
1

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 22:
Software Quality

Understanding Quality
Importance of Process Quality

tools for improving process quality

Software Quality Attributes

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Challenge Problem
Context

You built some software
You tested it
You shipped it

But:
Is it any good?
How would you know?
Can you do a better job next time?

2

3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license.

“Quality is value to some person”

“Quality is fitness to purpose”

“Quality is exceeding the customer’s
expectations”

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

4 Views of Quality

Quality in Use
(What’s the end-user’s experience?)

External Quality Attributes
(Does it pass all the tests?)

Internal Quality Attributes
(Is it well-designed?)

Process Quality
(Is it assembled correctly?)

3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Importance of Process Quality
Cannot test-in software quality

testing or inspection cannot improve the quality of a software product
(by that stage it is too late)

Defect removal
Two ways to remove defects:

fix the defects in each product (i.e patch the product)
fix the process that leads to defects (i.e. prevent them occurring)

The latter is cost effective as it affects all subsequent projects

Defect prevention (from Humphrey)
Programmers must evaluate their own errors
feedback is essential for defect prevention
there is no single cure-all for defects (must eliminate causes one by one)
process improvement must be an integral part of the process
process improvement takes time to learn

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Managing Quality (Background)
Industrial Engineering

Product Inspection (1920s)
examine intermediate and final products to detect defects

Process Control (1960s)
monitor defect rates to identify defective process elements & control the process

Design Improvement (1980s)
engineering the process and the product to minimize the potential for defects

Deming and TQM
Use statistical methods to analyze industrial production processes
Identify causes of defects and eliminate them
Basic principles are counter-intuitive:

in the event of a defect (sample product out of bounds)…
…don’t adjust the controller or you’ll make things worse.
Instead, analyze the process and improve it

Adapted to Software
No variability among individual product instances
All defects are design errors (no manufacturing errors)
Process improvement principles still apply (to the design process!)

Source: Adapted from Blum, 1992, p473-479. See also van Vliet, 1999, sections 6.3 and 6.6

4

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Six Sigma

Key ideas:
Use statistics to measure defects
Design the process to reduce defects

Origin of the term
99.999999% of all items are with ±6σ of the mean on a normal curve
So a target of 6σ mean no more than 1 defective part per million
In practice, must allow for ±1.5σ drift in the mean
So we really only get ±4.5σ = 3.4 defective parts per million

For complex devices
100 parts: probability of a defective device is 0.0013
10,000 parts: probability of a defective device is 0.04 (I.e. 96% are okay….)
⇒Design things to have fewer components
⇒Control the manufacturing variability of the components

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Counterpoint: 6 Sigma for Software?
Software processes are fuzzy

Depend on human behaviour, not predictable

Software Characteristics are not ordinal
Cannot measure degree of conformance for software
Mapping between software faults and failures is many-to-many
Not all software anomalies are faults
Not all failure result from the software itself
Cannot accurately measure the number of faults in software

Typical defect rates
NASA Space shuttle: 0.1 failures/KLOC (but it cost $1000 per line)
Best military systems: 5 faults/KLOC
Worst military systems: 55 faults/KLOC
Six Sigma would demand 0.0034 faults/KLOC

5

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Ishikawa (Fishbone) Diagram

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Pareto Chart

Root Causes

Measure frequency
of each cause

“20% of the problem cause
80% of the defects”

Plot causes in order of frequency

Plot percentage contributions

Identify the top causes

6

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Capability Maturity Model

Level Characteristic Key Challenges

5. Optimizing
Improvement fed back

into process

Identify process indicators

“Empower” individuals

4. Managed
(Quantitative)

measured process

Automatic collection of process data

Use process data to analyze and

modify the process

3. Defined
(Qualitative)

process defined and

institutionalized

Process measurement

Process analysis

Quantitative Quality Plans

2. Repeatable
(Intuitive)

process dependent on

individuals

Establish a process group

Identify a process architecture

Introduce SE methods and tools

1. Initial
Ad hoc / Chaotic

No cost estimation,

planning, management.

Project Management

Project Planning

Configuration Mgmnt, Change Control

Software Quality Assurance

Source: Adapted from Humphrey, 1989, chapter 1. See also van Vliet, 1999, section 6.6.

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Four Key Quality Concepts
Reliability

designer must be able to predict how the system will behave:
completeness - does it do everything it is supposed to do? (e.g. handle all possible

inputs)
consistency - does it always behave as expected? (e.g. repeatability)
robustness - does it behave well under abnormal conditions? (e.g. resource failure)

Efficiency
Use of resources such as processor time, memory, network bandwidth

This is less important than reliability in most cases

Maintainability
How easy will it be to modify in the future?

perfective, adaptive, corrective

Usability
How easy is it to use?

Source: Budgen, 1994, pp65-7

7

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Measuring Quality
We have to turn our vague ideas about quality into

measurables

The Quality Concepts
(abstract notions of
quality properties)

Measurable Quantities
(define some metrics)

Counts taken from
Design Representations

(realization of the metrics)

usability

minutes
taken for
some user
task???

time taken
to learn

how to use?

maintainability

count
procedure
calls???

information
flow between

modules?

reliability

run it and
count crashes
per hour???

mean time
to failure?

examples...

Source: Budgen, 1994, pp60-1

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Boehm’s NFR list

General
utility

portability

As-is utility

Maintainability

reliability

efficiency

usability

testability

understandability

modifiability

device-independence

self-containedness

accuracy

completeness

robustness/integrity

consistency

accountability

device efficiency

accessibility

communicativeness

self-descriptiveness

structuredness

conciseness

legibility

augmentability

Source: See Blum, 1992, p176

8

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

McCall’s NFR list

Product operation

usability

Product revision

Product transition

integrity

maintainability

testability

reusability

portability

interoperability

operability
training

I/O volume

Access control
Access audit
Storage efficiency

consistency

instrumentation
expandability
generality
Self-descriptiveness
modularity
machine independence
s/w system independence
comms. commonality

efficiency

correctness

reliability

flexibility

communicatativeness

I/O rate

execution efficiency

Source: See van Vliet 2000, pp111-3

traceability
completeness
accuracy
error tolerance

simplicity
conciseness

data commonality

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

ISO/IEC 9126

Functionality
Suitability

Reliability

Usability

Accuracy

Fault Tolerance

Recoverability

Learnability

Operability

Attractiveness

Interoperability

Security

Maturity

Understandability

Source: See Spinellis 2006, pp5-6

Efficiency

Maintainability

Portability

Time behaviour

Resource Utilization

Analyzability

Changeability

Stability

Testability

Adaptability

Installability

Co-existance

Replaceability

9

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 17

Conflicts between Quality factors

Maturity

Testability

Fault Tolerance

Accuracy

Efficiency

Maintainability Functionality

Portability

Reliability Usability

Security

Stability

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 18

More abstractly…

Resource Utilization
(“Space”)

Quality

Cost Schedule

Time behaviour
(“Time”)

“Better, Faster, Cheaper - pick any two”

10

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 19

Measurable Predictors of Quality
Simplicity

the design meets its objectives and has no extra embellishments
can be measured by looking for its converse, complexity:

control flow complexity (number of paths through the program)
information flow complexity (number of data items shared)
name space complexity (number of different identifiers and operators)

Modularity
different concerns within the design have been separated
can be measured by looking at:

cohesion (how well components of a module go together)
coupling (how much different modules have to communicate)

Source: Budgen, 1994, pp68-74

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 20

Wasserman’s Steps to Maturity
Abstraction

Allows you to focus on the essence of a
problem

Analysis and Design methods
and notations

A shared language for expressing ideas
about software

User Interface Prototyping
Understand the user and evaluate the
user’s experience

Software Architecture
Identify architectural styles and patterns

Software Process
Identify appropriate processes and
assess their effectiveness

Reuse
Systematic ways to reuse past
experience and products

Measurement
Better metrics to understand and manage
software development

Tools and Integrated
Environments

Automate mundane tasks, keep track of
what we have done

