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Lecture 6:
Software Re-Engineering

 Cost of Software Maintenance
 Challenges of Design Recovery
 What reverse engineering tools can and can’t do
 Hints on abstraction and design recovery
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Software Evolves Continuously
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Data from:
van Vliet, H., Software Engineering: Principles
and Practices, Wiley 1999, p449
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User requirements always grow
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Source: Adapted from Davis 1988, pp1453-1455
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Software Geriatrics
Causes of Software Aging

Failure to update the software to meet changing needs
Customers switch to a new product if benefits outweigh switching costs

Changes to software tend to reduce coherence & increase complexity

Costs of Software Aging
Owners of aging software find it hard to keep up with the marketplace
Deterioration in space/time performance due to deteriorating structure
Aging software gets more buggy

Each “bug fix” introduces more errors than it fixes

Ways of Increasing Longevity
Design for change
Document the software carefully
Requirements and designs should be reviewed by those responsible for its

maintenance
Software Rejuvenation…

Source: Adapted from Parnas, “Software Aging” 1996
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Reducing Maintenance Costs
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Higher quality code
Better testing (verification)
Use of standards

Platform independence
Design for change
Good architecture

Better requirements analysis
prototyping, iterative development
Design for change

General
Modular structure
Comprehensibility

Good documentation

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

E.g. The Altimeter Example

IF not-read1(V1) GOTO DEF1;

display (V1);

GOTO C;

DEF1: IF not-read2(V2) GOTO DEF2;

display(V2);

GOTO C;

DEF2: display(3000);

C:

if (read-meter1(V1))

  display(V1);

else {

  if (read-meter2(V2))

    display(V2);

  else

    display(3000);

}

Questions:
Should you refactor this code?
Should you fix the default value?

Source: Adapted from van Vliet 1999
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Why maintenance is hard
Poor code quality

opaque code
poorly structured code
dead code

Lack of knowledge of the application domain
understanding the implications of change

Lack of documentation
code is often the only resource
missing rationale for design decisions

Lack of glamour

Source: Adapted from van Vliet 1999
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Rejuvenation
Reverse Engineering

Re-documentation (same level of abstraction)
Design Recovery (higher levels of abstraction)

Restructuring
Refactoring (no changes to functionality)
Revamping (only the user interface is changed)

Re-Engineering
Real changes made to the code
Usually done as round trip:

design recovery -> design improvement -> re-implementation

Source: Adapted from van Vliet 1999
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Program Comprehension
During maintenance:

programmers study the code about 1.5 times as long as the documentation
programmers spend as much time reading code as editing it

Experts have many knowledge chunks:
programming plans
beacons
design patterns

Experts follow dependency links
…while novices read sequentially

Much knowledge comes from outside the code

Source: Adapted from van Vliet 1999
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Example 1
What does this do?

for (i=0; i<n; i++) {

  for (j=0; j<n; j++) {

    if (A[i,j]) {

      for (k=0; k<n; k++) {

        if (A[j,k])

          A[i,k]=true;

      }

    }

  }

}

Source: Adapted from van Vliet 1999
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Example 2

procedure A(var x: w);

begin

  b(y, n1);

  b(x, n2);

  m(w[x]);

  y := x;

  r(p[x]);

end;

procedure change_window(var nw: window);

begin

  border(current_window, no_highlight);

  border(nw, highlight);

  move_cursor(w[nw]);

  current_window := nw;

  resume(process[nw]);

end;

Source: Adapted from van Vliet 1999
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What tools can do
Reformatters / documentation generators

Make the code more readable
Add comments automatically

Improve Code Browsing
E.g visualize and traverse a dependency graph

(simple) Code transformation
E.g. Refactoring class browsers
E.g. Clone detectors

(simple) Design Recovery
E.g. build a basic class diagram
E.g. use program traces to build sequence diagrams
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Package Decomposition

Source: from Egyed “Automated Abstraction of Class Diagrams, TSE 2002
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Class Abstraction

Source: from Egyed “Automated Abstraction of Class Diagrams, TSE 2002
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Finding Dependencies

Source: from Egyed “Automated Abstraction of Class Diagrams, TSE 2002


