
1

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 18:
Automated Testing

Automated testing
JUnit and family

Testing GUI-based software
Testing Object-Oriented Systems
When to stop testing

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

2

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Automated Testing
Where possible, automate your testing:

tests can be repeated whenever the code is modified (“regression testing”)
takes the tedium out of extensive testing
makes more extensive testing possible

Will need:
test drivers - automate the process of running a test set

sets up the environment
makes a series of calls to the Unit-Under-Test (UUT)
saves results and checks they were right
generates a summary for the developers

May need:
test stubs - simulate part of the program called by the unit-under-test

checks whether the UUT set up the environment correctly
checks whether the UUT passed sensible input parameters to the stub
passes back some return values to the UUT (according to the test case)
(stubs could be interactive - ask the user to supply return values)

Source: Adapted from Liskov & Guttag, 2000, pp239-242

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Automated Testing Strategy

Setup

Exercise

Verify

Teardown

UUT
Unit

Under
Test

DOC
Depended

On
Component

Initialize

Exercise
(with return value)

Get State

Get Something
(with return value)

Do something
(no return value)

Direct control points

Indirect control point

Direct observation points

Indirect observation points
TestCase Fixture

Test Double

Source: Adapted from Meszaros 2007, p66

3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Test Order?

Inside
Out

Outside
In

Source: Adapted from Meszaros 2007, p35

UUT

UUT

UUT

UUT

UUT

UUT

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

How JUnit works
Source: Adapted from Meszaros 2007, p77

UUT

4

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

How JUnit works
Source: Adapted from Meszaros 2007, p77

UUT

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Assertion methods in JUnit
Single-Outcome Assertions

fail;

Stated Outcome Assertions
assertNotNull(anObjectReference);
assertTrue(booleanExpression)

Expected Exception Assertions
assert_raises(expectedError) {codeToExecute };

Equality Assertions
assertEqual(expected, actual);

Fuzzy Equality Assertions
assertEqual(expected, actual, tolerance);

Source: Adapted from Meszaros 2007, p365

5

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Principles of Automated Testing
Write the Test Cases First
Design for Testability
Use the Front Door First

test via public interface
avoid creating back door manipulation

Communicate Intent
Tests as Documentation!
Make it clear what each test does

Don’t Modify the UUT
avoid test doubles
avoid test-specific subclasses
(unless absolutely necessary)

Keep tests Independent
Use fresh fixtures
Avoid shared fixtures

Isolate the UUT
Minimize Test Overlap
Check One Condition Per Test
Test Concerns Separately
Minimize Untestable code

e.g. GUI components
e.g. multi-threaded code
etc

Keep test logic out of production
code

No test hooks!

Source: Adapted from Meszaros 2007, p39-48

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Testing interactive software
1) Start the application (e.g. UMLet)

2) Click on
 File -> Open

3) select test2.uxf

4) click Open

6

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Automating the testing
Challenges for automated testing:

Synchronization - How do we know a window popped open that we can click in?
Abstraction - How do we know it’s the right window?
Portability - What happens on a display with different resolution / size, etc

Units

Functionality

Presentation

Automated
tests

Manual
tests

Source: Adapted from Zeller 2006, p57

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Testing the Presentation Layer
Script the mouse and keyboard events

script can be recorded (e.g. “send_xevents @400,100”)
script is write-only and fragile

Script at the application function level
E.g. Applescript: tell application “UMLet” to activate
Robust against size and position changes
Fragile against widget renamings, layout changes, etc.

Write an API for your application…
Allow an automated test to create windows, interact with widgets, etc.

Source: Adapted from Zeller 2006, chapter 3

7

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Dealing with Circular Dependencies

Core

+print_to_file()

UserPresentation

+confirm_loss()

void print_to_file(string filename)
{
 if (path_exists(filename)) {
 // FILENAME exists; ask user to confirm overwrite
 bool confirmed = confirm_loss(filename);
 if (!confirmed)
 return;
 }
 // Proceed printing to FILENAME...
}

Source: Adapted from Zeller 2006, chapter 3

invokes

invokes

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Revised Dependency

Core

+print_to_file()

Presentation

+confirm_loss()

UserPresentation

+confirm_loss()

AutoPresentation

+confirm_loss()

ask user return true;

Source: Adapted from Zeller 2006, chapter 3

8

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

How to Test Object Oriented Code?
Encapsulation

If the object hides it’s internal state, how do we test it?
Could add methods that expose internal state, only to be used in testing
But: how do we know these extra methods are correct?

Inheritance
When a subclass extends a well-tested class, what extra testing is needed?
e.g. Test just the overridden methods?
But with dynamic binding, this is not sufficient
e.g. other methods can change behaviour because they call over-ridden methods

Polymorphism
When class A calls class B, it might actually be interacting with any of B’s

subclasses…

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Inheritance Coverage
Source: Adapted from IPL 1999

9

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Consider this program…

Base

+foo()
+bar()
-helper()

Derived

-helper()

class Base {
 public void foo() {
 … helper(); …
 }
 public void bar() {
 … helper(); …
 }
 private helper() {…}
}

class Derived extends Base {
 private helper() {…}
}

Source: Adapted from IPL 1999

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

Test Cases
public void testFoo() {
 Base b = new Base();
 b.foo();
}
public void testBar() {
 Derived d = new Derived();
 d.bar();
}

Base

+foo() -- Exercised in testFoo
+bar() -- Untested!
-helper() -- Exercised in testFoo

Derived

{+foo()} -- Untested!
{+bar()} -- Exercised in testBar
-helper() -- Exercised in testBar inherited methods

Source: Adapted from IPL 1999

10

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

Extend the test suite

Base

+foo() -- Exercised in testBaseFoo
+bar() -- Exercised in testBaseBar
-helper() -- Exercised in tBF and tBB

Derived

{+foo()} -- Exercised in testDerivedFoo
{+bar()} -- Exercised in testDerivedBar
-helper() -- Exercised in tDF & tDB

public void testBaseFoo() {
 Base b = new Base();
 b.foo();
}
public void testBaseBar() {
 Base b = new Base();
 b.bar();
}
public void testDerivedFoo() {
 Base d = new Derived();
 d.foo();
}
public void testDerivedBar() {
 Derived d = new Derived();
 d.bar();
}

Source: Adapted from IPL 1999

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 20

Subclassing the Test Cases

Base

Base methods

DerivedA

inherited methods
new methods

DerivedB

inherited methods
new methods

testBase

Test Base methods

testDerivedA

re-test inherited methods
test new methods

testDerivedB

re-test inherited methods
test new methods

Source: Adapted from IPL 1999

11

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 21

When to stop testing?

Time (e.g. days)

de

fe
ct

s
fo

un
d

Typical testing results The bad news

Number of defects found to date

Pr
ob

ab
ilit

y
of

 m
or

e
de

fe
ct

s

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 22

When to stop testing?
Motorola’s Zero-failure testing model

Predicts how much more testing is needed to establish a given reliability goal
basic model:

failures = ae-b(t)

Reliability estimation process
Inputs needed:

fd = target failure density (e.g. 0.03 failures per 1000 LOC)
tf = total test failures observed so far
th = total testing hours up to the last failure

Calculate number of further test hours needed using:
ln(fd/(0.5 + fd)) x th
ln((0.5 + fd)/(tf + fd))

Result gives the number of further failure free hours of testing needed to
establish the desired failure density

if a failure is detected in this time, you stop the clock and recalculate
Note: this model ignores operational profiles!

empirical constants

testing time

Source: Adapted from Pfleeger 1998, p359

test time

fa
ilu

re
s

12

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 23

Fault Seeding
Seed N faults into the software

Start testing, and see how many seeded faults you find
Hypothesis:

Use this to estimate test efficiency
Estimate # remaining faults

Alternatively
Get two teams to test independently
Estimate each team’s test efficiency by:

Detected seeded faults

Total seeded faults

Detected nonseeded faults

Total nonseeded faults
=

Efficiency(team1) =
faults found by team 1

Total number of faults

unknown

Faults found by both teams

Total # faults found by team 2
=

