
1

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 6:
Software Re-Engineering

 Cost of Software Maintenance
 Challenges of Design Recovery
 What reverse engineering tools can and can’t do
 Hints on abstraction and design recovery

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Software Evolves Continuously

corrective

adaptive
user

enhancements

pe
rfe

cti
ve

efficiency
other

preventative
Data from:
van Vliet, H., Software Engineering: Principles
and Practices, Wiley 1999, p449

2

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

User requirements always grow

Time

Fu
nc

ti
on

al
it

y

User needs

ide
nti

fy
req

uir
em

en
ts

fir
st

rel
ea

se

en
ha

nce
men

t p
ha

se

fre
ez

e a
nd

 re
pla

ce

rep
lac

em
en

t d
eli

ver
ed

en
ha

nce
men

t p
ha

se

conventional
development

Lateness

Shortfall

Inappropriateness

Longevity

Adaptability

(shaded area)

(slope of line)

Source: Adapted from Davis 1988, pp1453-1455

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Software Geriatrics
Causes of Software Aging

Failure to update the software to meet changing needs
Customers switch to a new product if benefits outweigh switching costs

Changes to software tend to reduce coherence & increase complexity

Costs of Software Aging
Owners of aging software find it hard to keep up with the marketplace
Deterioration in space/time performance due to deteriorating structure
Aging software gets more buggy

Each “bug fix” introduces more errors than it fixes

Ways of Increasing Longevity
Design for change
Document the software carefully
Requirements and designs should be reviewed by those responsible for its

maintenance
Software Rejuvenation…

Source: Adapted from Parnas, “Software Aging” 1996

3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

Reducing Maintenance Costs

corrective

adaptive
user

enhancements

pe
rf
ec
tiv

e

efficiency
other

preventative

Higher quality code
Better testing (verification)
Use of standards

Platform independence
Design for change
Good architecture

Better requirements analysis
prototyping, iterative development
Design for change

General
Modular structure
Comprehensibility

Good documentation

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

E.g. The Altimeter Example

IF not-read1(V1) GOTO DEF1;

display (V1);

GOTO C;

DEF1: IF not-read2(V2) GOTO DEF2;

display(V2);

GOTO C;

DEF2: display(3000);

C:

if (read-meter1(V1))

 display(V1);

else {

 if (read-meter2(V2))

 display(V2);

 else

 display(3000);

}

Questions:
Should you refactor this code?
Should you fix the default value?

Source: Adapted from van Vliet 1999

4

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Why maintenance is hard
Poor code quality

opaque code
poorly structured code
dead code

Lack of knowledge of the application domain
understanding the implications of change

Lack of documentation
code is often the only resource
missing rationale for design decisions

Lack of glamour

Source: Adapted from van Vliet 1999

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

Rejuvenation
Reverse Engineering

Re-documentation (same level of abstraction)
Design Recovery (higher levels of abstraction)

Restructuring
Refactoring (no changes to functionality)
Revamping (only the user interface is changed)

Re-Engineering
Real changes made to the code
Usually done as round trip:

design recovery -> design improvement -> re-implementation

Source: Adapted from van Vliet 1999

5

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

Program Comprehension
During maintenance:

programmers study the code about 1.5 times as long as the documentation
programmers spend as much time reading code as editing it

Experts have many knowledge chunks:
programming plans
beacons
design patterns

Experts follow dependency links
…while novices read sequentially

Much knowledge comes from outside the code

Source: Adapted from van Vliet 1999

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Example 1
What does this do?

for (i=0; i<n; i++) {

 for (j=0; j<n; j++) {

 if (A[i,j]) {

 for (k=0; k<n; k++) {

 if (A[j,k])

 A[i,k]=true;

 }

 }

 }

}

Source: Adapted from van Vliet 1999

6

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Example 2

procedure A(var x: w);

begin

 b(y, n1);

 b(x, n2);

 m(w[x]);

 y := x;

 r(p[x]);

end;

procedure change_window(var nw: window);

begin

 border(current_window, no_highlight);

 border(nw, highlight);

 move_cursor(w[nw]);

 current_window := nw;

 resume(process[nw]);

end;

Source: Adapted from van Vliet 1999

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

What tools can do
Reformatters / documentation generators

Make the code more readable
Add comments automatically

Improve Code Browsing
E.g visualize and traverse a dependency graph

(simple) Code transformation
E.g. Refactoring class browsers
E.g. Clone detectors

(simple) Design Recovery
E.g. build a basic class diagram
E.g. use program traces to build sequence diagrams

7

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Package Decomposition

Source: from Egyed “Automated Abstraction of Class Diagrams, TSE 2002

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Class Abstraction

Source: from Egyed “Automated Abstraction of Class Diagrams, TSE 2002

8

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Finding Dependencies

Source: from Egyed “Automated Abstraction of Class Diagrams, TSE 2002

