
1

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 21:
Static Analysis Tools

Where static analysis tools fit
Example tools
Limitations of static analysis

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Static Analysis
Analyzes the program without running it

Doesn’t need any test cases
Doesn’t know what the program is supposed to do
Looks for violations of good programming practice
Looks for particular types of programming error

Where it fits as a verification technique:
1) Avoid dumb mistakes

Pair Programming
Code Inspection
Developer unit testing (“test case first” strategy)

2) Find the dumb mistakes you failed to avoid
Style Checkers
Static Analysis

3) Make sure the software does what it is supposed to
Black box and system testing
Independent testing

(Note: Also need validation techniques!)

2

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

How Static Analysis Works
void print_to_file(string filename)
{
 if (path_exists(filename)) {
 // FILENAME exists; ask user to confirm overwrite
 bool confirmed = confirm_loss(filename);
 if (!confirmed)
 return;
 }
 // Proceed printing to FILENAME...
}

Correctness
Property

PManual Inspection?
(impractical or impossible)

Automatically
construct
models for
analysis

Class structure
and inheritance

State Machine
Model

Dataflow
graph

Automatic check
of derived model

Model
Property

P’

Implies

“…should have…”

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Example tools
FindBugs

Originally a research project at U Maryland
Has large number of bug patterns
http://findbugs.sourceforge.net/

JLint
Developed by Konstantin Knizhnik, updated by Cyrille Artho
http://jlint.sourceforge.net/

PMD (“Programming Mistake Detector”??)
written by Tom Copeland
focuses on inefficient code, e.g. over-complex expressions
http://pmd.sourceforge.net/

ESC/Java (Extended Static Checker for Java)
Originally developed at Compaq Research
ESC/Java2 is open source, managed at U College Dublin
http://kind.ucd.ie/products/opensource/ESCJava2/

3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Different tools find different bugs
import java.io.*;
public class foo{
 private byte[] b;
 private int length;
 Foo(){ length = 40;
 b = new byte[length]; }
 public void bar(){
 int y;
 try {
 FileInputStream x =
 new FileInputStream("Z");
 x.read(b,0,length);
 c.close();}
 catch(Exception e){
 System.out.println("Oopsie");}
 for(int i = 1; i <= length; i++){
 if (Integer.toString(50) ==
 Byte.toString(b[i]))
 System.out.print(b[i] + " ");
 }
 }
}

variable never used
(detect by PMD)

Method result
 is ignored

(detected by
FindBugs)

Don’t use ‘==’
to compare strings

(detected by
FindBugs and

JLint)

May fail to close
stream on
exception

(detected by
FindBugs)

Array index
possibly
too large

(detected by
ESC/Java)

Possible null
dereference
(detected by
ESC/Java)

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Different tools find different bugs

Unnecessary return statementUnnecessary
statement

Should be a static inner classDesign

Unused local variableUnused or duplicate
statement

Stream not closed on all pathsI/O stream

Equal objects must have equal
hashcodes

Object overriding

Checking equality with == or
!=String

Unreachable code due to
constant guardConditional, loop

Division by zeroMathematics
Length may be less than zeroArray

Possible unexpected
exception

Exceptions
Possible deadlockConcurrency
Null dereferenceGeneral

PMDJLintFindBugsESC/JavaExampleBug Category

4

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Limitations of Static Analysis
Large numbers of false positives

Tool reports large number of things that aren’t bugs
Programmer must manually review the list and decide
Sometime too many warnings to sort - E.g. in Rutar et. al. (approx 2500 classes)

False negatives
Types of bugs the tool won’t report
(increased risk if we filter results to remove false positives?)

Harmless bugs
Many of the bugs will be low priority problems
Cost/benefit analysis: Is it worth fixing these?

026401810Index out of bounds
594000Null assignment
0449189120Null dereferencing
08883122126Concurrency Warnings

PMDJLintFindBugsESC/Java

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Which bug is worse?

int x = 2, y = 3;
if (x == y)
 if (y == 3)
 x = 3;
else
 x = 4;

String s = new (“hello”);

s = null;

System.out.println(s.length());

Detected by:
PMD (if using certain rulesets)

Not detected in testing

Detected by:
JLint,

FindBugs,
ESC/Java

Also detected in testing

