
1

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 3:
Class Diagrams

 Advanced Class Diagrams
 Uses of UML
 Relationship between UML and program code

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Capturing the Structure of the Design
Division of Responsibility

Operations that objects are responsible for providing

Subclassing
Inheritance, generalization

Navigability / Visibility
When objects need to know about other objects to call their operations

Aggregation / Composition
When objects are part of other objects

Dependencies
When changing the design of a class will affect other classes

Interfaces
Used to reduce coupling between objects

2

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Uses of UML
As a sketch

Very selective - informal and dynamic
Forward engineering: describe some concept you need to implement
Reverse engineering: explain how some part of the program works

As a blueprint
Emphasis on completeness
Forward engineering: model as a detailed spec for the programmer
Reverse engineering: model as a code browser
Roundtrip: tools provide both forward and reverse engineering to move back and

forth between program and code

As a Programming language
UML models are automatically compiled into working code
Requires sophisticated tools
“tripless”

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Anatomy of a class

 Student

+ name: string [1] = “Anon” {readOnly}
+ registeredIn: Course [*]

+ register (c: Course)
+ isRegistered (c: Course) : Boolean

Name of the class

Visibility:
+, -, #, …

Attribute
name

Operation
name Parameters

Return value

Attribute
type

Multiplicity

Default value

Other Properties

3

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Subclassing (refresher)
Note: Used for generalization, not instantiation
All attributes, operations and associations are inherited

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Navigability / Visibility

 Order

+ dateReceived: Date [0..1]
+ isPrepaid: Boolean [1]
+ lineItems: OrderLine [*] {ordered}

OrderDate Boolean

OrderLine

+isPrepaid+dateReceived

+lineItems {ordered}

1

*

0..1 *

1

4

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Bidirectional Associations

Person Car*0..1

 Person

+ carsOwned: Car [*]
 Car

+ Owner: Person [0..1]

Hard to implement correctly!

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Aggregation / Composition (Refresher)

3..*

centre{ordered}

1

*

composition

aggregation

MemberClub

Polygon CirclePoint

*

Note: No sharing - a point can be part of
a polygon or a circle, but not both

What does
this mean??

5

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

View ViewController

Model

Layout

Dependencies

Example Dependency types:
<<call>>
<<use>>
<<create>>
<<derive>>
<<instantiate>>
<<permit>>
<<realize>>
<<refine>>
<<substitute>>
<<parameter>>

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Interfaces

 Order

LineItems [*]
 ArrayList

 Order

LineItems [*]

 <<interface>>
 List

get

 <<interface>>
 Collection

equals
add

 ArrayList

get
add

<<requires>> <<implements>>

List

Collection

6

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Annotations
Comments

-- can be used to add comments within a class description

Notes

Constraint Rules
Any further constraints {in curly braces}
e.g. {time limit: length must not be more than three months}

{length = start - end}
 Date Range

Start: Date
End: Date
/length: integer

