
1

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 2:
Introduction to Modeling

 Why Build Models?
 What types of Models to build
 Intro to UML
 Class Diagrams
 Reverse Engineering…

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Getting started
 You’ve just joined an ongoing project

 Where do you start?
 (oh, BTW, the project doesn’t really have any documentation)

 Reverse Engineering:
 Recover design information from the code
 Create higher level views to improve understanding

 E.g. Structure of the code
 Code Dependencies
 Components and couplings

 E.g. Behaviour of the code
 Execution traces
 State machines models of complex objects

 E.g. Function of the code
 What functions does it provide to the user?



2

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Why build models?
 Modelling can guide your exploration:

 It can help you figure out what questions to ask
 It can help to reveal key design decisions

 Modelling can help to uncover problems
 Inconsistency in the models can reveal interesting things…

 e.g. conflicting or infeasible requirements
 e.g. confusion over terminology, scope, etc
 e.g. disagreements between stakeholders

 Modelling can help us check our understanding
 Reason over the model to understand its consequences

 Does it have the properties we expect?
 Animate the model to help us visualize/validate the requirements

 Modelling can help us communicate
 Provides useful abstracts that focus on the point you want to make
 …without overwhelming people with detail

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Dealing with problem complexity
 Abstraction

 Ignore detail to see the big picture
 Treat objects as the same by ignoring certain differences
 (beware: every abstraction involves choice over what is important)

 Decomposition
 Partition a problem into independent pieces, to study separately
 (beware: the parts are rarely independent really)

 Projection
 Separate different concerns (views) and describe them separately
 Different from decomposition as it does not partition the problem space
 (beware: different views will be inconsistent most of the time)

 Modularization
 Choose structures that are stable over time, to localize change
 (beware: any structure will make some changes easier and others harder)



3

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

the Unified Modelling Language (UML)
 Third generation OO method

 Booch, Rumbaugh & Jacobson are principal authors
 Still evolving (currently version 2.0)
 Attempt to standardize the proliferation of OO variants

 Is purely a notation
 No modelling method associated with it!
 Was intended as a design notation

 Has become an industry standard
 But is primarily promoted by IBM/Rational (who sell lots of UML tools, services)

 Has a standardized meta-model
 Use case diagrams
 Class diagrams
 Message sequence charts
 Activity diagrams
 State Diagrams
 Module Diagrams
 Platform diagrams
 …

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

UML views

Class Diagrams
information structure;
relationships between
data items;
modular structure for
the system;

Statecharts
responses to events;
dynamic behavior;
event ordering,
reachability,
deadlock, etc.

Activity diagrams
business processes;
concurrency and
synchronization;
dependencies
between tasks;

Sequence Diagrams
individual scenario;
interactions between
users and system;
Sequencing of
messages;

Use Cases
user’s view;
Lists functions;
visual overview of the
main requirements;



4

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Intro: Object Classes in UML

:patient
Name
Date of Birth
physician
history

:in-patient
Room
Bed
Treatments
food prefs

:out-patient
Last visit
next visit
prescriptions

:patient
Name
Date of Birth
physician
history

:heart
Natural/artif.
Orig/implant
normal bpm

:eyes
Natural/artif.
Vision
colour

:kidney
Natural/artif.
Orig/implant
number

Source: Adapted from Davis, 1990, p67-68

1

0..1

0..21..2

0..1 0..1

Generalization 
(an abstraction hierarchy)

Aggregation
(a partitioning hierarchy)

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

:patient
Name
Date of Birth
Height
Weight

:In-patient
Room
Bed
Physician

:Out-patient
Last visit
next visit
physician

:heart
Normal bpm
Blood type

:eye
Colour
Diameter
Correction

:kidney
Operational?

generalization

aggregationClass name

attributes

services 0..1

1

1..2

0..1

0..2

0..1
multiplicities

:organ
Natural/artif.
Orig/implant
donor



5

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

What are classes?
 A class describes a group of objects with

 similar properties (attributes),
 common behaviour (operations),
 common relationships to other objects,
 and common meaning (“semantics”).

 Examples
 employee: has a name, employee# and department; an employee is hired, and fired; an

employee works in one or more projects

:employee
name
employee#
department
hire()
fire()
assignproject()

Name (mandatory)Attributes
 (optional)

Operations
 (optional)

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Fred_Bloggs:Employee

name: Fred Bloggs
Employee #: 234609234
Department: Marketing

Objects vs. Classes
 The instances of a class are called objects.

 Objects are represented as:

 Two different objects may have identical attribute values (like two people with
identical name and address)

 Objects have associations with other objects
 E.g. Fred_Bloggs:employee is associated with the KillerApp:project object
 But we will capture these relationships at the class level (why?)
 Note: Make sure attributes are associated with the right class

 E.g. you don’t want both managerName and manager# as attributes of Project!
(…Why??)



6

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Generalization

 Notes:
 Subclasses inherit attributes, associations, & operations from the superclass
 A subclass may override an inherited aspect

 e.g. AdminStaff & CreativeStaff have different methods for calculating bonuses
 Superclasses may be declared {abstract}, meaning they have no instances

 Implies that the subclasses cover all possibilities
 e.g. there are no other staff than AdminStaff and CreativeStaff

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Aggregation and Composition
 Aggregation

 This is the “Has-a” or “Whole/part” relationship

 Composition
 Strong form of aggregation that implies ownership:

 if the whole is removed from the model, so is the part.
 the whole is responsible for the disposition of its parts

:Engine

:Person

:Car :Train
1

0..1 0..1

1..*

passengersdriver 1

1

0..1

0..*

composition

aggregation

:Locomotive



7

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Associations
 Objects do not exist in isolation from one another

 A relationship represents a connection among things.
 In UML, there are different types of relationships:

 Association
 Aggregation and Composition
 Generalization
 Dependency
 Realization

 Class diagrams show classes and their relationships

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Association Multiplicity
 Ask questions about the associations:

 Can a campaign exist without a member of staff to manage it?
 If yes, then the association is optional at the Staff end - zero or more (0..*)
 If no, then it is not optional - one or more (1..*)
 If it must be managed by one and only one member of staff - exactly one (1)

 What about the other end of the association?
 Does every member of staff have to manage exactly one campaign?
 No. So the correct multiplicity is zero or more.

 Some examples of specifying multiplicity:
 Optional (0 or 1) 0..1
 Exactly one 1 = 1..1
 Zero or more 0..* = *
 One or more 1..*
 A range of values 2..6



8

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Class associations

:StaffMember
staffName
staff#
staffStartDate

:Client
companyAddress
companyEmail
companyFax
companyName
companyTelephone

1 0..*liaises with
contact
person

ClientList

Name 
of the

association

Multiplicity
A staff member has 

zero or more clients on
His/her clientList

Multiplicity
A client has 

exactly one staffmember
as a contact person

Direction
The “liaises with”

association should be
read in this direction

Role
The clients’ role

in this association
is as a clientList

Role
The staffmember’s

role in this association
is as a contact person

University of Toronto Department of Computer Science

© 2004-5 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

More Examples


