
CSC302 Engineering Large Software Systems page 1/9

Faculty of Arts and Science
University of Toronto

Midterm Test

Department: Computer Science
Instructor: Steve Easterbrook
Date and Time: 10:10am, Thursday 1st March, 2012

 Conditions: Closed Book
 Duration: 50 minutes

 This test counts for 20% of your final grade

Name: __

(Please underline last name)

Student Number: __

Question Marks

1 _____________ /20

2 _____________ /20

3 _____________ /20

Total __________ /60 = _________%

CSC302 Engineering Large Software Systems page 2/9

1. [Short Questions; 20 marks total]
(a) [Software Modeling – 5 marks] It has been suggested that UML models can be used in software
engineering as either sketches, blueprints, or as a high-level programming language. Explain each of
these different ways of using UML, and describe the limitations of each.
 [Note: 1 mark for each defn, 1 mark for a limitation of each use, up to 5 marks total]
Sketches: UML is used primarily to share ideas during meetings, and the diagrams aren’t
(usually) kept after the meeting is over. Limitations: When sketching, you tend not to
worry about precise syntax (thus: possibility of mis-communication), nor do you analyze in
detail the more subtle aspects of a model such as the implications of multiplicities on
associations (thus: not exploiting the full power of the notations)
Blueprints: UML is used as a specification language to tell the programmers what they
need to implement. Limitations: UML does not capture many things the programmers might
need to know, such as user’s goals, rationale for the design, assumptions about the problem
domain, etc. If used in place of face-to-face communication with users and/or domain
experts, may lead to code that does the wrong thing
High-level programming language: Tools convert the UML models directly into assembly
code to be run on the machine (i.e. no need to use a conventional programming language).
Limitations: Hard to capture detailed programming constructs, such as order of
operations, conditional logic, etc. Current generation of tools still require some
programming code to be added to the translated models, and the translated models are
much harder to understand than hand-written code.
(b) [Agile Planning – 5 marks] Timeboxing is a technique used in agile planning processes to decide
what features to develop for an upcoming software release. But it only works if there are reasonable effort
estimates available for how long each feature will take to build. What techniques are available to help
obtain and improve such estimates? How do these techniques differ from traditional (waterfall) style
project estimation?
To obtain estimates, could use:

• 3-point estimation, where programmers give best case, worst case and
typical case estimate for each task (and a suitable formula combines them).

• That card game, where each member of the team selects a card with her
estimate on it, and then they all show their cards and discuss differences in
estimates (avoids having them bias each other’s first estimates).

To improve estimates, could use:
• Post-mortem meeting at the end of each development cycle
• “Project velocity” – compare estimates to actual development speed in the

last cycle, and use this ratio to adjust estimates for the next cycle.
Key differences from waterfall style estimation:

• The programmers themselves discuss and agree on estimates
• Estimate only for small tasks, each of which delivers working code
• Only estimate stuff you’re ready to do in the next cycle (a few weeks)
• Fit the tasks to the time available, rather than the other way round

CSC302 Engineering Large Software Systems page 3/9

(c) [Software Evolution – 5 marks] Lehmann argued that most useful software is E-type (E for
Embedded), meaning the software itself will be embedded in the world, and will change the nature of the
problem it solves. Give an example of such software, and an example of software that is not E-type. How
would you assess the success of a project that develops E-type software?

E-type software includes anything that changes the way people work (and hence the way
they think about their work). E.g. word processors, spreadsheets, websites, etc are all E-
type.
Very little software is not E-type, unless it solves very well defined, simplistic problems.
Examples include programming assignments in intro CS courses & simple mathematical
problems.
You cannot measure the success of E-type software by looking at whether it passes some
tests; rather it requires a subjective judgment of the people who use it, and other people
who are affected by its use. Most importantly, E-type software is subject to continuous
evolution, so it’s never “finished”. A project to develop E-type software might best be
judged not by any specific release, but by the way the project handles the ongoing
evolution of the software. For example:

• Is the project responsive to the ongoing change in users’ needs?
• Does the project engage the users in the development process?
• Is the software adaptable/modifiable?
• Does each release make the software more useful?
• Does the project manage the complexity of the design as the software grows?

(d) [Software Architecture – 5 marks] Layered architectures are designed to reduce coupling
between components of a software system. Why is this reduced coupling useful? Describe a typical
layered architecture, and explain the role of each of the layers.
Reduced coupling is good because it separates the functions that might need to be
changed at different times. This is good for:
• Modifiability – changes can be made at one layer without affecting others
• Reusability – layers can be reused in similar systems
• Understandability – easier to understand how the software works
[Must have at least two advantages for full marks]

A typical 3-layered architecture has:
• Presentation layer, responsible for the user interface – e.g. to accept input from the

user, display results, and manage the appearance of the interface;
• Business Logic layer for the basic functions provided by the system. Includes all the

entity classes, and control classes needed to implement the use cases;
• Data storage layer, responsible for persistent storage of the information users in the

system. Usually includes a database component.
[Notes: other possible answers: 2-layers (essentially client-server); 4-layers model splits
business logic layer into application layer (responsible for controlling the use cases) and
domain entity layer (for basic functions shared by different applications).]

CSC302 Engineering Large Software Systems page 4/9

2. [Class Diagrams – 20 marks] The University of Kinakuta (UoK) has decided to
implement an electronic card system for its students, so that students can use their K-cards to access
secure areas (e.g labs and residences), and also as a debit card, linked to an account into which students
can deposit money, to be used to pay fees at locations on campus. For the initial release of the system, this
will be limited to a few university fees: parking fees at campus parking lots, library fees at campus
libraries, and equipment rental at the sports centre. The system will keep a usage record for each K-card.
An initial class model for the system has been produced:

(a) [5 marks] In the model provided above, there is a 1-to-1 association between a student and a K-
Card. Is this an appropriate way to model students and K-Cards or is there a better way? Defend your
answer.
[Note: could argue either way – credit for a well thought out answer]
No, this is not appropriate; it means a student ID can only ever be linked to one card.
What if students lose their cards? You would need to deactivate the lost card, so no-one
else can use it, and issue a new one. That means you’ll need more than one card associated
with that student. Even the solution where you don’t bother remembering which student a
lost card belonged to is not possible in this model, because every card must always be
associated with exactly one student.
Also, you won’t be able to represent the case when a student does not have a card. So
when you create a student record, you’ll have to issue a card immediately.
(b) [5 marks] In the model above, there are no explicit associations from the Deposit and Fee classes to
the Account class into which these transactions are to be made. Should such associations be added?
Defend your answer.
[Again, could argue either way – credit for a well thought out answer]
Associations from the account to the specific transactions are unnecessary. In the
implementation, if code in the Account class needs access to info about transactions, it can
ask the K-card object with which it is associated to provide the information (and vice
versa). As long as there is a path through the model to the relevant information, and no
ambiguity about which object a query refers to, then there is no problem. This design
reduces coupling between the classes, and therefore makes future modification easier.

CSC302 Engineering Large Software Systems page 5/9

(c) [5 marks] In the original model, the relationship between the Usage class and K-Card class is an
association. Alternatively, this relationship could be modeled using an aggregation or composition. Which
alternative is better for this problem domain and why?
It doesn’t make a lot of difference. The 1-to-many association means that each K-Card will
need to keep track of multiple instances of the Usage class that are associate with it.
That would probably be via suitable data structure (e.g. an Array) in the K-Card object.

• Making this an aggregation makes no real difference to how it would be
implemented, although it does imply that the set of usages “belong to” the K-card,
which is a sensible interpretation.

• Making it a composition implies a stronger relationship, i.e. that the individual
transactions (deposit, fee, etc) cannot exist independently of the card they belong
to. This might be a better design, because it would mean the programmers have to
make sure that transactions are always linked to a specific card, and if you delete
the record for a given card, you will also delete the record of its transactions.

(d) [5 marks] After further discussions, UoK decides to add more features to the system. Food services
wants to keep track of each student’s meal-plan allowance when they use their K-cards to buy food and
snacks at all campus eateries. Computing services wants to keep track of each student’s printing
allowance, when they use their K-cards at self-service printers across campus. The meal-plan allowance
and printing allowance are separate from the debit-card balance. Student will also be able to use their card
to make purchases (as well as paying fees) and to make deposits at many locations across campus, and the
system will need to keep track of the location of each transaction. Revise the original domain model to
allow for these additional features. Cross out elements that are no longer needed, and add any new
elements. Use multiplicities, associations, generalizations, etc as appropriate. You may use the space
below to re-draw the entire model if necessary.
Here’s one solution; many other variants are possible:

UoK Student
student ID

K-Card
barcode
status: {active, deactive}

11

Account
debit card balance;
meal plan balance;
printing balance;

1
1

Usage
date;
description;
location;

1

*

Fee
amount

Deposit
amount;

Access
location

Will need some
methods for buying more

meal plan / printing
allowances

Meal Purchase
number of units;

Printing
quantity

Other Purchase
price;

Assumptions: adding location to the Usage class makes sense, although it’s not clear
whether the “location” in the “Access” class is of a different type (e.g. a room or a lab,
rather than a campus shop) – I’ve left it in “Access” as well, so that it can over-ride the
superclass variable.

CSC302 Engineering Large Software Systems page 6/9

3. [Risk Management – 20 marks] You’re being interviewed for a job at NASA to
develop flight control software for the next generation of Mars missions (cool, eh?). The NASA project
manager conducting the interview shows you a long list that her team has brainstormed, of possible risks
– things that could go wrong with the project, either during development or during the actual mission –
and she asks you what you would do with such a list. What would you say?
Hint: On the wall behind her during the interview is a poster with the following quote on it: “The only
way risk management has value is if it affects the way you do business”. You sense that she
wants to hear more than just a brief answer about measuring risk. And you really want the job…

[Notes: To get full marks, the answer must cover all of these aspects of risk management
well (although exact terminology isn’t necessary). Bonus marks for suggesting ways in which
all members of the project team can participate, and how the risk management would
change their work practices (as per the hint).
Award marks for good insights/suggestions in each area.
Give plenty of credit for good examples, especially ones that pull in ideas from other parts
of the course.]

1) Risk prioritization. First we need to decide the relative importance of each of the risks
on the list. Several possible approaches:
- Could start with a basic triage process, to select the major risks that will need careful
management, and the non-risks (e.g impossible or trivial issues) that can be ignored, leaving
the middle group of risk to be monitored. The weakness of this approach is that we haven’t
systematically measured each risk.
- Could attempt to measure each risk explicitly, by calculating the probability (p) of
occurrence and the cost (c) of the loss for each risk, and calculate the risk exposure as RE
= p x c. Can then compute this for each risk, and use this to put the list of risks in rank
order. However, it may be hard to quantify many of the risks.
- Could use a hybrid approach, using a qualitative matrix, where probability and loss are
evaluated on a small number of levels (e.g 3-5 levels for each). Cells in the matrix that
have high probability and/or high loss are treated as critical risks to be managed. Each cell
in the matrix identifies a type of risk, and we’ll handle the different types separately:

 Likelihood of Occurrence
Very likely Possible Unlikely

U
nd

es
ir
ab

le

ou
tc

om
e

(5) Loss of Life Catastrophic Catastrophic Severe
(4) Loss of Spacecraft Catastrophic Severe Severe
(3) Loss of Mission Severe Severe High
(2) Degraded Mission High Moderate Low
(1) Inconvenience Moderate Low Low

2) Risk Mitigation. Just identifying and ranking risks is not enough. Need to identify a
strategy to reduce the likelihood and/or impact of each risk. The position of each risk in
the risk matrix will guide this – we’ll spend more time on the risks in the upper left, and

CSC302 Engineering Large Software Systems page 7/9

less on the lower right. Also, will look for strategies that move risks in the left hand
column(s) towards the right, and risks in the upper rows downwards.

For each risk, we can ask (a) how to reduce chances of it occurring, (b) how to reduce the
impact if it does occur, and (c) what the warning signs are – i.e. what project variables
would we monitor to check whether the likelihood is increasing.

For example, if the risk for a Mars spacecraft is “missing the launch window”, then we
could reduce its probability by allowing for extra slack in the schedule, using critical path
planning, etc. We could reduce its impact by having an alternative launch schedule (if that’s
even possible!). We could monitor this risk using tools such as burndown charts, which show
task completion against schedule. Then we’d define specific trigger points when we have to
consider whether other contingency plans need to be put into action to help meet the
schedule.

3) Continuous risk management. It’s not sufficient to just go through the exercise of
identifying and planning for risk once – it has to be a continuous activity throughout the
project.

One way of doing this is to maintain a “top ten” risk list, and review this every week with
the entire project team. The aim is to focus everyone on what steps they are taking to
reduce each of the risks on the list. Periodically, the entire list of risks needs to be re-
visited, to check whether any of the risk exposures have changed, and whether new risks
have been identified. The whole project team needs to be involved in this exercise, and
they need to be encouraged to identify and report new risks (so some kind of reward
system might be needed, to overcome the human tendency to assume the worst can’t
happen, and also the human tendency to downplay risk when talking to managers, to make
the project sound like it’s going better than it really is).

One idea for project managers is “risk as a resource” – it’s one of the four key things a
manager can actively adjust about the project (the others being functionality - how much
software we’re building; resources – people, computing, etc; and schedule). Any
adjustments on the other three variables need to be assessed for their impact on risk, and
risk can often be reduced by adjusting the other variables.

For example, to continue the previous example, if the burndown chart shows we’re getting
behind (and hence risk of missing the launch deadline is growing), then we can do things
like a requirements scrub (reduce functionality), or add resources (e.g. bring in more
engineers to help).

CSC302 Engineering Large Software Systems page 8/9

[scratch paper]

CSC302 Engineering Large Software Systems page 9/9

[scratch paper]

