
1

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 7:
Software Processes

 What is a Software Development Process
 The Lifecycle of a Software Project
 Agile vs. Disciplined
 Some common approaches:

 RUP, SCRUM, XP, ICONIX,…

 Where UML fits in

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Project Types
Reasons for initiating a software development project

Problem-driven: competition, crisis,…
Change-driven: new needs, growth, change in business or environment,…
Opportunity-driven: exploit a new technology,…
Legacy-driven: part of a previous plan, unfinished work, …

Relationship with Customer(s):
Customer-specific - one customer with specific problem

May be another company, with contractual arrangement
May be a division within the same company

Market-based - system to be sold to a general market
In some cases the product must generate customers
Marketing team may act as substitute customer

Community-based - intended as a general benefit to some community
E.g. open source tools, tools for scientific research
funder ≠ customer (if funder has no stake in the outcome)

Hybrid (a mix of the above)



2

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Project Context
Existing System

There is nearly always an existing system
May just be a set of ad hoc workarounds for the problem

Studying it is important:
If we want to avoid the weaknesses of the old system…
…while preserving what the stakeholders like about it

Pre-Existing Components
Benefits:

Can dramatically reduce development cost
Easier to decompose the problem if some subproblems are already solved

Tension:
Solving the real problem vs. solving a known problem (with ready solution)

Product Families
Vertical families: e.g. ‘basic’, ‘deluxe’ and ‘pro’ versions of a system
Horizontal families: similar systems used in related domains

Need to define a common architecture that supports anticipated variability

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Lifecycle of an Engineering Project
Lifecycle models

Useful for comparing projects in general terms
Not enough detail for project planning

Examples:
Sequential models: Waterfall, V model
Phased Models: Incremental, Evolutionary
Iterative Models: Spiral

Process Models
Used for capturing and improving the development process
Detailed guidance on steps and products of each step

Process Frameworks
Patterns and principles for designing a specific process for your project



3

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Waterfall Model

requirements

design

code

integrate

test

perceived
 need View of development:

a process of stepwise refinement
largely a high level management view

Problems:
Static view of requirements - ignores
volatility
Lack of user involvement once
specification is written
Unrealistic separation of
specification from design
Doesn’t accommodate prototyping,
reuse, etc.

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

V-Model

system
requirements

software
requirements

preliminary
design

detailed
design

code and
debug

unit
test

component
test

software
integration

acceptance
test

system
integration

“analyse
and

design”

“test
and

integrate”

time

Le
ve

l 
of

 a
bs

tr
ac

ti
on



4

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Prototyping lifecycle

Specify full
requirements

design code test integrate

Preliminary

requirements

design

prototype

build

prototype

evaluate

prototype

Prototyping is used for:
understanding the requirements for the user interface
examining feasibility of a proposed design approach
exploring system performance issues

Problems:
users treat the prototype as the solution
a prototype is only a partial specification

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

design code test integrate O&Mreqts

Phased Lifecycle Models
Requirem

ents

design code test integrate O&M

Source: Adapted from Dorfman, 1997, p10

design code test integrate O&M

design code test integrate O&M

design code test integrate O&M

design code test integrate O&Mreqts

design code test integratereqts

version 1

version 2

version 3

Release 1

release 2

release 3

release 4

lessons learnt

lessons learnt

Incremental development
(each release adds more

functionality)

Evolutionary development
(each version incorporates

new requirements)



5

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

The Spiral Model
Determine goals,

alternatives,
constraints

Evaluate
alternatives

and risks

Plan
Develop

and
test

budget1budget2budget3budget4 prototype1 prototype2 prototype3 prototype4

alt
er

na
tiv

es
4

alt
er

na
tiv

es
3

Al
te

rn
-

at
ive

s 2

constraints4

constraints3

Constr-

aints2

alte
rna

tive
s

con
str

aint
s

risk analysis4
risk analysis3

riskanalysis2riskanalysis1

concept of
operation

so
ft

wa
re

re
qu

ire
men

ts

validated

requirements

so
ft

wa
re

de
sig

n

validated,

verified design

de
ta

ile
d

de
si

gn

co
de

uni
t

test

system
test

acceptance
test

requirements,lifecycle plandevelopment plan
integration and test plan

implementation plan

Source: Adapted from Pfleeger, 1998, p57

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

“Agile” vs “Disciplined”
Iterative
Small increments
Adaptive planning
Embrace change
Innovation and exploration
Trendy
Highly fluid
Feedback driven
Individuals and Interactions
Human communication
Small teams

Planned
Analysis before design
Prescriptive planning
Control change
High ceremony
Traditional
Upfront design / architecture
Negotiated requirements
Processes and Tools
Documentation
Large teams



6

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Rational Unified Process (RUP)
Inception

Establish Scope
Build a business case
Get stakeholder buy-in

Elaboration
Identify and manage risks
Build an executable architecture
Focus only on high risk items

Construction
Iteratively build operational version
Develop support docs and training materials

Transition
Fine-tune
Resolve configuration, installation and usability issues

Inception

Elaboration

Construction

Transition

“Iteration 0”

Iteration #1

Iteration #2

Iteration #n

Iteration #n+1

Iteration #m

Iteration #t

Iteration #t+1

…

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

RUP Activities



7

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

SCRUM
Sprint - 30 day iteration

Starts with 1/2 day planning meeting
Starts with Prioritized Product Backlog (from product owner)
Builds a Sprint Backlog - items to be done in this sprint
29 days of development
1/2 day Sprint review meeting - inspect product, capture lessons learnt

Daily Scrum
15 minute team meeting each day.
Each team member answers:

What have you done since last meeting?
What will you do between now and the next meeting?
What obstacles stood in the way of doing work?

Scrum master keeps meeting on track

Scrum teams
Cross-functional, 7 (±2) members
Teams are self-organising

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Extreme Programming
Fine Scale Feedback

Pair Programming
Planning Game
Test-driven Development
Whole team (customer part of team)

Continuous Process
Continuous Integration
Design Improvement (refactoring)
Small Releases

Shared Understanding
Coding Standards
Collective Code Ownership
Simple Design
System Metaphor

Programmer Welfare
Sustainable pace (40 hour week)



8

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Extreme Programming

Planning
game

Collect
User stories

Write test
casescode

integrate

test

Release
Each cycle:

approx 2 weeks

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

Where UML fits in
Analysing Requirements

Use cases - functionality from users’ perspective
Class diagrams - key domain concepts & terminology
Activity diagrams - workflow of the organisation
State diagrams - for domain objects with interesting lifecycles

Design
Class diagrams - Map of the software structure
Sequence diagrams - explain common scenarios
Package diagrams - show the overall architecture
State diagrams - for object with complex lifecycles
Deployment diagrams - physical layout of the software

Documentation
Any sketches that explain key design decisions
E.g. patterns used, conceptual architecture, unused design alternatives (!)

Understanding Legacy Code
Any sketches that drill down into key parts



9

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

UML model types

Package Diagrams
Overall architecture
Dependencies
between components

Class Diagrams
information structure
relationships between
data items
modular structure for
the system

Statecharts
responses to events
dynamic behavior
event ordering,
reachability,
deadlock, etc

Activity diagrams
business processes
concurrency and
synchronization
dependencies
between tasks

Sequence Diagrams
individual scenario
interactions between
users and system
Sequence of
messages

Use Cases
user’s view
Lists functions
visual overview of the
main requirements

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

ICONIX process



10

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

Good Advice (from RUP)
Adapt the Process

Rightsize your process
Continuously reevaluate what you do

Balance Stakeholder Priorities
Understand the problem domain
Describe requirements from the user’s
perspective
Prioritize requirements for
implementation
Leverage legacy systems

Collaborate across Teams
Build high-performance teams
Organise around the architecture
Manage versions

Demonstrate Value Iteratively
Manage risk
Do the project in iterations
Embrace and manage change
Measure progress objectively

Elevate the level of abstraction
Use patterns
Architect with components and services
Actively promote reuse
Model key perspectives

Focus continuously on quality
Test your Own Code
Use test automation where appropriate
Everyone owns the product


