When should you use a case study?

- When you can’t control the variables
- When there are many more variables than data points
- When you cannot separate phenomena from context
 - Phenomena that don’t occur in a lab setting
 - E.g. large scale, complex software projects
 - Effects can be wide-ranging.
 - Effects can take a long time to appear (weeks, months, years!)
- When the context is important
 - E.g. When you need to know how context affects the phenomena
- When you need to know whether your theory applies to a specific real world setting
Why conduct a case study?

- To gain a deep understanding of a phenomenon
 - Example: To understand the capability of a new tool
 - Example: To identify factors affecting communication in code inspections
 - Example: To characterize the process of coming up to speed on a project

- Objective of Investigation
 - Exploration- To find what’s out there
 - Characterization- To more fully describe
 - Validation- To find out whether a theory/hypothesis is true

- Subject of Investigation
 - An intervention, e.g. tool, technique, method, approach to design, implementation, or organizational structure
 - An existing thing or process, e.g. a team, releases, defects

Misuses of the term “Case Study”

- Not a case history
 - In medicine and law, patients or clients are “cases.” Hence sometimes they refer to a review of interesting instance(s) as a “case study”.

- Not an exemplar
 - Not a report of something interesting that was tried on a toy problem

- Not an experience report
 - Retrospective report on an experience (typically, industrial) with lessons learned

- Not a quasi-experiment with small n
 - Weaker form of experiment with a small sample size
 - Uses a different logic for designing the study and for generalizing from results
How can I tell it’s a case study?

- Has research questions set out from the beginning of the study
- Data is collected in a planned and consistent manner
- Inferences are made from the data to answer the research questions
- Produces an explanation, description, or causal analysis of a phenomenon
 - Can also be exploratory
- Threats to validity are addressed in a systematic way

Parts of a Case Study Research Design

- A research design is a “blueprint” for a study
 - Deals more with the logic of the study than the logistics
 - Plan for moving from questions to answers
 - Ensures data is collected and analyzed to produce an answer to the initial research question
 - (Analogy: research design is like a system design)

- Five parts of a case study research design
 1. Research questions
 2. Propositions (if any)
 3. Unit(s) of analysis
 4. Logic linking the data to the propositions
 5. Criteria for interpreting the findings
Part 1: Study Questions

- Study design always starts with research questions
 - Clarify precisely the nature of the research question
 - Ensure the questions can be answered with a case study
 - Generally, should be "how" and "why" questions.
 - Identify and interpret the relevant theoretical constructs

- Examples:
 - "Why do 2 organizations have a collaborative relationship?"
 - "Why do developers prefer this tool/model/notation?"
 - "How are inspections carried out in practice?"
 - "How does agile development work in practice?"
 - "Why do programmers fail to document their code?"
 - "How does software evolve over time?"
 - "Why have formal methods not been adopted widely for safety-critical software?"
 - "How does a company identify which software projects to start?"

Types of Case Studies

- Explanatory
 - Adjudicates between competing explanations (theories)
 - E.g. How important is implementation bias in requirements engineering?
 - Rival theories: existing architectures are useful for anchoring, vs. existing architectures are over-constraining during RE

- Descriptive
 - Describes sequence of events and underlying mechanisms
 - E.g. How does pair programming actually work?
 - E.g. How do software immigrants naturalize?

- Causal
 - Looks for causal relationship between concepts
 - E.g. How do requirements errors and programming errors affect safety in real time control systems?
 - See study by Robyn Lutz on the Voyager and Galileo spacecraft

- Exploratory
 - Used to build new theories where we don’t have any yet
 - Choose cases that meet particular criteria or parameters
 - E.g. Christopher Columbus’ voyage to the new world
 - E.g. What do CMM level 3 organizations have in common?
Part 2: Study Propositions

- Propositions are claims about the research question
 - State what you expect to show in the study
 - Direct attention to things that should be examined in the case study
 - E.g. "Organizations collaborate because they derive mutual benefits”

- Propositions will tell you where to look for relevant evidence
 - Example: Define and ascertain the specific benefits to each organization

- Note: exploratory studies might not have propositions
 - …but should lead to propositions for further study
 - …and should still have a clearly-stated purpose and clearly-stated criteria for success

- Analogy: hypotheses in controlled experiments

Part 3: Unit of Analysis

- Defines what a “case” is in the case study
 - Choice depends on the primary research questions
 - Choice affects decisions on data collection and analysis
 - Hard to change the unit of analysis once the study has started (but can be done if there are compelling reasons)
 - Note: good idea to use same unit of analysis as previous studies (why?)

- Often many choices:
 - E.g. for an exploratory study of extreme programming:
 - Unit of analysis = individual developer (case study focuses on a person’s participation in the project)
 - Unit of analysis = a team (case study focuses on team activities)
 - Unit of analysis = a decision (case study focuses on activities around that decision)
 - Unit of analysis = a process (e.g. case study examines how user stories are collected and prioritized)
Examples of Units of Analysis

- For a study of how software immigrants naturalize
 - Individuals?
 - … or the Development team?
 - … or the Organization?

- For a study of pair programming
 - Programming episodes?
 - … or Pairs of programmers?
 - … or the Development team?
 - … or the Organization?

- For a study of software evolution
 - A Modification report?
 - … or a File?
 - … or a System?
 - … or a Release?
 - … or a Stable release?

Why Defining your Unit of Analysis matters

- Clearly bounds the case study
 - …and tells you which data to collect

- Makes it easier to compare case studies
 - …incomparable unless you know the units of analysis are the same

- Avoid subjective judgment of scope:
 - e.g. disagreement about the beginning and end points of a process

- Avoids mistakes in inferences from the data
 - E.g. If your study proposition talks about team homogeneity…
 - …Won’t be able to say much if your units of analysis are individuals
Part 4: Linking Logic

- Logic or reasoning to link data to propositions
- One of the least well developed components in case studies
- Many ways to perform this
 - None as precisely defined as the treatment/subject approach used in controlled experiments
- One possibility is pattern matching
 - Describe several potential patterns, then compare the case study data to the patterns and see which one is closer

Part 5: Interpretation Criteria

- Criteria for interpreting a study’s findings
 - I.e. before you start, know how you will interpret your findings
- Also a relatively undeveloped component in case studies
 - Currently there is no general consensus on criteria for interpreting case study findings
 - [Compare with standard statistical tests for controlled experiments]
- Statistical vs. Analytical Generalization
 - Quantitative methods tend to sample over a population
 - Statistical tests then used to generalize to the whole population
 - Qualitative methods cannot use statistical generalization
 - Hence use analytical generalization
Generalization

Statistical Generalization
- First level generalization:
 - From sample to population
- Well understood and widely used in empirical studies
- Can only be used for quantifiable variables
- Based on random sampling:
 - Standard statistical tests tell you if results on a sample apply to the whole population
- Not useful for case studies
 - No random sampling
 - Rarely enough data points

Analytical Generalization
- Second level generalization:
 - From findings to theory
- Compares qualitative findings with the theory:
 - Does the data support or refute the theory?
 - Or: do they support this theory better than rival theories?
- Supports empirical induction:
 - Evidence builds if subsequent case studies also support the theory (& fail to support rival theories)
- More powerful than statistical techniques
 - Doesn’t rely on correlations
 - Examines underlying mechanisms

Analytical and Statistical Generalization

LEVEL ONE
- sample

LEVEL TWO
- theory
 - policy implication
- rival theory
 - rival policy implication

SURVEY
- population characteristics

CASE STUDY
- case study findings

EXPERIMENT
- experimental findings

subjects
How can I evaluate a case study?

Same criteria as for other empirical research:

- **Construct Validity**
 - Concepts being studied are operationalized and measured correctly

- **Internal Validity**
 - Establish a causal relationship and distinguish spurious relationships

- **External Validity**
 - Establish the domain to which a study’s findings can be generalized

- **Empirical Reliability**
 - Demonstrate that the study can be repeated with the same results

Case Study Designs

- **4 types of designs** (based on a 2x2 matrix)
 - Single-case vs. Multiple-case design
 - Holistic vs. Embedded design

Basic Types of Designs for Case Studies (Yin, page 40)
Holistic vs. Embedded Case Studies

- **Holistic** case study: Examines only the global nature of one unit of analysis (not any subunits)
 - E.g: a case study about an organization

- **Embedded** case study: Involves more than one unit of analysis by paying attention to subunit(s) within the case
 - E.g: a case study about a single organization may have conclusions about the people (subunits) within the organization

Holistic Designs

- **Strengths**
 - Convenient when no logical subunits can be defined
 - Good when the relevant theory underlying the case study is holistic in nature

- **Weaknesses**
 - Can lead to abstract studies with no clear measures or data
 - Harder to detect when the case study is shifting focus away from initial research questions
Embedded Designs

- **Strengths**
 - Introduces higher sensitivity to "slippage" from the original research questions

- **Weaknesses**
 - Can lead to focusing only on the subunit (i.e. a multiple-case study of the subunits) and failure to return to the larger unit of analysis

Rationale for Single-Case Designs

- As you might guess, a single-case design uses a single case study to address the research questions

- 5 reasons to use a single-case design
 - It represents the *critical* case in testing a well-formulated theory
 - The case meets all of the conditions for testing the theory thoroughly
 - It represents an *extreme or unique* case
 - Example: a case with a rare disorder
 - It is the *representative or typical* case, i.e. informs about common situations/experiences
 - Gain insights on commonplace situations
 - The case is *revelatory* – a unique opportunity to study something previously inaccessible to observation
 - Opens a new topic for exploration
 - The case is *longitudinal* – it studies the same case at several points in time
 - The corresponding theory should deal with the change of conditions over time
Multiple-Case Designs

- Useful when literal or theoretical replications provide valuable information

Advantages
- Evidence is considered more compelling
- Overall study is therefore regarded as more robust

Disadvantages
- Difficulty to find an appropriate number of relevant cases
- Can require extensive resources and time

Replication in Multiple-Case Studies

- Select each case so that it either:
 - Predicts similar results (*literal replication*)
 - Predicts contrasting results but for predictable reasons (*theoretical replication*)

- If all cases turn out as predicted, there is compelling support for the initial propositions
 - Otherwise the propositions must be revised and retested with another set of cases

- The theoretical framework of the study should guide the choices of replication cases
How Many Cases?

- How many literal replications?
 - It depends on the certainty you want to have about your results
 - Greater certainty with a larger number of cases
 - Just as with statistical significance measures
 - 2 or 3 may be sufficient if they address very different rival theories and the degree of certainty required is not high
 - 5, 6, or more may be needed for higher degree of certainty

- How many theoretical replications?
 - Consider the complexity of the domain under study
 - If you are uncertain whether external conditions will produce different results, you may want to include more cases that cover those conditions
 - Otherwise, a smaller number of theoretical replications may be used

Replication Logic vs. Sampling Logic

- Consider multiple-cases analogous to multiple experiments
 - Not analogous to multiple subjects in a single experiment!

- Replication logic (used in case studies) is different from sampling logic (used in surveys)
 - Sampling logic requires defining a pool of potential respondents, then selecting a subset using a statistical procedure
 - Responses from the subset are supposed to accurately reflect the responses of the entire pool

- Sampling logic does not fit with case studies
 - Case studies are not the best method for assessing the prevalence of phenomenon in a population
 - Case studies would have to cover both the phenomenon of interest and its context
 - Too many variables, which leads to way too many cases!
Replication Approach for Multiple-Case Studies

Multiple-Case Designs: Holistic or Embedded

- A multiple-case study can consist of multiple holistic or multiple embedded cases.
 - But there is no mixing of embedded and holistic cases in the same study.

- Note that for embedded studies, subunit data are not pooled across subunits.
 - Used to draw conclusions only for the subunit’s case.
Selecting Case Study Designs – Single or Multiple?

- If you have a choice and enough resources, multiple-case designs are preferred
 - Conclusions independently arising from several cases are more powerful
 - Differences in context of multiple cases with common conclusions improve the generalization of their findings
 - Capability to apply theoretical replications
- Single-case studies are often criticized due to fears about uniqueness surrounding the case
 - Criticisms may turn to skepticism about your ability to do empirical work beyond a single-case study
 - If you choose single-case design, be prepared to make an extremely strong argument justifying your choice for the case
- However, remember that in some situations single-case designs are the best (or only!) choice

Purposive Sampling of Cases

- Extreme or Deviant Case
 - E.g. outstanding success/notable failures, exotic events, crises.
- Intensity
 - Information-rich cases that clearly show the phenomenon (but not extreme)
- Maximum Variation
 - Choose a wide range of variation on dimensions of interest
- Homogeneous
 - Case with little internal variability - simplifies analysis
- Typical Case
 - Identify typical, normal, average case
- Stratified Purposeful
 - Identify subgroups and select candidates within each group
- Critical Case
 - If it’s true of this one case it’s likely to be true of all other cases.
- Snowball or Chain
 - Select cases that should lead to identification of further good cases
- Criterion
 - All cases that meet some criterion,
- Theory-Based
 - Manifestations of a theoretical construct
- Confirming or Disconfirming
 - Seek exceptions, variations on initial cases
- Opportunistic
 - Rare opportunity where access is normally hard/impossible
- Politically Important Cases
 - Attracts attention to the study
- Convenience
 - Cases that are easy/cheap to study (but means low credibility!)
- Or a combination of the above
Collecting the Evidence

Six Sources of Evidence
- Documentation
- Archival Records
- Interviews
- Direct Observation
- Participant-observation
- Physical Artifacts

Three Principles of Data Collection
- Use Multiple Sources of Evidence
- Create a Case Study Database
- Maintain a Chain of Evidence

Documentation
- Letters, memos, and other written communication
- Agendas, announcements, meeting minutes, reports of events
- Administrative documents
 - Proposals, progress reports, summaries and records
- Formal studies or evaluations of the same site
- Newspaper clippings, articles in media or newsletters
- Example: Classifying modification reports as adaptive, perfective or corrective based on documentation
Archival Records

- Service records
 - Clients served over a period of time
- Organizational records
 - Organizational charts and budgets
- Layouts
 - Maps and charts
- Lists of names and relevant articles
- Survey data
 - Census records
- Personal records
 - Diaries, calendars, telephone lists
- Example: Study of parallel changes to source code was based on revision control logs

Interviews

- Open-ended interviews
 - Address facts and opinions about an event
 - Flexible structure of interview (or no structure at all!)
- Focused interviews
 - Short period of time (about an hour)
 - Similar approach as open-ended.
- Formal surveys
 - Produce quantifiable data
- Example: Used semi-structured interviews to understand the effect of distance on coordination in teams
Direct Observation

- Field visits- creates opportunity for direct observation
- Photographs of site
 - Need permission in order to proceed!
- Can be used to calibrate self-reports
 - Example: Informal, impromptu interactions
- Example: Followed software developers around to characterize how they spend their time

Participant-observation

- Not a passive observer, but actually participate in setting
 - Employee of the company under study
- Provides an opportunity to understand the rationale and behavior of people and organization being studied
- Example: Seaman participated in 23 code inspections over period of five months at NASA/Goddard Space Flight Center’s Flight Dynamics Division
Physical Artifacts

- Technological tool, instrument, or device
- Artifacts can be collected or observed as part a field visit
- Works of art or types of physical evidence
- Example: Diachronic study of art records to determine whether right-handedness was a recent or old trait
 - Two rival hypotheses: Physiological predisposition vs Social/environmental pressure
 - Tested by counting unimanual tool usage in art representations
 - 1200 examples from 1500 BC to 1950, world sources
 - 92.6% used right hand
 - Geo/historical distribution uniformly high
 - Seems to support physiological interpretation that right-handedness is an age-old trait

Principles of Data Collection

- Use Multiple Sources of Evidence
- Create a Case Study Database
- Maintain a Chain of Evidence

These principles can be applied to all six data collection methods
Multiple Sources of Evidence

- Triangulation of data sources
- Basic idea: Collect evidence from more than one source pointing towards the same facts
 - Warning: Collecting data from several sources does not guarantee data triangulation!
- Example: Different approaches were used to collect data about how developers spend their time.
 - Collected cross-sectional and direct observation data
 - Collected longitudinal data

Convergence of Evidence (Figure 4.2)

- Documents
- Archival Records
- Observations (direct and participant)
- Structured Interviews and Surveys
- Open-ended Interviews
- Focus Interviews

FACT