
1	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 23: 
Course Summary"

"
"

"
"
What we’ve covered in this course"
Some underlying principles"

Course Evaluation"

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Course Outline"
Modeling"

Sketching vs. Blueprints (vs. programming)"
Structure vs. Behaviour vs. Function"
Abstraction, Decomposition, Projection"
UML"

Maintenance and Re-engineering"
Software Evolution"
Program Comprehension"
Reverse Engineering for Design Recovery"

Software Architecture"
Conway’s Law"
Coupling and Cohesion"
Architectural Patterns"

Software Processes"
Agile vs. Disciplined"
Iterative development"
RUP, ICONIX, XP, SCRUM,…"
QA and process improvement"

Project Management"
Resources, Time, Product, Risk"
Estimation & Prioritization"
Risk Assessment & Control"
Monitoring and Controling a project"
Organising a team"

Requirements Analysis"
Requirements vs. Specifications"
Stakeholders, Goals, Obstacles"
Use Cases"
Robustness Analysis"

Verification and Validation"
Testing"
Static Analysis"
Inspection"
Prototyping"
Formal model analysis"

Software Quality…"

2	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Modeling Notations"
UML Class Diagrams"

information structure"
relationships between
data items"
modular structure for
the system"

Use Cases"
user’s view "
Lists functions"
visual overview of the
main requirements"

"
UML Package Diagrams"

Overall architecture "
Dependencies
between components"

Robustness Diagrams"
Maps use cases onto
s/w architecture"
Allocation of
responsibility, control"

UML Sequence Diagrams "
individual scenario"
interactions between
users and system"
Sequence of
messages"

Goal Models "
Stakeholder’s goals
and priorities"
Means-ends analysis
and rationale"
dependencies
between stakeholders"

!
!

!
!

!
!

Customer!

Home Page!click login!

Login Page!

click OK!

Display !
Generator!

account table!
validate login!

generate !
error!

message!

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Why models are important"
Abstraction"

Ignore detail to see the big picture"
Treat objects as the same by ignoring certain differences"
(beware: every abstraction involves choice over what is important)"

Decomposition"
Partition a problem into independent pieces, to study separately"
(beware: the parts are rarely independent really)"

Projection"
Separate different concerns (views) and describe them separately"
Different from decomposition as it does not partition the problem space"
(beware: different views will be inconsistent most of the time)"

Modularization"
Choose structures that are stable over time, to localize change"
(beware: any structure will make some changes easier and others harder)"

3	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Scaling Up"
Complexity grows rapidly"

“For every 25% increase in problem complexity there is a 100% increase in
solution complexity” (Robert Glass)"

Why?"
Software development is largely an intellectual task "

(80% intellectual, 20% clerical)"
To scale up, you need more brains"
Software development becomes a social activity"
Coordinating more people is hard"
"
"

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Glass’s Facts (slightly refactored)"
People"
✔  Most important factor is quality of your

developers"
✔  Best programmers are 28 times more

effective than the worst"

Tools"
✔  There is no silver bullet"
✔  Each tool/technique offers only small

improvements"
✔  Any new tool/technique initially causes a

reduction in productivity"
✔  Most tools become shelfware"

Estimation"
✔  Poor estimation is endemic"
✔  Estimation is done by the wrong people,

at the wrong time, and never adjusted…"

Re-use"
✔  Re-use in the small is solved; "
✔  Re-use in the large is intractable"

Requirements"
✔  Requirements errors are the most expensive

to fix during development"
✔  Missing requirements are hardest errors"

Design"
✔  Design is a complex, iterative process"
✔  There is seldom one best design"

Testing"
✔  55-60% branch coverage is typical"
✔  100% coverage is unachievable"
✔  100% coverage is insufficient"

Defects"
✔  Error removal is the most time-consuming

part of software development"
✔  Errors tend to cluster (80:20)"
✔  Most programmers make the same mistakes"

Maintenance"
✔  Maintenance is 40-80% of software costs"
✔  Understanding the existing product is the

hardest part"

Adapted from Robert Glass “Facts and Fallacies of Software Engineering”	

4	

University of Toronto Department of Computer Science

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

The Joel Test"
1.  Do you use source control?"
2.  Can you make a build in one

step?"
3.  Do you make daily builds?"
4.  Do you have a bug

database?"
5.  Do you fix bugs before

writing new code?"
6.  Do you have an up-to-date

schedule?"

7.  Do you have a spec?"
8.  Do programmers have quiet

working conditions?"
9.  Do you use the best tools

money can buy?"
10.  Do you have testers?"
11.  Do new candidates write

code during their interview?"
12.  Do you do hallway usability

testing?"

Source: http://www.joelonsoftware.com/!

