
CSC302 Engineering Large Software Systems page 1/6

Faculty of Arts and Science
University of Toronto

Midterm Test

Department: Computer Science
Instructor: Steve Easterbrook
Date and Time: 1:10pm, Monday 27th Oct, 2008

 Conditions: Closed Book
 Duration: 50 minutes

 This test counts for 20% of your final grade

Name: ___

(Please underline last name)

Student Number: ___

Question Marks

1 ______________/20

2 ______________/20

3 ______________/20

Total___________/60 = _________%

CSC302 Engineering Large Software Systems page 2/6

1. [Short Questions; 20 marks total]
(a) [Modeling – 5 marks] What are the advantages and disadvantages of using a modeling language,
such as UML, during software development?

[Many possible answers; give credit for each reasonable advantage and
disadvantage given; must have both advantages and disadvantages for full marks]

E.g: Advantages:
• Gives you a map of the program code, allowing you to get an overview and find

your way around, especially if you are less familiar with the code.
• Allows you to build abstractions, ignoring detail, to concentrate on particular

design decisions
• Allows you to document and/or communicate interesting aspects of the design
Disadvantages:
• Keeping the models consistent with the code can take a great deal of effort;
• Might end up having to do everything twice – in the model and then in the code;
• Modeling languages tend to have ambiguous semantics – might not be understood

in the same way by everyone.

(b) [Risk Management – 5 marks] You are developing flight control software for a spacecraft. Your
project team has come up with a long list of things that could go wrong. How would you decide which of
these risks are important?

To decide importance, need to have a way of measuring risk. There are two common
ways of doing this:
One is to quantify the probability (p) of occurrence and the cost (c) of the loss for
each risk, and calculate the risk exposure as RE = p x c. Can then compute this for
each risk, and use this to put them in order.
The other approach is to use a qualitative matrix, where probability and loss are
evaluated on a small number of levels (e.g 3-5 levels for each). Cells in the matrix
that have high probability and/or high loss are treated as critical risks to be
managed:

Likelihood of Occurrence
Very likely Possible Unlikely

(5) Loss of Life Catastrophic Catastrophic Severe
(4) Loss of Spacecraft Catastrophic Severe Severe
(3) Loss of Mission Severe Severe High
(2) Degraded Mission High Moderate Low

U
nd

es
ir
ab

le

ou
tc

om
e

(1) Inconvenience Moderate Low Low

CSC302 Engineering Large Software Systems page 3/6

(c) [Agile Planning – 5 marks] Does agile planning make it more likely or less likely to deliver
software on schedule? Explain the reasoning behind your answer.

[Note: could argue it either way! Award points for good argument, and inclusion of
the main features of agile planning]

(a) agile planning makes it more likely to deliver on schedule because it
concentrates on small increments and dynamic adjustment of the plan, hence more
able to adjust the plan to meet customer’s needs and expectations. Estimates for
small coding tasks are much more likely to be accurate, and much easier to keep
track of. Hence managers have more insight into what is actually happening in the
project, and are better able to adjust the plan to fit reality.

(b) agile planning makes it less likely to deliver on schedule because it doesn’t look
at the big picture, but just focuses on immediate tasks for the upcoming release.
This allows the project to ensure something is ready by a fixed release date, but it
probably won’t be what the users/customers were expecting. Hence
customers/users can never be sure when they’ll get all the features they are
requesting.

(d) [Software Architecture – 5 marks] Layered architectures are designed to reduce coupling
between components of a software system. Why is this reduced coupling useful? Describe a typical
layered architecture, and explain the role of each of the layers.

Reduced coupling is good because it separates the functions that might need to be
changed at different times. This is good for:
• Modifiability – changes can be made at one layer without affecting others
• Reusability – layers can be reused in similar systems
• Understandability – easier to understand how the software works
[Must have at least two advantages for full marks]

A typical 3-layered architecture has:
• Presentation layer, responsible for the user interface – e.g. to accept input

from the user, display results, and manage the appearance of the interface;
• Business Logic layer for the basic functions provided by the system. Includes all

the entity classes, and control classes needed to implement the use cases;
• Data storage layer, responsible for persistent storage of the information users

in the system. Usually includes a database component.
[Notes: other possible answers: 2-layers (essentially client-server); 4-layers model splits
business logic layer into application layer (responsible for controlling the use cases) and
domain entity layer (for basic functions shared by different applications).]

CSC302 Engineering Large Software Systems page 4/6

2. [Domain Models – 20 marks] The following domain model captures some basic
information about a kids’ hockey league. In answering the following questions, state any assumptions that
you make.

a) How many games will a captain play in? [2 marks]

According to the model, a team plays exactly 16 games. Each captain can only play
in one team, and each team has exactly one captain, so a captain must play 16 games

b) What is the maximum number of games that any given coach can be involved in? [3 marks]
In principle, one coach could lead up to 6 teams (the max number of the teams in
the league), so could be involved in all (16 x 6)/2 = 48 games.
[Note: nothing in the model stops a coach working in more than one league, so an equally valid answer
is that the number is unlimited]

c) In the model, the relationship between player and team is shown as an aggregation, while that between
captain and team is shown as a composition. Is this a good choice? Why? [5 marks]

A composition is a stronger form of aggregation, implying that the contained class
has no independent existence from the container class. In this case, it makes sense
for the captain relation, as a player is only a captain while the team exists. If a
team is disbanded, the captain is no longer a captain. If a new team is created, a
captain needs to be appointed. In an implementation, it would be reasonable to
include code in the constructor and destructor methods for the “team” class to
assign/de-assign a captain. For player, the relationship is weaker – players are not
created/destroyed when a team is created/disbanded.
[On the other hand, you could argue that the aggregation relation between player and team is
meaningless, and a regular association would have done just as well]

CSC302 Engineering Large Software Systems page 5/6

d) The league actually has two types of game: regular season games and playoffs. Each team plays 4
regular season games against each of the other teams. Every team also gets to play in the playoffs, which
are conducted as a knockout – a team is out of the playoffs when it loses a playoff game. How would you
modify the model to capture this additional information? [5 marks]

The simplest way to do this is to subclass the game class, and move the association
from team to each of the two game subclasses:

Note: multiplicities for the new associations depend on these assumptions: if there are
4..6 teams in the league, and each team plays 4 regular season games against each of 3..5
other teams, that yields 12..20 regular season games. A knockout competition for the
playoff games can go to a max of three rounds with if there are at most 6 teams

e) The league is being expanded to include five different age groups. Players are placed into teams based
on their year of birth, and teams only play other teams from the same age group. How would you modify
the model to capture this additional information? [5 marks]

CSC302 Engineering Large Software Systems page 6/6

3. [Sequence Diagrams – 20 marks]. The hockey league described in the previous
question is planning to write a program to keep track of information during the hockey season, with the
domain model (from the previous question) as an initial design for a set of Java classes. So far, two use
cases have been identified: (a) registering a new coach who wants to coach a particular team, and (b)
recording the result of a game (which includes updating the teams’ records). Use sequence diagrams to
sketch an initial design for each of these two use cases, showing which class will be responsible for the
various functions, and how these classes will communicate via method calls. State any assumptions you
make, including any changes you think are necessary to the class model.

(a) assume there is a UI class that handles requests from the user. Assume that
the user has to authenticate at the beginning of the use case. Note: the parameter
used in the assigncoach method call is the coach object just created.

(b) assume the game object has already been created. Assume the game object is
responsible for updating the two team’s records when its score is updated. Assume
a score (presumably two integers) is handled as a single object that somehow
indicates which team is which.

