of the keyboard.
height : Integer
Vertical height of the KeyboardWindow, in pixels.
width : Integer
Horizontal width of the KeyboardWindow, in pixels.

Public Operations
getActiveKeylID(Integer X, Integer y) : Integer
Returns the ID of the key at coordinates (X,y).
printKeylnfo(Integer id)
Prints the key's info.

16



Key - represents a software emulated key utilized by the KeyboardWindow.

Public Attributes:
keyID : Integer
The key's ID.
graphic : Graphic
The key's graphic.
height : Integer
The vertical height of the key, in pixels.
width : Integer
The horizontal width of the key, in pixels.

Public Operations
getKeyID() : Integer
Returns the key's ID.

DataWindow - represents the browser used to perform searches, and display results.

height : Integer

The vertical height of the key, in pixels.

width : Integer

The horizontal width of the key, in pixels.
displayObiject[*] : DisplayObject[]

An array of objects being displayed on the screen.

Public Operations
followLink(String link)
Operation to follow a hyperlink.
print()
Operation to print information to the display area.

Link - represents a hyperlink.

Public Attributes:
linkID : Integer
The link's ID.
title : String
The link's title.
destinationAddress : String
The destination of the link.

Public Operations

giveLinkDetails()
Returns the details of the address being linked.

17



Label - represents a label, which is printed by DataWindow.

Public Attributes:
text : String
The label's text.

DisplayObiject - represents an object that is to be displayed in the DataWindow.

Public Attributes:
height : Integer
The vertical heigh of the key, in pixels.
width : Integer
The horizontal width of the key, in pixels.

Advert - represents an advertisement banner which can be displayed in the DataWindow.

Public Attributes:
advertlD : Integer
The advertisement's ID.
graphic : Graphic
The advertisement's banner graphic.
advertDetails : String
The advertisement's description.

Public Operations
getAdvertID(String genre)
Gets an advertisement for a specific genre.
printAdvertisementDetails()
Prints the advertisement's details to DataWindow.

TextField - represents text-field which the user types into.

Public Attributes:
inputText : String
The text in the text-field.
backgroundColour : Integer
The background colour of the text-field.
Button - represents a generalization of a button to be displayed on the
DataWindow.
buttonID : Integer
The button's ID.
graphic : Graphic
The button's graphic.

Public Operations

getButtonID() : Integer
Returns the button's ID.

18



RadioButton - a specialization of the Button superclass, used to present choices
for different searches.

Public Attributes:
isActive : Boolean
Holds whether or not this radiobutton has been selected.

Public Operations
activate()
Activates the button.
deactivate()
Deactivates the button.
giveStatus() : Boolean
Returns the status of the button.

GoButton - a specialization of the Button superclass, used to initiate searches.

Public Operations
submitData(String data)
Submits data for a search.
getlnputText()
Gets the input text from the input-field.
getRadioButtonStatus()
Gets the status of the radio buttons.

19



Description for the Application Classes

The main process that our HMV kiosk system supports is searching. The user can
perform four types of searches: an artist search, a song search, a title search and a
keyword search. Each search type is represented by a class. Search is dependent upon
these four classes because Search’s implementation is dependent on being able to call the
operations of the other four search classes.

The search returns some general information about products that are the best matches to
the user's query. The user selects one of these products to view more product details.
These additional details consist of the products's inventory and a map of the product's
location. The inventory of the product is found by the LocalSearch class. If this product
IS not available in the store then this search returns unsuccessful. Then, a search is
initiated for the product’s inventory in all HMV stores in the city. The CityWideSearch
class performs this search. Once the inventory is found, in the store, or in several other
stores, the information is sent to the GenerateMap class. This class generates a map that
displays the location of the product.

Inventoryiearch
' Chocesidvert
SchackInStocx| ) e
| ‘;J.‘.m.‘rrt:ﬁll‘lllll:l ih-r.
i) | Swmarchidvertiollectionib
I | e vekdvert ]}
Lees l8sasel cityMideSsareh -
L P r— [ N GenierateMap
gt G g | :lnr:h?rulucth\.l.lﬂt;:nlﬁ an_om
e Y ) i T r
B velinmucceraful Bear chfeaagge | b ¥
Sll'q el
marcHText
twoom efwarchPumctaon i |
Bowturofeaschfemaltnl |
] i..1
1..1 LR x e
il et o o - 2 P " * dad e = &
; | b 3.1
i | g1 4 i}
ArtiatSesarch SongS=arch Titlefearch _Feypwordfearch
rriEtisarcalerulte CsarchPswalta |. i1t lmEparchfsmsl ba :‘ﬂm—rrm—uitl
: Suesarchisrt ietOol lect Lomd b | Wwsarchiongtol Lectiond | | WwaarchTikletol leckion (]| | Sgethst int Seacchi]
Sget SongSearch | |
| ‘q_-t"l"l.i'l..:i-l-rrhl_l

20



Glossary of Application Classes

Inventory Search - represents the software application used by the kiosk system to check for the existence
of products.

Public Operations
checkInStock(String product) : boolean
Return true if the product is in the inventory collection.
giveProductDetails() : Product,Quantity,Map
Returns the details of a product, and a map to where it can be found.

LocalSearch - a specialisation of the InventorySearch software, used to search the local store's inventory.

Public Attributes:
isInStock : Boolean
Stores whether or not the product is in stock.

Public Operations
getStoreMap(String store) : Map
Returns a map of the store.

CityWideSearch - a specialisation of the InventorySearch software, used to search the local area
inventory.

Public Attributes:
isFound : Boolean
Stores whether or not a product is in stock in any store in the local area.

Public Operations
searchProductCollection(String product)
Searches the master database for a product.
getCityMap(String city) : Map
Returns a map of the city.

ChooseAdvert - represents the software application used by the kiosk system to retrieve advertisements.

Public Attributes:
Genre : String
The advertisement’s target genre.

Public Operations
searchAdvertCollection(String genre)
Search the database for an advertisement geared towards genre.
giveAdvert() : Advert
Returns an advertisement.

21



GenerateMap - represents the software application used by the kiosk system to create maps.

Public Attributes:
graphic : Map
The map to be returned.

Public Operations
giveMap() : Map
Returns a map.

Search - represents the software application used by the kiosk system to perform
searches. Search's implementation depends on being able to call on the ArtistSearch, SongSearch,
TitleSearch, and KeywordSearch applications.

Public Attributes:
searchText : String
The text which is being searched for.

Public Operations
ChooseSearchFunction(int choice)
Calls the appropriate search function, based on "choice".
returnSearchResults() : String
Returns the results of a search.

ArtistSearch - represents the software application used to perform searches on
the artist database.

Public Attributes:
artistSearchResults : String
Holds the results of an artist search.

Public Operations
searchArtistCollection(String artist)
Operation to search for an artist in the database.

SongSearch - represents the software application used to perform searches on the song database.
Public Attributes:
songSearchResults : String
A string holding the results of an song search.
Public Operations

searchSongCollection(String song)
Operation to search for an song in the database.

22



TitleSearch - represents the software application used to perform searches on
the title database.

Public Attributes:
titleSearchResults : String
A string holding the results of an title search.

Public Operations
searchTitleCollection(String title)
Operation to search for an title in the database.

KeywordSearch - represents the software application used to perform searches on the artist, song, and
title databases.

Public Attributes:
keywordSearchResults : String
A string holding the results of an keyword search.

Public Operations
getArtistSearch(String artist)
Operation to get the results of an artist search.
getSongSearch(String song)
Operation to get the results of an song search.
getTitleSearch(String title)
Operation to get the results of an title search.

23



Description for the Database Classes

All classes with the suffix "Collection” are indices of the object designated by the prefix.
The Collection classes exist to facilitate searching through products, artists, etc...

HMV sells media and music products: DVD's, videos, tapes, and CD's. Each of these
products is represented by a class. When a customer searches for a product, they are
trying to search for it using its artist, its title, or a particular song. Artist, song, and title
classes exist to optimize the searching operations. These objects hold the catalog# of the
particular products so that the product's details can be accessed through the product
object.

There is also an inventory item associated with each product where inventory information
is stored.

Each artist, and hence music product, has an associated label and supplier. These objects
are not indexed because searches are seldom performed on them.

Finally, adverts are displayed with search results. Advert information is also held in this
database.

oot ind st bon |
{
|

| Brmrmimb Lt ]
e et
| Wk Pt 11 | AckieRColleckiom Taftinilollact 1on Sorglolleckion
Bkl P | i = LT
i ,:",;, | i'F—--nu—l. I].---l-—-u—l. 1 ]
Ry ue |1 Tt Tijm| [T I
Labal | e ann i AT s S ong (1
. " A | = amudh R T N g | | L
L=I- BT AN el L L | | St -n..-u.l. i 'Illm e q.n-..lu..
,.."_' ok .. I'| 1
b
[E— . :-I—. eeipdng -a:h-.]Lmr contpiar
- iy e | P |
| 10| e BSoracs Tnfa-11 gl Boan .0
4 4 |
.. Areist | Takla | | Forg
| . mhaiah '] ari il (7] 1 =S e
L EppiEy b e ¥ 1.5 | el
3 ] |t e eLpErFLCiE ] |rinismirnogis %] | dmm =) |
] | i b Pl I 5 | I 1
bt A | 1.0 [CHE—— | dpimrratarnall | | pietvadesnad] |
::_l':l.ll"lf-ll _—
| =-I-lllii1-l|l Friceli m
L _.-_|-|r_?|r_|_- - &t 0000 P T | [ :i_:ll-\.:- 'h:u:'. [Bedwrer e aed IEI_JH_'|
';- T Bpeanaiat 1 gt 1
- i Doy L e LN B
Bkl I ﬁ.- i-l-l.l..l-:l-l
1 "‘\'Id T "-_. C | | e s Erretaary | e e mhalem e
H ;:r L T -fl..'.
Lami [ '|
Corcaine CORLCRALL T
|.
g Lac it
| EfE——r | EE | Irvemcory | | Litwsat
T - | Eerre | ey - mryfogh e
b&_'i":'_:___ .”L"::ihP". ___'3':____1 niny t‘:l.-—ll:
m = 11 TEAFHL LT ey 1 —
| & | M G i | Mg wnCowind laii

24



Glossary of Database Classes
ProductCollection - represents a database of products, sorted by catalog#.

Public Attributes:
Catalog#[*] : Integer[*]
An array of catalog#'s.

Public Operations
getProduct(String product)
Returns product if it exists in the product database.
addProduct(Product product)
Adds a new product to the database.
removeProduct(Integer catlD)
Removes a product from the database.

Product - a generalization of records stored in the ProductCollection database.

Public Attributes:
Catalog# : Integer
The product's catalog number.
Title : String
The product's title.
Genre : String
The product's genre.
RetailPrice : Float
The product's retail price.
CostPrice : Float
The amount the supplier charges for the product.
ReleaseDate : Time
The release date of the product.
Margin%o : Float
CostPrice / RetailPrice
Location[*] : String[*]
A list of locations the product is available at.

Public Operations
giveLocation() : String[*]
Returns a list of locations.
giveGenre() : String
Operation to return the genre of the product.
giveRetailPrice() : Float
Operation to return the retail price of the product.
giveCostPrice() : Float
Operation to return the cost price of the product.
giveMargin() : Float
Operation to return the margin% of the product.

25



Media - a specialisation of the Product superclass. Used to store information
about media products in the product database.

Public Attributes:
Director : String
The product's director.
Producer : String
The product's producer.
Actor[*] : String[*]
A list of actors that appeared in this product.

DVD - a specialisation of the media class. Used to store information about DVD
products in the product database.

Public Attributes:
extraFeatures : String
A description of the extra features included on the DVD.

Video - a specialisation of the media class. Used to store information about
videos in the product database.

Music - a specialisation of the Product superclass. Used to store information
about music products in the product database.

Public Attributes:
Artist : String
The product's artist.
SongName[*] : String[*]
A list of the songs.

Tape - a specialisation of the Music class. Used to store information about tapes in the product database.
CD - a specialisation of the Music class. Used to store information about CD's in the product database.
Public Attributes:

extraFeatures : String
A description of the extra features included on the CD.

26



InventoryCollection - represents a database of store inventories.

Public Attributes:
Catalog#[*] : Integer[*]
An array of catalog#'s.

Public Operations
getInventory(Integer catlD) : Integer
Returns the quantity of a product in stock.
addInventory(Integer catiD)
Increases the quantity of a product in stock.
removelnventory(Integer catlD)
Decreases the quantity of a product in stock.

Inventory - a generalisation of records stored in the InventoryCollection database.

Public Attributes:
Catalog# : Integer
The catalog number of this inventory.
Quantity : Integer
The quantity of this inventory in stock.

Public Operations

giveQuantity() : Integer
Returns the number of a particular product that are in stock.

27



ArtistCollection - represents a database of artists, sorted by ArtistName.

Public Attributes:
ArtistName[*] : String[*]
An array of artists.

Public Operations
getArtist(String artist)
Operation to find an artist in the database.
addArtist(Artist artist)
Operation to add an artist to the database.
removeArtist(Artist artist)
Operation to remove an artist from the database.
returnArtistResults() : String
Operation to return the results of an artist search.

Avrtist - a generalization of records stored in the ArtistCollection database.

Public Attributes:
Catalog#[*] : Integer[*]
An array of the catalog numbers of the products this artist has released.
ArtistName : String
The artist's name.
ArtistsTitles[*] : String[*]
An array of the titles of the products this artist has released.

Public Operations
giveProducts() : Product[*]
Returns a list of product's associated with this artist.

TitleCollection - represents a database of titles, sorted by TitleName.

Public Attributes:
TitleName[*] : String[*]
An array of titles.

Public Operations
getTitle(String title)
Operation to find a title in the database.
addTitle(Title title)
Operation to add a title to the database.
removeTitle(Title title)
Operation to remove a title from the database.
returnTitleResults() : String
Operation to return the results of a title search.

28



Title - a generalization of records stored in the TitleCollection database.

Public Attributes:
Catalog#[*] : Integer[*]
An array of the catalog numbers of the products with the same title.
TitleName : String
The title.
TitlesArtists[*] : String[*]
An array of the artists associated with this title.

Public Operations
giveProducts() : Product[*]
Returns a list of product's associated with this title.

SongCollection - represents a database of songs, sorted by SongName.

Public Attributes:
SongName[*] : String[*]
An array of songs.

Public Operations
getSong(String song)
Operation to find a song in the database.
addSong(Song song)
Operation to add a song to the database.
removeSong(Song song)
Operation to remove a song from the database.
returnSongResults() : String
Operation to return the results of a song search.

Song - a generalization of records stored in the SongCollection database.

Public Attributes:
Catalog#[*] : Integer[*]
An array of the catalog numbers of the products containing this song.
SongName : String
The song's name.
Artist[*] : String[*]
An array of the artists associated with this song.

Public Operations

giveProducts() : Product[*]
Returns a list of product's associated with this song.

29



AdvertCollection - represents a database of advertisements.

Public Attributes:
AdvertID[*] : Integer[*]
An array of advertisement IDs.

Public Operations
getAdvert(String genre)
Operation to find an advertisement in the database, for a particular genre.
addAdvert(Advert advert)
Operation to add an advertisement to the database.
removeAdvert(Advert advert)
Operation to remove an advert from the database.

Advert - a generalization of records stored in the AdvertCollection database.

Public Attributes:
Graphic : Graphic
The advertisement's banner.
AdvertID : Integer
The advertisement's ID.

Public Operations
giveDetails() : String
Returns a description of the advertisement.

Supplier - a generalization of records stored in the database, used to store
information specifically about suppliers.

Public Attributes:
Supplier# : Integer
The supplier's ID.
SupplierName : String
The supplier's name.
Phone# : Integer
The supplier's phone number.
Fax# : Integer
The supplier's fax number.
Email : String
The supplier's email address.
Address : String
The supplier's address.

Public Operations
giveSupplierName() : String
Operation to return the supplier's name.
modifyContactInfo(Integer sID, String name, Integer phone, Integer fax, String
email, String address)
Operation to change information stored about a supplier.

30



Supplier - a generalization of records stored in the database, used to store
information specifically about labels.

Public Attributes:
Label# : Integer
The label's ID.
LabelName : String
The label's name.
Phone# : Integer
The label's phone number.
Fax# : Integer
The label's fax number.
Email : String
The label's email address.
Address : String
The label's address.

Public Operations
giveLabelName() : String
Operation to return the label's name.
modifyContactInfo(Integer sID, String name, Integer phone, Integer fax, String
email, String address)
Operation to change information stored about a label.

31



Justification That the Class Diagrams Meet the Relevant Requirements
The Relevant Functional Requirements are:

1. Processing Requirements
The system must be able to translate and relay queries to the stores existing
database, and translate and relay the results of the query back to the user.

2. Input Requirements
The system must be able to accept queries from users and must be able to receive
information from the stores existing database.

3. Output Requirements
The system must be able to display the results of queries immediately to the user,
as well as relevant location information.

The class diagrams demonstrate the processing requirements are met in the following
ways: there are various search classes representing search applications in the Application
Tier, and there are classes in the interface with operations to submit data to the
Application Tier.

The GoButton Class, has a submitData() operation which passes the search string, and the
search choice, to the Search Class in the Application Tier. The Search Class is able to
choose the appropriate search function to call using chooseSearchFunction(), and can
pass the results back to the ResultsDialog Class in the Interface Tier using
returnSearchResults().

The class diagrams demonstrate the input requirements are met in the following ways:
they show that functions exist to handle any sort of input from the user, and handle any
sort of input from the store's existing database.

The TouchscreenDialog Class has the function getTouchcoordinate() to get the
coordinates of a user's touch, and can correctly select which window to pass the
coordinates to, using selectWindow(). The KeyboardWindow() can take coordinates and
correctly choose which key has been pressed using getActiveKeylD(). The RadioButton
Class can successfully be chosen by activate(). The GoButton Class can successfully
submit data using submitData(). Input from the server is handled by the ResultsDialog
Class using getProductDetails().

The class diagrams demonstrate the output requirements since they contain functions to

display output to the user. All input from the server is displayed by ResultsDialog Class
using the print() operation.

32



Sequence diagrams

There are four sequence diagrams describing the Product Search Sequence, the Interface
Sequence, the Product Details Sequence, and the Product Selection Sequence.

33



Description of the Product Search Sequence Diagram

The users first submit their search to the Interface Classes. The Interface Component
then submits the search Data to the Search class in the Application Component.
Depending on the type of search, either the SongSearch, ArtistSearch, TitleSearch or
KeywordSearch class performs the search. The designated search classes iterates through
the corresponding objects (Artist, Title or Song) held in the Database through their
Collection class (either ArtistCollection, SongCollection or TitleCollection). If the user
chooses to perform a Keyword search, then the KeywordSearch class cycles through the
Collection classes of all the types of objects. The Collection class then returns the search
results, to the main Search classes. The Search class then sends these results to the
Interface Component to be displayed to the users.

The Product Search Sequence Diagram

aian Enlailice LTTEE] o [ TLFT 1S Thllz | Exawaici [F ] [ 5] dulint dudind Talzi Talie
amAEDS [<ETTE Rmirgis Lmiigii Bamuph || Seldeelion = 1NE. DT E T

[ = LR L1 S
T o

34



Glossary of Classes within Sequence Diagram
GoButton - a specialization of the Button superclass, used to initiate searches.

Public Operations

submitData(String data)

Submits data for a search.

getInputText()

Gets the input text from the input-field.

getRadioButtonStatus()

Gets the status of the radio buttons.
Search - represents the software application used by the kiosk system to perform
searches. Search's implementation depends on being able to call on the ArtistSearch, SongSearch,
TitleSearch, and KeywordSearch applications.

Public Attributes:
searchText : String
The text which is being searched for.

Public Operations
ChooseSearchFunction(int choice)
Calls the appropriate search function, based on "“choice".
returnSearchResults() : String
Returns the results of a search.

ArtistSearch - represents the software application used to perform searches on
the artist database.

Public Attributes:
artistSearchResults : String
Holds the results of an artist search.

Public Operations
searchArtistCollection(String artist)
Operation to search for an artist in the database.

SongSearch - represents the software application used to perform searches on the song database.

Public Attributes:
songSearchResults : String
A string holding the results of an song search.

Public Operations

searchSongCollection(String song)
Operation to search for an song in the database.

35



TitleSearch - represents the software application used to perform searches on
the title database.

Public Attributes:
titleSearchResults : String
A string holding the results of an title search.

Public Operations
searchTitleCollection(String title)
Operation to search for an title in the database.

KeywordSearch - represents the software application used to perform searches on the artist, song, and
title databases.

Public Attributes:
keywordSearchResults : String
A string holding the results of an keyword search.

Public Operations
getArtistSearch(String artist)
Operation to get the results of an artist search.
getSongSearch(String song)
Operation to get the results of an song search.
getTitleSearch(String title)
Operation to get the results of an title search.

ArtistCollection - represents a database of artists, sorted by ArtistName.

Public Attributes:
ArtistName[*] : String[*]
An array of artists.

Public Operations
getArtist(String artist)
Operation to find an artist in the database.
addArtist(Artist artist)
Operation to add an artist to the database.
removeArtist(Artist artist)
Operation to remove an artist from the database.
returnArtistResults() : String
Operation to return the results of an artist search.

Awrtist - a generalization of records stored in the ArtistCollection database.

Public Attributes:
Catalog#[*] : Integer[*]
An array of the catalog numbers of the products this artist has released.
ArtistName : String
The artist's name.
ArtistsTitles[*] : String[*]
An array of the titles of the products this artist has released.

36



Public Operations
giveProducts() : Product[*]
Returns a list of product's associated with this artist.

TitleCollection - represents a database of titles, sorted by TitleName.

Public Attributes:
TitleName[*] : String[*]
An array of titles.

Public Operations
getTitle(String title)
Operation to find a title in the database.
addTitle(Title title)
Operation to add a title to the database.
removeTitle(Title title)
Operation to remove a title from the database.
returnTitleResults() : String
Operation to return the results of a title search.

37



Title - a generalization of records stored in the TitleCollection database.

Public Attributes:
Catalog#[*] : Integer[*]
An array of the catalog numbers of the products with the same title.
TitleName : String
The title.
TitlesArtists[*] : String[*]
An array of the artists associated with this title.

Public Operations
giveProducts() : Product[*]
Returns a list of product's associated with this title.

SongCollection - represents a database of songs, sorted by SongName.

Public Attributes:
SongName[*] : String[*]
An array of songs.

Public Operations
getSong(String song)
Operation to find a song in the database.
addSong(Song song)
Operation to add a song to the database.
removeSong(Song song)
Operation to remove a song from the database.
returnSongResults() : String
Operation to return the results of a song search.

Song - a generalization of records stored in the SongCollection database.

Public Attributes:
Catalog#[*] : Integer[*]
An array of the catalog numbers of the products containing this song.
SongName : String
The song's name.
Artist[*] : String[*]
An array of the artists associated with this song.

Public Operations

giveProducts() : Product[*]
Returns a list of product's associated with this song.

38



Description of the Interface Sequence Diagram

Initially, the user touches the screen to activate the TouchScreenDialog. The
TouchScreenDialog then gets the coordinates of where the user had contact with the
screen. This determines which window becomes active.

If the users touch the lower half of screen where the keyboard is located, then
KeyboardWindow is selected. Then, the ID of the key that the users touch is sent to the
Textfield. This allows the character selected by the users to be displayed in the Textfield
area of the screen.

The users can also select areas in the upper half of the screen: a RadioButton, or the
GoButton. If the coordinates of the user contact correspond to a RadioButton, then that
RadioButton becomes active, and all other RadioButtons become deactivated. If the
GoButton is selected, then the users wish to submit their query.

Submitting a query consists of getting the InputText from the TextField, getting the status
of the RadioButtons, and submitting this Data to the Application Classes. The results of
the search are returned to the ResultsDialog, which in turn requests a related Advert to
display along with the results. Once the Advert has been sent to the ResultsDialog from
the Application Classes, it is displayed to the users along with the search results.

The Interface Sequence Diagram

LT Ticand sl T Exiiaa I fa Tzallizld [ELE LEITREE [THATS du [ TFLE.} Mnllgatis |
Hailoa Ficalow NLiL Lo [ AEE Liaadin (=TT
aciivata il 1
; - i
1|
1 Frasrndcs{n
[’ ST ELTLEAY
1}
1=
|| Mnsmueasal 1
T '
Ferhotl +:
s
WECiEny Il
;:lr.'.'l'i-;':m'-c | 1 1 |}
A T I: 1 laalet Pven FALER 1 1
.-L!I:_FI T ' st ivansii '
ATt T e | - N T oy i
y g et Lo UL et -
e TS L UL i : L
I i . .
Foiuteant) - H 1
am# Timest Tedd i H
— mmrme sk | - H }
11 fab v TPt Tl i1 H }
i. ] achdias . m | i
1 i i
8] FrtEadzciutton H '
Status |1 | '
B cbay ot LY Wb T b :
- 1 a1l

pranki} | = —
rr 1

b |

39



Glossary of Classes within Sequence Diagram
TouchScreenDialog - represents a generalization of the physical touchscreen with
abilities to analyze user input.

Public Attributes:
isActive : boolean
Stores whether or not the touchscreen is active.
screenHeight : Integer
The vertical resolution of the screen.
screenWidth : Integer
The horizontal resolution of the screen.
touchXcoordinate : Integer
The x-coordinate of a user touch.
touchYcoordinate : Integer
The y-coordinate of a user touch.

Public Operations
getTouchcoordinate()
Operation to determine the screen coordinates of a touch, when the screen is touched.
selectWindow(Integer X, Integer y)
Operation to determine which window is being accessed.
activate()
Operation to activate the touchscreen.
deactivate()
Operation to deactivate the touchscreen.

KeyboardwWindow - represents the software application emulating an on-screen
keyboard for the touch screen.

Public Attributes:
key[*] : Key[]
An array of all the keys of the keyboard.
height : Integer
Vertical height of the KeyboardWindow, in pixels.
width : Integer
Horizontal width of the KeyboardWindow, in pixels.

Public Operations
getActiveKeylID(Integer X, Integer y) : Integer
Returns the ID of the key at coordinates (X,y).
printKeylnfo(Integer id)
Prints the key's info.

40



Key - represents a software emulated key utilized by the KeyboardWindow.

Public Attributes:
keyID : Integer
The key's ID.
graphic : Graphic
The key's graphic.
height : Integer
The vertical height of the key, in pixels.
width : Integer
The horizontal width of the key, in pixels.

Public Operations
getKeyID() : Integer
Returns the key's ID.

DataWindow - represents the browser used to perform searches, and display results.

height : Integer

The vertical height of the key, in pixels.

width : Integer

The horizontal width of the key, in pixels.
displayObiject[*] : DisplayObject[]

An array of objects being displayed on the screen.

Public Operations
followLink(String link)
Operation to follow a hyperlink.
print()
Operation to print information to the display area.

41



RadioButton - a specialization of the Button superclass, used to present choices
for different searches.

Public Attributes:
isActive : Boolean
Holds whether or not this radiobutton has been selected.

Public Operations
activate()
Activates the button.
deactivate()
Deactivates the button.
giveStatus() : Boolean
Returns the status of the button.

GoButton - a specialization of the Button superclass, used to initiate searches.

Public Operations
submitData(String data)
Submits data for a search.
getlnputText()
Gets the input text from the input-field.
getRadioButtonStatus()
Gets the status of the radio buttons.

42



Description of the Product Inventory Sequence Diagram

Users are displayed a list of products that match their search query. These products are
displayed as links to the users. The users touch the link of the product to see if this
product is in stock, and where it can be found.

The Interface Classes request the Product Details from the LocalSearch class. The
LocalSearch class searches the InventoryCollection database to find the Inventory object
associated with the product in question.

If the Product is carried in the store, then inStock is true, and the corresponding Inventory
object returns the quantity of the product in the store. After this information is returned,
the LocalSearch class requests a map corresponding to the Product's location in the store
(based on the Product's genre). The GenerateMap class then returns the map, and
LocalSearch returns the Product Deatils (quantity and map) to the Interface Classes to
display to the users.

If the Product is not carried in this branch of HMV, then inStock is false. Then,
CompanyWideSearch searches for the stores that carry the specified product.
CompanyWideSearch does this by searching through the ProductCollection for the
Product. If the product is not found, an unsuccessful error message is displayed to the
users. If the product is found, then the location attribute is returned to
CompanyWideSearch. CompanyWideSearch sends this information to the GenerateMap
class to create a map with highlights the relevant stores in a city map. Then,
CompanyWideSearch sends the ProductDeatils to the Interface Component. This
operation returns the quantity of the Product (O in the current branch) and the map
showing other locations.

The Product Inventory Sequence Diagram

il ARLSN b Ladini LIt LW AR LG aEnETALE ik EL Gl Fi D]
caESH asaah kA LG 20K H i AlSEE I CE

43



Glossary of Classes within Sequence Diagram
GenerateMap - represents the software application used by the kiosk system to create maps.

Public Attributes:
graphic : Map
The map to be returned.

Public Operations
giveMap() : Map
Returns a map.
Link - represents a hyperlink.

Public Attributes:
linkID : Integer
The link's ID.
title : String
The link's title.
destinationAddress : String
The destination of the link.

Public Operations
giveLinkDetails()
Returns the details of the address being linked.
LocalSearch - a specialisation of the InventorySearch software, used to search the local store's inventory.

Public Attributes:
isInStock : Boolean
Stores whether or not the product is in stock.

Public Operations
getStoreMap(String store) : Map
Returns a map of the store.
CityWideSearch - a specialisation of the InventorySearch software, used to search the local area
inventory.

Public Attributes:
isFound : Boolean
Stores whether or not a product is in stock in any store in the local area.

Public Operations
searchProductCollection(String product)
Searches the master database for a product.
getCityMap(String city) : Map
Returns a map of the city.

InventoryCollection - represents a database of store inventories.

Public Attributes:
Catalog#[*] : Integer[*]
An array of catalog#'s.

Public Operations
getInventory(Integer catlD) : Integer
Returns the quantity of a product in stock.
addInventory(Integer catlD)
Increases the quantity of a product in stock.
removelnventory(Integer catiD)

44



Decreases the quantity of a product in stock.
Inventory - a generalisation of records stored in the InventoryCollection database.

Public Attributes:
Catalog# : Integer
The catalog number of this inventory.
Quantity : Integer
The quantity of this inventory in stock.

Public Operations
giveQuantity() : Integer
Returns the number of a particular product that are in stock.

ProductCollection - represents a database of products, sorted by catalog#.

Public Attributes:
Catalog#[*] : Integer[*]
An array of catalog#'s.

Public Operations
getProduct(String product)
Returns product if it exists in the product database.
addProduct(Product product)
Adds a new product to the database.
removeProduct(Integer catlD)
Removes a product from the database.

Product - a generalization of records stored in the ProductCollection database.
Public Attributes:
Catalog# : Integer
The product's catalog number.
Title : String
The product's title.
Genre : String
The product's genre.
RetailPrice : Float
The product's retail price.
CostPrice : Float
The amount the supplier charges for the product.
ReleaseDate : Time
The release date of the product.
Margin% : Float
CostPrice / RetailPrice
Location[*] : String[*]
A list of locations the product is available at.

Public Operations
giveLocation() : String[*]
Returns a list of locations.
giveGenre() : String
Operation to return the genre of the product.
giveRetailPrice() : Float
Operation to return the retail price of the product.
giveCostPrice() : Float
Operation to return the cost price of the product.
giveMargin() : Float

45



Operation to return the margin% of the product.

46



Description of the Product Selection Sequence Diagram

The users are returned a list of products that match their search query. This list is in the
form of links. The users select a link to find out more about the desired product.

The users touch the screen, and this first activates the TouchScreenDialog class, which
gets the coordinates of the users' contact. TouchScreenDialog selects the DataWindow,
which is where links are displayed.

If the coordinates correspond to a product link, then DataWindow follows the link. The
Link object then gives its details to the ResultDialog class. This initiates a request from
the ResultDialog to get the product details, held in the database class. Then,
ResultDialog prints these results to the DataWindow, which displays them to the users.

If the coordinates correspond to an advertisement, then the Advert Link is followed. This
means that the Advert object sends its details to the ResultDialog, which prints the
information to the screen for the users.

The Product Selection Sequence Diagram

Tdaica Mangow | Clagmen

y EGTEWATELD

el TouthIcroRn
Coordanate il

l—

wr ec bW iniee | | [Froduct srlezted]
" fallowlink||

[=ER P 1l 13 Eal TN

gt FroduckCstailal]

laa FRrt selected | Pl Jedwl il £
1

PE AR L ROET L il
i Debailedl

1
'

pl:]:;':ll J-
i
i
'
1
i

47



Glossary of Classes within Sequence Diagram

TouchScreenDialog - represents a generalization of the physical touchscreen with
abilities to analyze user input.

Public Attributes:
isActive : boolean
Stores whether or not the touchscreen is active.
screenHeight : Integer
The vertical resolution of the screen.
screenWidth : Integer
The horizontal resolution of the screen.
touchXcoordinate : Integer
The x-coordinate of a user touch.
touchYcoordinate : Integer
The y-coordinate of a user touch.

Public Operations

getTouchcoordinate()
Operation to determine the screen coordinates of a touch, when the screen is touched.
selectWindow(Integer X, Integer y)
Operation to determine which window is being accessed.
activate()
Operation to activate the touchscreen.
deactivate()
Operation to deactivate the touchscreen.

DataWindow - represents the browser used to perform searches, and display results.

height : Integer

The vertical height of the key, in pixels.

width : Integer

The horizontal width of the key, in pixels.
displayObject[*] : DisplayObject[]

An array of objects being displayed on the screen.

Public Operations
followLink(String link)
Operation to follow a hyperlink.
print()
Operation to print information to the display area.

48



Link - represents a hyperlink.

Public Attributes:
linkID : Integer
The link's ID.
title : String
The link's title.
destinationAddress : String
The destination of the link.

Public Operations
giveLinkDetails()
Returns the details of the address being linked.
Advert - represents an advertisement banner which can be displayed in the DataWindow.

Public Attributes:
advertiD : Integer
The advertisement's ID.
graphic : Graphic
The advertisement's banner graphic.
advertDetails : String
The advertisement's description.

Public Operations
getAdvertID(String genre)
Gets an advertisement for a specific genre.
printAdvertisementDetails()
Prints the advertisement's details to DataWindow.

Inventory Search - represents the software application used by the kiosk system to check for the existence
of products.

Public Operations
checklInStock(String product) : boolean
Return true if the product is in the inventory collection.
giveProductDetails() : Product,Quantity,Map
Returns the details of a product, and a map to where it can be found.

49



Justification That the Sequence Diagrams Meet the Relevant Requirements
The relevant Requirements for the sequence diagrams are:

Functional Requirements:

1. Processing Requirements
The system must be able to translate and relay queries to the stores existing
database, and translate and relay the results of the query back to the user.

2. Input Requirements
The system must be able to accept queries from users and must be able to receive
information from the stores existing database.

3. Output Requirements
The system must be able to display the results of queries immediately to the user,
as well as relevant location information.

Non-Functional Requirements:
2. Efficiency Requirements
The system must be fast because customers can be very impatient.

Justification that the design meets relevant requirements:

The program design meets the all processing requirements outlined in the requirements
analysis document. The Search Sequence diagram demonstrates how a search is
successfully translated and relayed to the store's existing database, and how the results
are translated and displayed to the user. When the user when the user presses the
goButton, the query is translated by the browser into a format recognised by the HMV
servers . The server then performs a search on the existing database, and relays the relays
the results to the ResultsDialog class which translates the results into HTML and prints
them to the DataWindow class .

All input and output requirements are met by the kiosk system. The touchscreen dialog
allows users to input queries, and the browser is able to translate search results from the
local server into HTML pages for viewing.

The diagrams for the Interface Sequence,and the Product Selection Sequence ,the manner
in which input is collected from the user. The Interface Sequence diagram shows how
the user's physical contact with the screen allows them to select various windows, and
input search string. The Product Selection Sequence demonstrates that links can be
selected by the user.

The diagrams for the Product Inventory Sequence (, the Product Selection Sequence,, the

Search Sequence ,and the Interface Sequence , demonstrate the output requirements since
they show how the results of the queries are successfully displayed to the user. In the

50



diagrams, all information passed back from the server is collected by ResultsDialog,
which is responsible for displaying search results and product location to users.

The program design meets the efficiency requirements outlined in the requirements
analysis document. Search requests are submitted directly to the store's local server that
performs the search on the existing database. Additional information about products is
not downloaded until request, thus minimizing search time and maximizing efficiency.

51



State diagrams

There are five State diagrams: Interface State, Radio Button State, Result Dialog State,
Artist Search State and Touch Screen Dialog State.

52



Description of the Interface Dialog Statechart Diagram

The users touch the screen to begin their search. This contact activates the
TouchScreenDialog. The users now have the opportunity to input a Search Request.
Once the query is entered, the ResultDialog displays a list of Products that match the
users query (the search results). The users then have the ability to select a product in the
results list. If they select a product, then the ResultsDialog displays the Product's details.
If, at any point, the TouchscreenDialog is not touched for two consecutive minutes, then
it is deactivated, and the users' session is ended.

screenTouched ()
/TouchscreenDialeg activate() [ Sesarch

queryBEntered(]
/ResultDialog |displayS=archResults ()
- fanctherQuery? W
Search | 2minutesIdle ()

E=sults |

productSelected()
JResultDialeg |displayProductResults()
L
Product ZminutesIdle()
Details |

53



TouchScreenDialog - represents a generalization of the physical touchscreen with
abilities to analyze user input.

Public Attributes:
isActive : boolean
Stores whether or not the touchscreen is active.
screenHeight : Integer
The vertical resolution of the screen.
screenWidth : Integer
The horizontal resolution of the screen.
touchXcoordinate : Integer
The x-coordinate of a user touch.
touchYcoordinate : Integer
The y-coordinate of a user touch.

Public Operations
getTouchcoordinate()
Operation to determine the screen coordinates of a touch, when the screen is touched.
selectWindow(Integer x, Integer y)
Operation to determine which window is being accessed.
activate()
Operation to activate the touchscreen.
deactivate()
Operation to deactivate the touchscreen.

ResultsDialog - represents the software application handling input from the store's existing database.

Public Attributes:
resultText : String
The result of a search.
numberOfResults : Integer
The number of products found.
displayObject[*] : DispalyObject[*]
An array of objects to be displayed on the screen.

Public Operations
print()
Prints display objects to the screen.
requestAdvert()
Requests an advertisement from the database.
getProductDetails()
Retrieves product details from the database.

54



Description of the Radio Button State Diagram

Users have a choice for the type of search that they are going to perform: either an artist
search, a song search, a title search or a keyword search. The users select a radio button
to specify the type of search.

The Keyword RadioButton is the default RadioButton selected, since any search can be
performed as a Keyword search. When users select any other RadioButton, the Keyword
RadioButton becomes inactive, and the selected RadioButton becomes active. In general,
when a RadioButton is selected:

1- if itis inactive, it becomes active, and all other RadioButtons become inactive;

2- if it is active, it remains active, and the other RadioButtons remain inactive.

This diagram illustrates these properties with respect to the four RadioButtons in our
interface. When the users select the GoButton to submit their search, then the end state is
reached.

-'-\.__ Earpmen weibia i) o | 1 o Prsass s | | Semglindivnlubt oeToocted | | Terwliasdy it b enTooched L
", (Eeywordkagicikstbon lnectivel [FoQRIio@aTLon bnaprive] HETE LA P SRR T = T W]
e T Factivakwil ¥
= Wl | 'L Ifor wil shrar Fedlobuttore] I
o F EatE L L
B abank ol ton AITIVE L D T i 2l
F - s | EcngiadizButton ACTIVE |
ITE Kty ARS AL Lo Toeubhel | |
! 5, Faywordisdicdutton 1cact i) 1y
f Jacrhvatsii 1 & y
| [for all cther Eadichottonsl 1 .
| 1 et ivate i) I| Sl con Tormea | )
| | 'H. 1 ;
| !
| | L Il
1
/ |
rJ | A e '}
L e U U T Pt 0y ST TR T B 1
|I 'I [Eryrecrdledbohitton lnact vl 1* 13‘3_"““““
4 | JSackavwatcel} | Lp ; -
e akanipescon | ey el :' “':‘::_"":“'”‘“" 1
F Pgaseni |1 ) SCLIVATE L) .--I#rti.ﬂ-.r!-
( [meecrsmasfoputton | [foh ail sarar
iragl kel | Radichottons| |
fackElvatm ] | ks JamaEct iverE il
[fer Ll othsr . i
Eaddofulsors | 3 !
|'GFH.TI\'J'-I1 | |
|
i | ik 1o Radd odhut SopPoasnped | 1 Il
| AT LTTTEE LR R TFE LA 1
| | Jfactivatail " o ot Lan
[ [fon wll otrer Fanzomescons] TR
| SEEAn A TETE | e IErgRadasiutton
drbzgbisdaci=t bon b inaet; el
| i"“" sl Fagbivatall
1 LAEL l-'.l._l.ﬂ:lll.ll.l.l.tl [for 1l her |
| EILAERL LY . Fadiciaie I
§ oo tivare |1 Soamactavaty ol
1 [fcy =il ckibea 1
Y wd okt bona| " \ |
1 Jaedokkvena 1 b 1
| | i
1 'I
il Tt LKAl ol tonTouched || : | |
N Thtlafa-alobut ton imscn bve] |
5 et iwakaih Tl |
—— T _._|'F.i Ty S, (TeF @Ll OCRET RSOGO e
Lo L o el i T L Jasactivasell _4 ALk A L i RCTIYE | |
| e e ¥
\ T — '“?j:u &1 B DTG L ot Proststed | ) i
g ! MEyalynacter bon tnact 1w | [} 5
l"mhd;']m SR T T ey TAL Im R B L ot || |
3 Lo X - 1 IT1t lekada thon anmotiym)
r: J - [fow ali wihap Rediclrresaa] ]
_-l.:hlln:h LS AR el JBamct ivabui) —
PR L e L 1L

s
[ THLES i ) o T —

— - ---_____'::‘.

55



RadioButton - a specialization of the Button superclass, used to present choices
for different searches.

Public Attributes:
isActive : Boolean
Holds whether or not this radiobutton has been selected.

Public Operations
activate()
Activates the button.
deactivate()
Deactivates the button.
giveStatus() : Boolean
Returns the status of the button.

56



Description of the Result Dialog State Diagram

The ResultDialog remains inactive while the search is progressing. Once the results are
found, ResultDialog becomes active. In the active state, ResultDialog first requests an
advertisement that is related to the products that the users are requesting. When the
ResultDialog has downloaded the advertisement, it prints the results of the search along
with the advertisement. At this point, the ResultDialog is waiting for the users to select
one of the links representing a product. If the user does not select a link within two
minutes, the ResultDialog exits the active state and the search is terminated. If the user
does select a link, the ResultDialog requests the details of the product selected. The
ResultDialog is now in a downloading state. Once the details are downloaded,
ResultDialog displays these details to the users, and the search is finished.

eearchfubmi bEsd]|)

Inact ive RETIVe |

. h' Dioien i cadang |

asarchfsmeliaFoursdi ) |
freguestidaverk () dmum:b':omlete;:'
fpzint () |

.‘-i'. searchFinysned |
—_2a Waitimg | ﬁ..

- — =
linkSslactedl) | e

fgetPreduetDetailall ﬂ“"-:h iputesldle i
—

[ AT ] o i
|—h i

By oo e ke | |
Jprank i}

57



ResultsDialog - represents the software application handling input from the store's existing database.

Public Attributes:
resultText : String
The result of a search.
numberOfResults : Integer
The number of products found.
displayObject[*] : DispalyObject[*]
An array of objects to be displayed on the screen.

Public Operations
print()
Prints display objects to the screen.
requestAdvert()
Requests an advertisement from the database.
getProductDetails()
Retrieves product details from the database.

58



Description of Artist Search State Diagram

The users initially type in their search string. During this time, the ArtistSearch class is
inactive. The users will then select the ArtistRadioButton, and touch the GoButton to
submit their query. The ArtistSearch class is now searching through the ArtistCollection
index to find the closest matches to the users' query. If the artist is found, then the search
is complete and the results are returned. If the artist is not found, then a keyword search
is implemented to attempt to match the users' query with either a Title or a Song. This
brings the artistSearch to an end.

Artist Search State Diagram

| Inackive
Complete |-
-.:'ll.-ll"_lul!:rﬁl_hn.l.'lllllllll srtistPoundl] _— ._____!lHl.l_"I'.llHtl'.uJ.:'l.tﬂ.l'l
fasarehArtiatiCollsct 1o (] o —
Gearehing I — ._____:]‘I
artisthotPounall — —— - e T T

- —
Incomplate JErpwordSesrohil]

59



Search - represents the software application used by the kiosk system to perform
searches. Search's implementation depends on being able to call on the ArtistSearch, SongSearch,
TitleSearch, and KeywordSearch applications.

Public Attributes:
searchText : String
The text which is being searched for.

Public Operations
ChooseSearchFunction(int choice)
Calls the appropriate search function, based on "“choice".
returnSearchResults() : String
Returns the results of a search.

ArtistSearch - represents the software application used to perform searches on
the artist database.

Public Attributes:
artistSearchResults : String
Holds the results of an artist search.

Public Operations

searchArtistCollection(String artist)
Operation to search for an artist in the database.

60



Description of Touch Screen Dialog State Diagram

The TouchscreenDialog class deals with the users' input and output. Initially, when the
kiosk is turned on, the TouchscreenDialog is inactive. It becomes activated when a user
touches the screen. Then, the TouchscreenDialog is active and dialogs within the
TouchscreenDialog are interacting with the user. If the screen is left untouched for two
minutes, then the TouchscreenDialog reverts back to an inactive state. This state
conversion conserves energy, and brings the screen back to a welcome screen for the next
user. When the machine is turnedoff, Touchscreen has reached the end state.

screenTouched ()
Jactivate()

powerOn () : .

ZminutesIdle()
Jd=activate ()

TouchScreenDialog - represents a generalization of the physical touchscreen with
abilities to analyze user input.

Public Attributes:
isActive : boolean
Stores whether or not the touchscreen is active.
screenHeight : Integer
The vertical resolution of the screen.
screenWidth : Integer
The horizontal resolution of the screen.
touchXcoordinate : Integer
The x-coordinate of a user touch.
touchYcoordinate : Integer
The y-coordinate of a user touch.

Public Operations
getTouchcoordinate()
Operation to determine the screen coordinates of a touch, when the screen is touched.
selectWindow(Integer x, Integer y)
Operation to determine which window is being accessed.
activate()
Operation to activate the touchscreen.
deactivate()
Operation to deactivate the touchscreen.

61



Justification That the State Diagrams Meet the Relevant Requirements

The Relevant Requirements are:

2. Input Requirements
The system must be able to accept queries from users and must be able to receive
information from the stores existing database.

3. Output Requirements
The system must be able to display the results of queries immediately to the user,
as well as relevant location information.

The statechart diagrams demonstrate the input requirements are met in the following
ways: they show that input can be successfully received from the users, which changes
the states of certain classes, and they show that the Interface component can
communicate successfully with the existing database by accepting the search results from
the Application Component, which also results in changes of state in certain classes.

The behaviour of the TouchscreenDialog class, the RadioButton class, the Search class
and the ResultDialog class responds to user input and results input (from the database
classes). These responses show that our system accepts the users' queries successfully.
Specifically, The TouchscreenDialog Statechart Diagram shows that users physical
contact with the screen initiates the search. The RadioButton Statechart diagram shows
that the users' choice of search is recognized through their choice of the RadioButton
selection. The ArtistSearch Statechart Diagram is representative of each type of search.
This statechart diagram demonstrates that queries are accepted from users, and that the
results of the queries are accepted from the database component. The ResultDialog
Statechart diagram shows the successful communication between the interface
component and the application/database component.

The statechart diagrams demonstrate the output requirements since they show how the
results of the queries are successfully displayed to the users. The ResultDialog class is
responsible for displaying search results and product location to the users. The
ResultDialog Statechart Diagram demonstrates this by the print() statement that leads to
the end state within the Active state.

62



Part C: The Database Component

The HMV kiosk system consists essentially of Interface and Application classes. The
most cost-effective and efficient implementation of our system uses the database that is
already in existence in each HMV store. Since DataPear is not designing a database,
Professor Mylopoulos suggested that we analyze the existing HMV system and try to
reconstruct the process they may have gone through in their design phase. The
following section describes a potential database and the related analysis that leads to its
restructuring into a database that resembles the existing one.

The class diagram below could represent an Initial design for the database.

ProductCol laction
Wpcatalogh (7]

Beger Prosducs )
et Procfuct | )
WereneraProduce |

AdveriCollech jon
=]

Bgetidvert |
m-a.-m:
Srencrreldvect

ﬁ;vﬂnﬁqhm“‘
LveZemrel |
"quﬁ.ﬂ.ﬂtu 1Price{)
SgiveloatPrice!)
‘q;v’ﬂ.wmﬂ?

SgiveDetaile i)

Wy s vl ] Flasrs | |
Hﬂ.tj“ht.ﬂt Inffad )

el YWideo | | Taps =2
B =t raFsatures EraFsatures

63



Identifiers of Database Classes

The following tuples represent the database classes. The unique identifier of each class is
underlined.

CD(catalog#, title, genre, retailPrice, costPrice, releaseDate, margin%, location[*],
extraFeatures, supplier#, label#)

Tape(catalog#, title, genre, retailPrice, costPrice, releaseDate, margin%, location[*],
supplier#, label#)

DVD(catalog#, title, genre, retailPrice, costPrice, releaseDate, margin%, location[*],
extraFeatures, supplier#, label#)

Video(catalog#, title, genre, retailPrice, costPrice, releaseDate, margin%, location[*],
supplier#, label#)

Advert(advertID, graphic)
Supplier(supplier#, supplierName, phone#, fax#, email, address)

Label(label#, labelName, phone#, fax#, email, address)

Database Constraints

Referential Integrity: This ensures that an object identifier in an object is actually
referring to an object that exists. The referential Integrity of the database is always
maintained because in the ObjectCollection class, there is an addObject() and
removeObject(). These operations ensure that whenever an object is added or deleted
from the database, all objects that correspond to the deleted objects are updated.

Dependency Constraints: This ensures that attribute dependencies, where one attribute
may be calculated from other attributes, are maintained consistently. The only attribute
that is dependent in the database is the margin% attribute in all Products. The accuracy
of this number is verified whenever the giveMargin() operation is performed, thus
ensuring that this field remains correct.

Domain Constraints: This ensures that attributes only hold permissible values. This

constraint is kept because the addObject() operation in the ObjectCollection class verifies
each parameter value for correctness before adding the object to the database.

64



Workload Data

The operations that are performed in the database are summarized in the tables below.

Workload Data Table of Operations

Title E 7 800 000 per da

Artist E 4 000 000 1 Search for I 250.00

Song E 78 000 000 song title

Inventory E 5000 2 Search for I 250.00

CD E 7 500 000 artist name

Tape E 5000 000 3 Search for I 250.00

DVD E 100 000 product title

Video E 300 000 4 Search for I 250.00

Label E 10 000 keyword

Supplier E 50 5 InsertDVD | 0.05
6 Insertvideo | 0.05
7 Insert tape I 0.15
8 Insert CD I 0.20
9 Getinventory B 1.00

Redundancy Analysis

The addition of some collection classes, namely: Inventory; Artist; Title and Song, could
create redundancy, which is analyzed with the representative operations two, eight and
nine. These operations were chosen because operations one through four have the same
basic functionality and operations five through eight have the same basic functionality.

- Operation 2 — Search artist: This operation could be made redundant because we
presently look through all the product checking the artist field when we could add a
separate look-up table and simply do a search on that table.

Operation 2 without redundanc

Operation 2 with redundanc

Concept Type Access  Type | Concept Type Access Type
ArtistCollection E Log(4 R ProductCollection E 12.9 R
million) million
Artist E 3* R
ProductCollection E 3X R
Log(12.9
million)
Product E 3 R
Total 138 Reads Total 12.9 million Reads

*Each artist has, on average, three CDs

65



- Operation 8 — Insert CD: Having the different look-up tables would result in increased
redundancy while inserting new information into the system.

Concept
CD
ProductCollection

ProductCollection
Title
TitleCollection

TitleCollection
Artist
ArtistCollection

AcrtistCollection
Song
SongCollection

SongCollection
Inventory
InventoryCollection

Total

Type Access

E
E

mmm mmm

mmm

E
E
E

1
Log(12.9
million)
1

1
Log(7.8
million)
1

1

Log(4
million)
1

6

Log(78
million)
1

1
Log(5000)

Type | Concept Type Access Type
W CD E 1 w
R ProductCollection E Log(129 R
million)
W ProductCollection E 1 W
W
R
W
W
R
W
W
R
\W
W
R
Total 24 Reads, 2 Writes (28)

103 Reads, 15 Writes (133)

- Operation 9 — Get Inventory: This operation would be made redundant if we add a
separate look-up table; we could avoid the separate look-up table and simply look

through all the product checking an inStock field.

Concept Type Access
Inventory E 5000
Total 5000 Reads

Type
R

Concept
Product

Type Access Type

E

Total

12.9
million

12.9 million Reads

R

66



Workload Analysis

With Redundanc Without Redundanc

accesses frequency accesses x | accesses Frequency accesses X

per day frequency per day frequency

Operation 2 | 138 250 34500 12.9 250 3225000 000
million
Operation 8 | 133 0.20 26.6 28 0.20 5.6
Operation 2
+ 34 526.6 3225000 005.6

Operation 8
Space The added look-up tables increase | Obviously this takes up much less
Analysis the space required, but speed isa | space, but the speed trade-off is

much larger concern. tremendous.
With Redundanc Without Redundanc

accesses frequency accesses x | accesses Frequency accesses X

per day frequency per day frequency
Operation 9 | 5000 1 5000 12.9 1 12.9 million
million

Using the analysis above we arrive at a database that can be represented with the class
diagram below.

FIePoCt Lns &L L
| Brmemimb 4]

:""I:"::' T | Astbedoliveticos £ TatlsOwlbection [| Soogfoliwstion, |
bl Browhses | - — - = -
- = B [T B 17 | s [ < I*,..-n,:-\.-l

67



Generation of the Relational Schema

Removing Generalizations

The generalization that exists in our database with redundancy is the following:
- DVD and Video inherit from the Media class, which inherits from the Product
class.
- Tape and CD inherit from the Music class, which inherits from the Product class.

We remove these generalizations as follows:

- DVD will include Media’s and Product’s operations and attributes, in addition to
its own.

- Video will include Media’s and Product’s operations and attributes, in addition to
its own.

- Tape will include Music’s and Product’s operations and attributes, in addition to
its own.

- DVD will include Music’s and Product’s operations and attributes, in addition to
its own.

Partitioning and Merqging of Classes

Accesses are reduced by separating attributes of the same concept that are accessed by
different operations and by merging attributes of different concepts that are accessed by
the same operations.

A careful analysis of the existing classes of our database shows that classes exist with
attributes that group together concepts accessed by the same operations. Specifically, the
ObijectCollection classes have attributes that are partitioned from the Product classes
based on the type of search performed.

However, the partitioning process was not complete when creating the ObjectCollection
classes because the attributes partitioned still remain in the Product classes. The Product
classes still contain the partitioned attribute in order to maintain the integrity of the entire
object. The Product can be referenced by several searches and so all the relevant
attributes must remain with the Product.

The following describes the relevant operations considered and how, in relation to these
operations, the database with redundancy is already partitioned.

There are four main search-operations performed on the products available at HMV by
the customers: an artist search, a title search, a song search, and a keyword search.
HMV management regularly performs general product searches and inventory searches.
These searches are each dealt with separately below.

68



The ArtistSearch takes in an artistName to look up, and returns the results of the search: a
list of catalog#s and titles associated with the artist’ s products. To deal efficiently with
this search, an ArtistCollection class holds an array of Artist objects: which each have an
artistName, a catalog#[*] and Artiststitle[*]. The ArtistCollection class partitions the
artist, catalog# and title attributes of the CD and Tape objects. This allows the artist
search operation to be performed more efficiently. As previously mentioned, the artist,
catalog# and title attribute remains in the object so that it can be easily referenced during
other searches.

The title search and the song search are dealt with in a similar manner.

The keyword search effectively performs an artist search, followed by a title search,
followed by a song search to attempt to match the user’s query to any of these fields in an
HMYV product. The addition of the aforementioned Collection classes allows this search
to be performed more efficiently.

A general Product search is conducted when a store employee or manager requires the
full details of a particular product. A ProductCollection class exists with the partitioned
catalog# attribute of the DVD, Video, CD and Tape objects. This allows the general
product search operation to be performed more efficiently. The catalog# attribute
remains in the object so that products can be referenced across searches.

A product inventory search is conducted when the inventory details of a particular
product are requested. An InventoryCollection class exists with the partitioned catalog#
and quantity attributes of the DVD, Video, CD and Tape objects. This allows the
inventory search operation to be performed more efficiently. The addition of this class
has partitioned out the quantity and inStock attributes that existed in the database without
redundancy.

Selection of Primary Identifiers

Similar classes are grouped so that their primary identifiers can be evaluated together.
The final relational schema is found at the end of this section.

The following tuples represent different Products at HMV:

CD(catalog#, title, genre, retailPrice, costPrice, releaseDate, margin%, location[*],
extraFeatures, supplier#, label#)

Tape(catalog#, title, genre, retailPrice, costPrice, releaseDate, margin%, location[*],
supplier#, label#)

DVD(catalog#, title, genre, retailPrice, costPrice, releaseDate, margin%, location[*],
extraFeatures, supplier#, label#)

69



Video(catalog#, title, genre, retailPrice, costPrice, releaseDate, margin%, location[*],
supplier#, label#)

These tuples were created with a unique catalog#, and this attribute serves as a unique
identifier.

The next classes evaluated are the Advert class, the Supplier class and the Label class.

Advert(advertID, graphic)

Supplier(supplier#, supplierName, phone#, fax#, email, address)
Label(label#, labelName, phone#, fax#, email, address)
Inventory(catalog#,quantity)

Artist(artistName, catalog#[*], artistTitles[*])

Title(titleName, catalog#[*], titleArtists[*])

Song(songName, catalog#[*], artist[*])

Advert’s attributes include the advertlD, and the graphic associated with the advert. The
advertID is a unique code assigned to each instantiation of the Advert class. Thus, the
advertID is Advert’s unique identifier. The Supplier and Label also have a unique code:
supplier# and label#, along with other attributes. Thus, supplier# and label# are the
unique identifiers for there objects. The Inventory object is referenced by the unique
catalog#, so this is its key. The Artist, Title and Song object are all referenced with a
string, their Name, and this is their unique identifier.

The following classes are Collection classes. They represent several indices of the HMV
products. There is only one instantiation of each of these classes, therefore no unique
identifier is needed.

ArtistCollection(artistName[*])
TitleCollection(titleName[*])
SongCollection(songName[*])
ProductCollection(catalog#[*])
InventoryCollection(catalog#)
AdvertCollection(advertID[*])

70



Relational Schema

CD(catalog#, title, genre, retailPrice, costPrice, releaseDate, margin%, location[*],
extraFeatures, supplier#, label#)

Tape(catalog#, title, genre, retailPrice, costPrice, releaseDate, margin%, location[*],
supplier#, label#)

DVD(catalog#, title, genre, retailPrice, costPrice, releaseDate, margin%, location[*],
extraFeatures, supplier#, label#)

Video(catalog#, title, genre, retailPrice, costPrice, releaseDate, margin%, location[*],
supplier#, label#)

Advert(advertID, graphic)
Supplier(supplier#, supplierName, phone#, fax#, email, address)
Label(label#, labelName, phone#, fax#, email, address)
Inventory(catalog#,quantity)
Artist(artistName, catalog#[*], artistTitles[*])
Title(titleName, catalog#[*], titleArtists[*])
Song(songName, catalog#[*], artist[*])
ArtistCollection(artistName[*])*
TitleCollection(titleName[*])*
SongCollection(songName[*])*
ProductCollection(catalog#[*])*
InventoryCollection(catalog#)*
AdvertCollection(advertID[*])*

*There is only one instantiation of each of these classes; therefore no unique identifier is
needed.

71



Normalization:

The classes Advert, Supplier, and Label are very simple classes, identified by a unique
code as their key. Thus, they are already in 3NF form. The Collection classes only have
one instantiation of each class, and hence they also do not need to be normalized.
Therefore, the only classes remaining that require normalization are the DVD, Video, CD
and Tape classes. The following normalization uses three Tape objects to represent the
normalization of all Product classes.

0 NF

Catalog# Title ‘ Artist ‘ Genre Supplier# | Label# Retail Cost Margin% Release
Price  Price Date

War987 Alternative 06/01/96

EP’s Band Rain-

-Bitter
Tree-

-No O
Know:
-Were
Makin
This L

BM7654 | Stankonia | Outkast | Rap 32VB AMG64 | $22.99 | $14.34 | 64% 11/12/00 | -So Fr
So Cle
-B.O.E
-Mrs.
Jacksc
-Toilel
Tisha-
-Yam
Powdz
-Ghett
Blues-

Sorny67 | Shaking Pear Thrash 7SH DL2 $18.99 | $12.82 | 68% 01/01/81 | -
the Tree Juice Metal Normé
your
MOJC
-1 Lea
Nothir
from L
MaryL

-666N
-Used
Case-
-Seedi
Monte
Carlo-
- Kill
SSR-

72



INF
A table is in first normal form IFF all row/column intersections contain atomic values.

Remove Margin, because it can be derived from Retail Price and Cost Price then
expand the repeating group Song.

Catalog# Title Artist | Genre Supplier# Label# Retail Cost | Release Song
Price  Price Date
War987 | Three Beta Alternative | 45RZ FM83 | $22.99 | $14.34 | 06/01/96 | Dry the
EP’s Band Rain
War987 | Three Beta Alternative | 45RZ FM83 | $22.99 | $14.34 | 06/01/96 | Summer
EP’s Band day
War987 | Three Beta Alternative | 45RZ FM83 | $22.99 | $14.34 | 06/01/96 | Spring
EP’s Band Water
War987 | Three Beta Alternative | 45RZ FM83 | $22.99 | $14.34 | 06/01/96 | Bitter
EP’s Band Tree
War987 | Three Beta Alternative | 45RZ FM83 | $22.99 | $14.34 | 06/01/96 | No One
EP’s Band Knows
War987 | Three Beta Alternative | 45RZ FM83 | $22.99 | $14.34 | 06/01/96 | Were
EP’s Band Making
This Up
BM7654 | Stankonia | Outkast | Rap 32VvB AM64 | $22.99 | $14.34 | 11/12/00 | So Fresh,
So Clean
BM7654 | Stankonia | Outkast | Rap 32VB AM64 | $22.99 | $14.34 | 11/12/00 | B.O.B.
BM7654 | Stankonia | Outkast | Rap 32VvB AM64 | $22.99 | $14.34 | 11/12/00 | Mrs.
Jackson
BM7654 | Stankonia | Outkast | Rap 32VB AM64 | $22.99 | $14.34 | 11/12/00 | Toilet
Tisha
BM7654 | Stankonia | Outkast | Rap 32vB AM64 | $22.99 | $14.34 | 11/12/00 | Yam
Powdah
BM7654 | Stankonia | Outkast | Rap 32vB AM64 | $22.99 | $14.34 | 11/12/00 | Ghetto
Blues
Sorny67 | Shaking | Pear Thrash 7SH DL2 $18.99 | $12.82 | 01/01/81 | Normalise
the Tree Juice Metal your
MQOJO!
Sorny67 | Shaking | Pear Thrash 7SH DL2 $18.99 | $12.82 | 01/01/81 | | Learned
the Tree | Juice Metal Nothing
from U of
MaryLand
Sorny67 | Shaking Pear Thrash 7SH DL2 $18.99 | $12.82 | 01/01/81 | 666NF
the Tree | Juice Metal
Sorny67 | Shaking | Pear Thrash 7SH DL2 $18.99 | $12.82 | 01/01/81 | Used
the Tree | Juice Metal Case
Sorny67 | Shaking | Pear Thrash 7SH DL2 $18.99 | $12.82 | 01/01/81 | Seeding
the Tree | Juice Metal Monte
Carlo
Sorny67 | Shaking Pear Thrash 7SH DL2 $18.99 | $12.82 | 01/01/81 | Kill SSR
the Tree | Juice Metal

73



2NF

A relation is in second normal form IFF it is in first normal form and every non-key
attribute is fully dependent on the primary key.

Separate Song into a separate table because it is not fully
dependent on the primary key.

Catalog# Title Artist Genre Supplier# Label# Retalil Release
Price Date
War987 | Three Beta Alternative | 45RZ FM83 $22.99 | $14.34 | 06/01/96
EP’s Band
BM7654 | Stankonia | Outkast | Rap 32VB AM64 $22.99 $14.34 11/12/00
Sorny67 | Shaking | Pear Thrash 7SH DL2 $18.99 | $12.82 | 01/01/81
the Tree | Juice Metal
Dry the War987 So Fresh, | BM7654 Normalise | Sorny67
Rain So Clean your
Summer War987 B.O.B. BM7654 MQJO!
day Mrs. BM7654 | Learned | Sorny67
Spring War987 Jackson Nothing
Water Toilet BM7654 from U of
Bitter War987 Tisha MaryLand
Tree Yam BM7654 666NF Sorny67
No One War9g7 Powdah Used Sorny67
Knows Ghetto BM7654 Case
Were War9g7 Blues Seeding Sorny67
Making Monte
This Up Carlo
Kill SSR | Sorny67

74




3NF

A relation is in third normal form IFF it is in second normal form and every attribute is
dependent on the primary key and not on another non-key attribute.

Separate Retail Price out of the table because it is dependent on Cost
Price (but is not just a function of cost price)

Normalise | Sorny67
your

MQJO!

| Learned | Sorny67
Nothing

from U of
MaryLand

666NF Sorny67
Used Sorny67
Case

Seeding Sorny67
Monte

Carlo

Kill SSR | Sorny67

Song Catalog#

Dry the War987
Rain

Summer War987
day

Spring War987
Water

Bitter War987
Tree

No One War987
Knows

Were War987
Making

This Up

So Fresh, | BM7654
So Clean

B.O.B. BM7654
Mrs. BM7654
Jackson

Toilet BM7654
Tisha

Yam BM7654
Powdah

Ghetto BM7654
Blues

Catalog# Title ~Artist  Genre ' Supplier# Label# Cost Release

75



Price Date
War987 | Three Beta Alternative | 45RZ FM83 $14.34 | 06/01/96
EP’s Band
BM7654 | Stankonia | Outkast | Rap 32VB AM64 $14.34 | 11/12/00
Sorny67 | Shaking Pear Thrash 7SH DL2 $12.82 | 01/01/81
the Tree Juice Metal
Cost Retail
Price Price
$14.34 | $22.99
$12.82 | $18.99

76




Justification that the Design Meets the Relevant Requirements

The most relevant requirement for any database is efficiency. Our database design
emphasises speed over space with the inclusion of the separate search tables/classes, as
would be required by the HMV database. The design of our database is simple because
the minimum amount of redundancy was added to optimize the most frequent operations.
By having a simple database design we satisfy Economy requirements, because it will be
easier to implement, and we also satisfy the Reliability requirements because a simpler
design will contain less errors.

The Input and Output requirements of the system have been met because our design
stresses simplicity in the interaction between the database and the application(s) using the
database. This emphasis on cohesion also meets the Interoperability and Lifecycle
requirements of the database.

77



Part D: Interface Design
The Target Users

The target users of our system encompass a large variety of people. The main users of
our system will be customers and employees.

Our customer users are essentially any person that inside an HMV store and interested in
purchasing a CD. The age of customers range from approximately 10 years to 85 years
since persons within that age group are able to purchase CDs. Customers are middle
class and upper class citizens since they are able to afford CDs. Customers in this class
bracket often have some exposure to computers. Thus, the majority of this group is
familiar with the Windows operating system and browsers. Since our customer users will
be using a kiosk before purchasing a CD, it is likely that most of them are in a hurry.

The second group of users for our system is the HMV store employees. Employees range
in age from approximately 16 to 60. Employees deal with a computer system daily.
Thus, they are quite familiar with searches and queries. Furthermore, persons from 16 to
60 are often users of computers. Thus, this user group is also familiar with the Windows
operating system and browsers. When using our system, the employees are usually in
the process of helping a customer, so it is likely that they are in a hurry.

Our users will be approximately 50% male and 50% female. The users of our system are
literate, and able to understand English.

Description of the Interface Dialog State Diagram

The users touch the screen to begin their search. This contact activates the
TouchScreenDialog. The users now have the opportunity to input a Search Request.
Once the query is entered, the ResultDialog displays a list of Products that match the
users query (the search results). The users then have the ability to select a product in the
results list. If they select a product, then the ResultsDialog displays the Product's details.
If, at any point, the TouchscreenDialog is not touched for two consecutive minutes, then
it is deactivated, and the users' session is ended.

78



State Diagram Describing Interface Dialog

scre=nTouched ()
JTouchscresnDialeog activates() [ Search
> Request

ZminutesIdle ()

-

queryBEntered(]
JResultDialog |displayS3earchResults()

- fanctherQuery? .

Search .
R I ZminmitesIdle ()

productSelected()
/ResultDialog |displayProductResults()

L
Froduct ZminutesIdle ()

Detalls I >

Mockups of Windows

The following paper mock-ups represent low-fidelity prototypes for the appearance of the
screen displays of the HMV Kiosk Search System. They consist of the “welcome
screen”, the “input query” screen, the “display results” screen and the “product details”

screen.

79



The “welcome screen”

80



The “input query” screen

81



The “display results” screen

82



The “product details” screen

83



Input/Output Design

Input in made through the touch screen. There are two main types of input: Data input
from the user, and Data capture. Data input from the user gathered in several ways:

Touching hotspots on the touchscreen (the keys), allowing the user to type.
Entering text in the search field.

Selecting a radio button to specify the type of query.

Selecting the Go button to submit the query.

Selecting links or an advertisement with a link in the data window (the display
portion of the screen), bringing the user to the linked page.

agrwpnE

The second type of input, data capture, involves the identification of new data sent to the
database. At midnight each night, the database is updated so that the inventory and list of
products is current. There is not physical input medium for the data capture since the
information is transferred over a Wide Area Network. This information is then made
available to the kiosks through a Local Area Network.

Output is done through screen displays and reports. The screen display consists of query
results of a kiosk Catalog search. This display is an internal output. The medium of this
output could be paper is the user requests that their search results be printed. The format
of this output is in the form of a well-organized table.

The second type of output is a statistical report. The statistical report summarizes the
frequencies of various queries. The reports consist of several formats: pie charts, tables
and histograms. Thus, the output format is part graphical, and part narrative. These
reports are sent electronically to the HMV Main Office but there are also printed out
locally for the store manager to review.

The Relevant Requirements to Interface Design:

Functional Requirements

1. Input Requirements

The system must be able to accept queries from users and must be able to receive
information from the stores existing database.

2. Output Requirements

The system must be able to display the results of queries immediately to the user, as well
as relevant location information.

Non-Functional Requirements

1. Interface Requirements

84



The system must be user friendly with an intuitive and unambiguous interaction
mechanism. The system must have a familiar design so customers will feel comfortable
using the system.

Justification that the Interface Design meets the requirements:

The interface design meets the input requirements in both of the specified respects: it is
able to accept queries from the users and it is able to receive information from the store's
existing database. The interface is designed to accept queries from the users through the
touchscreen. The TouchScreenDialog class gathers the information of the screen contact
from the users. As shown in the Dialog Statechart Diagram, the TouchscreenDialog is
activated by the users' first contact, and is then ready to accept the users' query. The
interface is able to receive information from the store's existing database by
communicating with the database classes in a modular way. The Application Component
parses the database's results of each query and sends this information to the interface to
display to the users.

The interface design meets the output requirements by being able to display the search
results to the user, and by being able to display the location information of the selected
product. The Dialog Statechart diagram shows that the Result Dialog enters the state
‘SearchResults' where it displays the best matches to the users' search. This behaviour
fulfills the first part of the requirement. A subsequent state, 'Product Details', is entered if
the users select a product. Thus, the requirement of displaying relevant location
information to the users is met if and only if the users select a product from the list given
as the search results.

The Interface Requirements are met by the interface design because the system is very
user-friendly and easy-to-use. It is made obvious to the user how to interact with the
system. The touchscreen affords to be touched since there are no other peripherals for
input. The welcome screen of the system shows a graphic of a thumbprint (See Mock
ups section), conveying the idea that the screen responds to physical contact. The system
is very easy-to-use since it is inspired from internet browser style screens, which users
are generally familiar with. The steps of the search are obvious: a keyboard affords
touching keys, and so when it is displayed for the first time, the users know this is how
they can enter their query; buttons afford being pressed, and the labels of the buttons
displayed inform of their functionality. Also, instructions are given to the users: for
example, in the SearchResults state, the ResultDialog instructs the users to 'select any
Product for inventory details’. These intructions make each step in the search process
very obvious to the users.

85



Conclusion:

These design recommendations ensure that new HMV Kiosk Search System meets all
functional and non-functional requirements specified in the Requirements Analysis Phase
(see Appendix B). The new system is fast, efficient, easy to use, and scalable, allowing
HMV's continued dominance of media sales in North America. DataPear focused on user
needs and on system constraints in the design of our interface, application and database
components. The result is a quality system implemented in an economic manner,
guaranteeing customer and HMV employee satisfaction.

86



Appendix A: Justification for Network, Hardware and Software Choices

A.1.1 Comparison of Average Uptime Across Windows Operating Systems

@;ms Average Uptime

Windows 2000 did not fail during the test,

Windows 2000
Professional

Windows NT
Workstation 4.0

Windows 98 SE

0 & 10 15 20 M 30 M 40 45 S0 &5 &0 B TO T M 88 W
Workdays

A.1.2 Comparison of Mean Time to Failure Across Windows Operating Systems
Miean Time Te Fallure

vinions 8 | |8

Whlrciones T
Wibrkstation 40

Wirdoes 00

Profpssional

87



A.1.3 Comparison of Performance Across Windows Operating Systems

If your firm is already deploying Windows 2000

Professional, rate the quality compared to Windows 9x and
NT Workstation

Excellent — an onder of magnitude
better performanc & and raliability

Very good — five times more
rediable and better perfonmmance

Good — at least 20 percent more
refiable and better performmance

The same — no discernibie
perfiommance and reliability
improvesEmeEnts

Worse — it crashes more
frequent hy

3%

24%

i |

'—m

Source | Giga Informaton Group/Sunbel Softe are

Fligure 1



A.1.4 Comparison of Performance Across Windows Operating Systems

If your firm is already deploying Windows 2000 Server, rate

the quality compared to NT 4.0

Excellent — an onder of magnitude
better performance and reliability

good — Tive Bmes more
rediable and better perfommance

Goeint] — ] Disast 20 pessc el e &
rediabilie and better performmance

The sarme — no discer nilike
performmance and rediability
improvements

'1".!"-

Worse — it crashes more frequently

Source . Giga Informaion Group/sunbel Somware Figure ¥



A.2 Windows 2000 Report Card

Windows 2000: First Year Report Card

Report Card
SUBJECT GRADE
PerfOMmMance... ... cuimenranaranan i
T AP R— - T
BCRIOBIIY. . . v A
T RPN . B+
Reduced Management.. ... ccmema. | & )
L B S _-
Active Directory/DH S Design......... C
L PP - B-
Applic ation Compatibility.............. B-*
Licensing IS8UBS. . ccccccvimnnnsnnnsnnnns F
*Applicgion compaibility is not entirely in Morosoft's control | Individusal
5%s can choose wha her or not to support WaK,

Source: Giga Information Group Figure 4

90



A.3 Details on the Linux Operation System

- . Red Hat Linux 7.1
Three producis developed for server énvironments, [ha
wirkstabion user of expanienced uters Choose ihe level of

applicalions, suppor, and Red Hal Network you need in J
convenient packages

Red Hat Linux 71 products will begin shipping Monday, April
23

Professional Server $179.95 inte! [l | "'
Dehnce Workstation s79.95 intel |l | "<

Red Hat Linux 7.1 s39.95 el [l | 1ne]

Red Hal EDK Rird Hal High Avallability Server
Fowerlul lools for developing embadded apps An oul- of-The- box Chistening solution
s193.95 e (D s1995.00 [T [inis]

Mors in SOThware. More in SOftware..

91



A.4 Possible Touchscreen Choices

92



Appendix B: Functional and Non-Functional Requirements

Functional Requirements

1. Processing Requirements
The system must be able to translate and relay queries to the stores existing
database, and translate and relay the results of the query back to the user.

2. Input Requirements
The system must be able to accept queries from users and must be able to receive
information from the stores existing database.

3. Output Requirements
The system must be able to display the results of queries immediately to the user,
as well as relevant location information.

Non-Functional Requirements

4. Interface Requirements
The system must be user friendly with an intuitive and unambiguous interaction
mechanism. The system must have a familiar design so customers will feel
comfortable using the system.

5. Efficiency Requirements
The system must be fast because customers can be very impatient.

6. Durability Requirements
The system must be able to survive heavy daily use, and be resistant to petty
vandalism.

7. Lifecycle Requirements
There is no foreseeable obsolescence of the service provided by the system so a
long life span is required. The system must be able to have both the hardware and
the software upgraded.

8. Economic Requirements
The system must be implemented in over one hundred stores, which means any
savings that do not detract from the quality of the system are of great value.
Additionally the system should have a low maintenance and replacement cost for
the same reason.

93



Appendix C: Justifications for the Interface Design Decisions

We referred to the textbook “Human Computer Interaction: Toward the Year 2000”, by
Baecker, Grudin, Buxton and Greenberg, from the Morgan Kaufmann Publishers, Inc.
(California, 1995) In the following section, this book will be referred to as BGBG.

1. Colour in the HMV Kiosk Interface

Friendly warmth is a central concern in designing our website. To achieve this goal, we
need a captivating yet calming background colour. We chose a warm shade of blue as
background to fulfill this need. In his article “Principles of Effective Visual
Communication for Graphical User Interface Design”, Marcus states that blue is good for
screen backgrounds since blue-sensitive colour receptors are the least numerous in the
retina and are especially infrequent in the eye’s central focusing area, the fovea (BGBG,
p.431). Furthermore, our choice of the warm shade of blue is appropriate because "most
people experience warm colours advancing toward them- hence forcing attention”
(BGBG, p.443).

We choose the text on the page to be black. Black is a darker colour than our blue
background; this should make the text clearly visible and easy to read.

We limit our overall colouring of fonts, background and graphics to less than four colours
because we have learned in our csc318 Interface Design class that too many colours only
make the display ‘busier’ and more confusing rather than more organized. “When too
many figures or background fields compete for the viewer’s attention, confusion arises,
as can happen in the Las Vegas approach to colour design”. (Marcus, BGBG, p.431)

Our colours are bright yet not too forceful. We chose bright colours because we are aware
that "older viewers need higher brightness levels to distinguish colours™ (BCBG, p.442).

2. Font in the HMV Kiosk Interface

We use a sans-serif font for the title “HMV Catalog Search”. We use another sans-serif
font for the main text. We choose two different fonts because we want our users to be
able to easily distinguish between the titles and the text. Sans- serif font is appropriate in
both cases since the bodies of text are very short.

We use a much larger font for our main title because we wanted to keep it visible at all
times with the purpose of reminding the users of where they are and what the web page is
about.

We limit the overall use fonts to two: the main headings and the main text. In this way

our users can easily differentiate between the two different classes of information for a
better overall conceptual model.

94



3. Layout in the HMV Kiosk Interface
We inspire ourselves from the Internet Explorer browser look for the layout of our

interface. In general, users are familiar with browsers and this will aid them navigate our
system.

95



Appendix D
Summary of Team Meetings
Date Subject Attendance Accomplishment Time Homework
Spent
Mar 11, Brainstorming, Simon, Informal Class 2 hours | Everyone develop
2001 Discussion on Danielle, Diagram, Refinement ideas for Users and
Users, Classes, Joshua of solution Classes
Functionality
Mar 18, Brainstorming Simon, Refine Class 2 hours | Develop a checklist
2001 ideas about, Danielle, Diagram, Develop to evaluate if Design
Sequence, State | Joshua Sequence Diagram meets Functional,
Diagrams Non-Functional
Requirements
Mar 25, Brainstorming Danielle, Refine Class 2 hours | Develop a list of
2001 ideas about Joshua, Diagram, Perfect functional
diagrams Simon Requirements requirements
Apr 12, Refine diagrams | Danielle, Write up descriptions | 3 hours | Danielle: Develop
2001 Joshua, ideas for Sequence
Simon Simon: Develop
ideas for State
Diagrams
Joshua: develop
glossary for
Diagrams
Apr 13, Develop a Simon, Developed Rough 75 Simon does intro.
2001 Sequence and Danielle, Sketch of Sequence hours Danielle will do
State Diagram, Joshua and State Diagrams, final copy of all
Gather notes and Developed diagrams for
write final copy Functional submission
Design Deatils Requirement support, Joshua will put
everything together
for the write-up for
submission, etc.
Apr 15 Write Report Simon, 15
Danielle, hours
Joshua

96




Appendix E: Team Report Form

Description of roles and contributions of each team member:

All team members contributed equally to all aspects of the project.

Name % of Team Effort
Danielle Lottridge 33 113 %
Simon Hatch 33 113 %
Joshua Collings 33 1/13%

Date submitted: Monday, April 16, 2001.

97



