FQ University of Toronto Department of Computer Science

Lecture 18:
Automated Testing

Automated testing
JUnit and family

Testing GUI-based software
Testing Object-Oriented Systems
When to stop testing

e © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

FQ University of Toronto Department of Computer Science

Kind of Behavior
Per Functionality Cross Functional

Acceptance Usability
Business Tests Testing

. Business Intent . -
Facing (Executable Specification) Is it pleasurable:

. Component Exploratory Manca

> Tests Testin

m Architect Intent) 9]

(Design of the System)| IS it self-consistent?

- Diagram adapted
Technology, Unit Pro pE-_f'TY Pnpf;?a:ldrlggtyand
Facing Tests TESTIHQ X Brian Marick
Developer Intent Is it Responsive,
(Design of the Code) Secure, Scalable? 1

At Support Critique M
- Development Product -

Purpose of Tests

e © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

ﬁ? University of Toronto Department of Computer Science

Automated Testing

Source: Adapted from Liskov & Guttag, 2000, pp239-242

Where possible, automate your testing:
tests can be repeated whenever the code is modified (“regression testing”)
takes the tedium out of extensive testing
makes more extensive testing possible

Will need:

test drivers - automate the process of running a test set
sets up the environment
makes a series of calls to the Unit-Under-Test (UUT)
saves results and checks they were right
generates a summary for the developers

May need:

test stubs - simulate part of the program called by the unit-under-test
checks whether the UUT set up the environment correctly
checks whether the UUT passed sensible input parameters to the stub
passes back some return values to the UUT (according to the test case)
(stubs could be interactive - ask the user to supply return values)

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

ﬁ? University of Toronto Department of Computer Science

Automated Testing Strategy

Source: Adapted from Meszaros 2007, p66

Direct control points Indirect gbservation points

TestCase Fixture

Test Double

Initialize

»
P>

Setup

uuT DOC

Exercise ot Depended
Under On
Teat Component

Do something
‘(no return vdlue) |

Verify

Teardown

Indirect control point

Direct observation points

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

o University of Toronto Department of Computer Science

Test Order?

Source: Adapted from Meszaros 2007, p35

e

Test Exerch = UUT
Inside wos
Out Test Exerdi = UUT
_
Test Execses! UUT i

Test

Test [—Exercises] UUT Double

. uses
Outside . Test
In Test Exercise Double
Test Exercis
o qw © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5
? University of Toronto Department of Computer Science

How JUnit works

Source: Adapted from Meszaros 2007, p77

(testMethod 1) ~~=—- I
create

Exercise
rur - \\ Verify : ;

. LT
*,| Teardown

| testMethod_n |
Testcase A

Class

o D] ©2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

e

hg University of Toronto Department of Computer Science

How JUnit works

Source: Adapted from Meszaros 2007, p77

Testcase
Object
testMethod_1

Exercise

Y
C
(en
5

Exercise
Teslcase
Object

tesiMeathod_n

-« © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

o University of Toronto Department of Computer Science

W Assertion methods in JUnit

Source: Adapted from Meszaros 2007, p365

Single-Outcome Assertions
fail;

Stated Outcome Assertions
assertNotNull(anObjectReference);
assertTrue(booleanExpression)

Expected Exception Assertions
assert_raises(expectedError) {codeToExecute };

Equality Assertions
assertEqual(expected, actual);

Fuzzy Equality Assertions
assertEqual(expected, actual, tolerance);

e © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

r? University of Toronto

Department of Computer Science

Principles of Au

Source: Adapted from

Write the Test Cases First
Design for Testability

Use the Front Door First
test via public interface
avoid creating back door manipulation

Communicate Intent
Tests as Documentation!
Make it clear what each test does

Don’ t Modify the UUT
avoid test doubles
avoid test-specific subclasses
(unless absolutely necessary)

Keep tests Independent
Use fresh fixtures
Avoid shared fixtures

tomated Testing

Meszaros 2007 p39-45
Isolate the UUT
Minimize Test Overlap
Check One Condition Per Test
Test Concerns Separately

Minimize Untestable code
e.g. GUIl components
e.g. multi-threaded code
etc

Keep test logic out of production
code
No test hooks!

m@mmm& © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

r? University of Toronto

Department of Computer Science

A 4

1) Start the application (e.g. UMLet)

[eee UMLet - New Diagram

Testing interactive software

T ——— s [

]

2) Click on
File -> Open

Double-click on a UML element to the right

SimpleClass | [AbstractClas

Stereotype
Package::FatClass
{Some Properties}

Zid: Long

—Classam

Long
‘#Operation(i: ind): int

Responsibilties
-~ Respl
-- Resp2

4) click Open

t0 add itto the diagram

3) select test2.uxf

i
806
(1 models 5]
Name 1 Date Modified

st2.uxf Tuesday, March 25, 2008 1:08 AM

File Format: [UMLet diagram format (.ux) +)

(Cancel) (Ope
el

m@mmm& © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

h? University of Toronto Department of Computer Science

Automating the testing

Source: Adapted from Zeller 2006, p57

Challenges for automated testing:
Synchronization - How do we know a window popped open that we can click in?
Abstraction - How do we know it’ s the right window?
Portability - What happens on a display with different resolution / size, etc

Manual /g"\’]b_ i
tests / ==

-}

Automated
7 re tests
| Presentation |
| Functionality | /
Units
m@mmm& © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11
h? University of Toronto Department of Computer Science

Testing the Presentation Layer

Source: Adapted from Zeller 2006, chapter 3

Script the mouse and keyboard events
script can be recorded (e.g. “send_xevents @400,100”)
script is write-only and fragile

Script at the application function level
E.g. Applescript: tell application “UMLet” to activate
Robust against size and position changes
Fragile against widget renamings, layout changes, etc.

Write an API for your application...
Allow an automated test to create windows, interact with widgets, etc.

m@mmm& © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

h? University of Toronto Department of Computer Science

"% Dealing with Circular Dependencies

Source: Adapted from Zeller 2006, chapter 3

_______ invakes._ - __ __
v L
Core UserPresentation
+print_to_file() +confirm_loss()
: A
T 7T Tinvokes T T

void print_to_file(string filename)

if (path_exists(filename)) {
// FILENAME exists; ask user to confirm overwrite
bool confirmed = confirm_loss(filename);
if (lconfirmed)

return;
// Proceed printing to FILENAME...
m@mmm& © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13
h? University of Toronto Department of Computer Science

Revised Dependency

Source: Adapted from Zeller 2006, chapter 3

Presentation
Core {abstract}
+print_to_file() f---------- > +confirm_loss()
UserPresentation AutoPresentation
+confirm_loss() +confirm_loss()

N N

ask user return true;

m@mmm& © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

FQ University of Toronto Department of Computer Science

= How to Test Object Oriented Code?

Encapsulation
If the object hides it’ s internal state, how do we test it?
Could add methods that expose internal state, only to be used in testing
But: how do we know these extra methods are correct?

Inheritance
When a subclass extends a well-tested class, what extra testing is needed?
e.g. Test just the overridden methods?

But with dynamic binding, this is not sufficient
e.g. other methods can change behaviour because they call over-ridden methods

Polymorphism

When class A calls class B, it might actually be interacting with any of B’ s
subclasses...

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

15

o University of Toronto Department of Computer Science

Inheritance Coverage

Source: Adapted from IPL 1999

DerivedA DerivedB

?Inherited methods

. Coverage achieved by testing DerivedA
7
// //k . Coverage achieved by testing DerivedB

7 / Base\
A Inherited methods not exercised

Misleading coverage reported by
§ traditional structural coverage metrics

16

ﬁ? University of Toronto

Department of Computer Science

A, &

Base

+foo()
+bar()
-helper()

Derived

-helper()

Consider this program...

Source: Adapted from IPL 1999

class Base {
public void foo() {
. helper() ;
}
public void bar() {
. helper() ;
}
private helper() {...}
}

class Derived extends Base {
private helper() {...}
}

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

ﬁ? University of Toronto

Department of Computer Science

o

Test Cases

Source: Adapted from IPL 1999

public void testFoo() {
Base b = new Base();
b.foo() ;

}

public void testBar() {

Derived d = new Derived() ;

d.bar() ;
}

Base
+foo() -- Exercised in testFoo
+bar() -- Untested!
-helper() -- Exercised in testFoo

Derived

{+foo()} -- Untested! <
{+bar()} -- Exercised in testBar N~ .)
-helper() -- Exercised in testBar inherited methods

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

ﬁ? University of Toronto

Department of Computer Science

Extend the test suite

Source: Adapted from IPL 1999

Base
+foo() -- Exercised in testBaseFoo
+bar() -- Exercised in testBaseBar

-helper() -- Exercised in tBF and tBB

T

public void testBaseFoo() {
Base b = new Base();
b.foo () ;

}

public void testBaseBar() {
Base b = new Base();
b.bar();

}

public void testDerivedFoo () ({
Base d = new Derived() ;
d.foo() ;

}

public void testDerivedBar() {
Derived d = new Derived() ;
d.bar();

}

Derived
{+foo()} -- Exercised in testDerivedFoo
{+bar()} -- Exercised in testDerivedBar

-helper() -- Exercised in tDF & tDB

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

9 University of Toronto

Department of Computer Science

Base

Base methods

T 1

DerivedA DerivedB

inherited methods inherited methods
new methods new methods

Subclassing the Test Cases

Source: Adapted from IPL 1999

testBase

Test Base methods

-

testDerivedA

testDerivedB

A A

re-test inherited methods
test new methods

re-test inherited methods
test new methods

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

20

10

3 University of Toronto Department of Computer Science

When to stop testing?

o W

Typical testing results The bad news

e
c
=
o
.
n
i)
o
(9]
.
(0]
o
H*

Probability of more defects

S

Time (e.g. days) Number of defects found to date
© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 21
3 University of Toronto Department of Computer Science

o W

When to stop testing?

Source: Adapted from Pfleeger 1998, p359

Motorola’ s Zero-failure testing model

Predicts how much more testing is needed to establish a given reliability goal
basic model: empirical constant

“b(t)

testing time

failures = ae

failures,

Reliability estimation process

Inputs needed:
fd = target failure density (e.g. 0.03 failures per 1000 LOC)
tf = total test failures observed so far
th = total testing hours up to the last failure
Calculate number of further test hours needed using:
In(fd/(0.5 + fd)) x th
In((0.5 + fd)/(tf + fd))
Result gives the number of further failure free hours of testing needed to
establish the desired failure density
if a failure is detected in this time, you stop the clock and recalculate
Note: this model ignores operational profiles!

S
test time

© 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 22

11

h? University of Toronto Department of Computer Science

Fault Seeding

Seed N faults into the software
Start testing, and see how many seeded faults you find

Hypothesis:
Detected seeded faults _ Detected nonseeded faults
Total seeded faults Total nonseeded faults

Use this to estimate test efficiency
Estimate # remaining faults

Alternatively
Get two teams to test independently
Estimate each team’ s test efficiency by:

faults found by team 1 Faults found by both teams
Efficiency(team1) = =
Total number of faults Total # faults found by team 2
unknown

m@mmm& © 2012 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 23

