
1

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 1

Lecture 2:
Introduction to Modeling

 Why Build Models?
 What types of Models to build
 Intro to UML
 Class Diagrams
 Reverse Engineering…

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 2

Getting started
 You’ve just joined an ongoing project

 Where do you start?
 (oh, BTW, the project doesn’t really have any documentation)

 Reverse Engineering:
 Recover design information from the code
 Create higher level views to improve understanding

 E.g. Structure of the code
 Code Dependencies
 Components and couplings

 E.g. Behaviour of the code
 Execution traces
 State machines models of complex objects

 E.g. Function of the code
 What functions does it provide to the user?



2

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 3

Why build models?
 Modelling can guide your exploration:

 It can help you figure out what questions to ask
 It can help to reveal key design decisions
 It can help you to uncover problems

 e.g. conflicting or infeasible requirements, confusion over terminology, scope, etc

 Modelling can help us check our understanding
 Reason about the model to understand its consequences

 Does it have the properties we expect?
 Animate the model to help us visualize/validate the requirements

 Modelling can help us communicate
 Provides useful abstracts that focus on the point you want to make
 …without overwhelming people with detail

 Throw-away modelling?
 The exercise of modelling is more important than the model itself
 Time spent perfecting the models might be time wasted…

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 4

Dealing with problem complexity
 Abstraction

 Ignore detail to see the big picture
 Treat objects as the same by ignoring certain differences
 (beware: every abstraction involves choice over what is important)

 Decomposition
 Partition a problem into independent pieces, to study separately
 (beware: the parts are rarely independent really)

 Projection
 Separate different concerns (views) and describe them separately
 Different from decomposition as it does not partition the problem space
 (beware: different views will be inconsistent most of the time)

 Modularization
 Choose structures that are stable over time, to localize change
 (beware: any structure will make some changes easier and others harder)



3

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 5

the Unified Modelling Language (UML)
 Third generation OO method

 Booch, Rumbaugh & Jacobson are principal authors
 Still evolving (currently version 2.0)
 Attempt to standardize the proliferation of OO variants

 Is purely a notation
 No modelling method associated with it!
 Was intended as a design notation

 Has become an industry standard
 But is primarily promoted by IBM/Rational (who sell lots of UML tools, services)

 Has a standardized meta-model
 Use case diagrams
 Class diagrams
 Message sequence charts
 Activity diagrams
 State Diagrams
 Module Diagrams
 Platform diagrams
 …

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 6

Modeling Notations

Activity diagrams
business processes;
concurrency and
synchronization;
dependencies
between tasks;

UML Sequence Diagrams
individual scenario
interactions between
users and system
Sequence of
messages

(UML) Statecharts
responses to events
dynamic behavior
event ordering,
reachability,
deadlock, etc

UML Package Diagrams
Overall architecture
Dependencies
between components

Use Cases
user’s view
Lists functions
visual overview of the
main requirements

UML Class Diagrams
information structure
relationships between
data items
modular structure for
the system



4

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 7

Intro: Object Classes in UML

:patient

Name
Date of Birth
physician
history

:in-patient
Room
Bed
Treatments
food prefs

:out-patient
Last visit
next visit
prescriptions

:patient
Name
Date of Birth
physician
history

:heart
Natural/artif.
Orig/implant
normal bpm

:eyes
Natural/artif.
Vision
colour

:kidney
Natural/artif.
Orig/implant
number

Source: Adapted from Davis, 1990, p67-68

1

0..1

0..21..2

0..1 0..1

Generalization 
(an abstraction hierarchy)

Aggregation
(a partitioning hierarchy)

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 8

:patient
Name
Date of Birth
Height
Weight

:In-patient
Room
Bed
Physician

:Out-patient
Last visit
next visit
physician

:heart
Normal bpm
Blood type

:eye
Colour
Diameter
Correction

:kidney
Operational?

generalization

aggregationClass name

attributes

services 0..1

1

1..2
0..1

0..2

0..1
multiplicities

:organ
Natural/artif.
Orig/implant
donor



5

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 9

What are classes?
 A class describes a group of objects with

 similar properties (attributes),
 common behaviour (operations),
 common relationships to other objects,
 and common meaning (“semantics”).

 Examples
 employee: has a name, employee# and department; an employee is hired, and fired; an

employee works in one or more projects

:employee
name
employee#
department
hire()
fire()
assignproject()

Name (mandatory)Attributes
 (optional)

Operations
 (optional)

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 10

Fred_Bloggs:Employee

name: Fred Bloggs
Employee #: 234609234
Department: Marketing

Objects vs. Classes
 The instances of a class are called objects.

 Objects are represented as:

 Two different objects may have identical attribute values (like two people with
identical name and address)

 Objects have associations with other objects
 E.g. Fred_Bloggs:employee is associated with the KillerApp:project object
 But we will capture these relationships at the class level (why?)
 Note: Make sure attributes are associated with the right class

 E.g. you don’t want both managerName and manager# as attributes of Project!
(…Why??)



6

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 11

Generalization

 Notes:
 Subclasses inherit attributes, associations, & operations from the superclass
 A subclass may override an inherited aspect

 e.g. AdminStaff & CreativeStaff have different methods for calculating bonuses
 Superclasses may be declared {abstract}, meaning they have no instances

 Implies that the subclasses cover all possibilities
 e.g. there are no other staff than AdminStaff and CreativeStaff

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 12

Aggregation and Composition
 Aggregation

 This is the “Has-a” or “Whole/part” relationship

 Composition
 Strong form of aggregation that implies ownership:

 if the whole is removed from the model, so is the part.
 the whole is responsible for the disposition of its parts

:Engine

:Person

:Car :Train
1

0..1 0..1

1..*

passengersdriver 1

1

0..1

0..*

composition

aggregation

:Locomotive



7

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 13

Associations
 Objects do not exist in isolation from one another

 A relationship represents a connection among things.
 In UML, there are different types of relationships:

 Association
 Aggregation and Composition
 Generalization
 Dependency
 Realization

 Class diagrams show classes and their relationships

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 14

Association Multiplicity
 Ask questions about the associations:

 Can a campaign exist without a member of staff to manage it?
 If yes, then the association is optional at the Staff end - zero or more (0..*)
 If no, then it is not optional - one or more (1..*)
 If it must be managed by one and only one member of staff - exactly one (1)

 What about the other end of the association?
 Does every member of staff have to manage exactly one campaign?
 No. So the correct multiplicity is zero or more.

 Some examples of specifying multiplicity:
 Optional (0 or 1) 0..1
 Exactly one 1 = 1..1
 Zero or more 0..* = *
 One or more 1..*
 A range of values 2..6



8

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 15

Class associations

:StaffMember
staffName
staff#
staffStartDate

:Client
companyAddress
companyEmail
companyFax
companyName
companyTelephone

1 0..*liaises with
contact
person

ClientList

Name 
of the

association

Multiplicity
A staff member has 

zero or more clients on
His/her clientList

Multiplicity
A client has 

exactly one staffmember
as a contact person

Direction
The “liaises with”

association should be
read in this direction

Role
The clients’ role

in this association
is as a clientList

Role
The staffmember’s

role in this association
is as a contact person

University of Toronto Department of Computer Science

© 2008 Steve Easterbrook. This presentation is available free for non-commercial use with attribution under a creative commons license. 16

More Examples


