
1

1

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Lecture 11: How Much Formality?
Last Week:
Change and
Evolution

Software Evolution
Traceability

Inconsistency

Last Week:
Change and
Evolution

Software Evolution
Traceability

Inconsistency

This Week:
How much formality?

Formal Modeling Techniques
Appropriate Uses of FM
Tips on formal modeling

This Week:
How much formality?

Formal Modeling Techniques
Appropriate Uses of FM
Tips on formal modeling

The End!

2

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Formal Methods in RE

Why formalize in RE?
To remove ambiguity and improve

precision
Provides a basis for verification that

the requirements have been met
Allows us to reason about the

requirements
 Properties of formal requirements models

can be checked automatically
 Can test for consistency, explore the

consequences, etc.

Allows us to animate/execute the
requirements
Helps with visualization and validation

Will have to formalize eventually anyway
 RE is all about bridging from the informal

world to a formal machine domain

Why formalize in RE?
To remove ambiguity and improve

precision
Provides a basis for verification that

the requirements have been met
Allows us to reason about the

requirements
 Properties of formal requirements models

can be checked automatically
 Can test for consistency, explore the

consequences, etc.

Allows us to animate/execute the
requirements
Helps with visualization and validation

Will have to formalize eventually anyway
 RE is all about bridging from the informal

world to a formal machine domain

Why people don’t formalize in RE
Formal Methods tend to be lower level

than other analysis techniques
 They force you to include too much detail

Formal Methods tend to concentrate on
consistent, correct models
 …but most of the time your models are

inconsistent, incorrect, incomplete…

People get confused about which tools
are appropriate:
 E.g. modeling program behaviour vs.

modeling the requirements
 formal methods advocates get too attached

to one tool!
Formal methods require more effort

 ...and the payoff is deferred

Why people don’t formalize in RE
Formal Methods tend to be lower level

than other analysis techniques
 They force you to include too much detail

Formal Methods tend to concentrate on
consistent, correct models
 …but most of the time your models are

inconsistent, incorrect, incomplete…

People get confused about which tools
are appropriate:
 E.g. modeling program behaviour vs.

modeling the requirements
 formal methods advocates get too attached

to one tool!
Formal methods require more effort

 ...and the payoff is deferred

What to formalize in RE?
models of requirements knowledge (so we can reason about them)
specifications of requirements (so we can document them precisely)

3

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

What are Formal Methods?
 Broad View (Leveson)

 application of discrete mathematics to software engineering
 …involves modeling and analysis
 …with an underlying mathematically-precise notation

Narrow View (Wing)
 Use of a formal language

 a set of strings over some well-defined alphabet, with rules for distinguishing
which strings belong to the language

 Formal reasoning about formulae in the language
 E.g. formal proofs: use axioms and proof rules to demonstrate that some formula

is in the language

 For requirements modeling…
 A notation is formal if:

 …it comes with a formal set of rules which define its syntax and semantics.
 …the rules can be used to analyse expressions to determine if they are

syntactically well-formed or to prove properties about them.

4

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Varieties of formal analysis
 Consistency analysis and typechecking

 “Is the formal model well-formed?”
 [assuming that we only use modeling languages where “well-formedness” is a

useful thing to check]

 Validation:
 Animation of the model on small examples
 Formal challenges:

 “if the model is correct then the following property should hold...”
 ‘What if’ questions:

 reasoning about the consequences of particular requirements;
 reasoning about the effect of possible changes

 State exploration
 E.g. use a model checking to find traces that satisfy some property

 Checking application properties:
 “will the system ever do the following...”

 Verifying design refinement
 “does the design meet the requirements?”



2

5

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Three different models??

D:
a model of the
environment

S:
a model of
the software 
behaviour

R:
a model 

of the
requirements

is
satisfied

by

co
ns

tr
ai

ns

ac
ts

 u
po

n

6

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

FM in practice
 From Shuttle Study [Crow & DiVito 1996]

More errors found in the process of formalizing the requirements than were
found in the formal analysis

 Formalization forces you to be precise and explicit, hence reveals problems
 Formal analysis then finds fewer, but more subtle problems

 Typical errors found include:
 inconsistent interfaces
 incorrect requirements (system does the wrong thing in response to an input)
 clarity/maintainability problems

Issue Severity With FM Existing
High Major 2 0
Low Major 5 1
High Minor 17 3
Low Minor 6 0
Totals 30 4

7

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

How do FMs differ?
Mathematical Foundation

 Logic
 first order predicate logic - e.g. RML
 temporal logic - e.g. Albert II, SCR, KAOS
 multi-valued logic – e.g. Xchek

Other
 algebraic languages - e.g. Larch
 set theory - e.g. Z

Ontology
 fixed

 states, events, actions - e.g. SCR
 entities, activities, assertions - e.g. RML

 extensible
 meta language for defining new concepts - e.g. Telos

 Treatment of Time
 State/event models

 time as a discrete sequence of events - e.g. SCR
 time as quantified intervals - e.g. KAOS

 Time as a first class object
 meta-level class to represent time - e.g. Telos

8

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Three traditions …
Formal Specification Languages

Grew out of work on program verification
Spawned many general purpose specification languages

 Suitable for specifying the behaviour of program units
Key technologies: Type checking, Theorem proving

Reactive System Modeling
Grew out of a need to capture dynamic models of

system behaviour
Focus is on reactive systems (e.g. real-time,

embedded control systems)
 support reasoning about safety, liveness, performance(?)
 provide a precise requirements specification language

Key technologies: Consistency checking, Model checking

Formal Conceptual Modeling
Grew out of a concern for capturing real-world

knowledge in RE
Focus is on modeling domain entities, activities,

agents, assertions
 provide a formal ontology for domain modeling
 use first order predicate logic as the underlying formalism

Key technologies: inference engines, default reasoning,
KBS-shells

Applicability to RE is excellent
 modeling schemes capture key

requirements concepts
Examples: Reqts Apprentice, RML,
Telos, Albert II, …

Applicability to RE is excellent
 modeling schemes capture key

requirements concepts
Examples: Reqts Apprentice, RML,
Telos, Albert II, …

Applicability to RE is good
 modeling languages were

developed specifically for RE
Examples: Statecharts, RSML,
Parnas-tables, SCR, …

Applicability to RE is good
 modeling languages were

developed specifically for RE
Examples: Statecharts, RSML,
Parnas-tables, SCR, …

Applicability to RE is poor
 No abstraction or structuring
 closely tied to program

semantics
Examples: Larch, Z, VDM, …

Applicability to RE is poor
 No abstraction or structuring
 closely tied to program

semantics
Examples: Larch, Z, VDM, …



3

9

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

(1) Formal Specification Languages
 Three basic flavours:

Operational - specification is executable abstraction of the implementation
 good for rapid prototyping
 e.g., Lisp, Prolog, Smalltalk

 State-based - views a program as a (large) data structures whose state
can be altered by procedure calls…

 … using pre/post-conditions to specify the effect of procedures
 e.g., VDM, Z

 Algebraic - views a program as a set of abstract data structures with a set
of operations…

 … operations are defined declaratively by giving a set of axioms
 e.g., Larch, CLEAR, OBJ

 Developed for specifying programs
 Programs are formal, man-made objects

 … and can be modeled precisely in terms of input-output behaviour
 But in RE we’re more concerned with:

 real-world concepts, stakeholders, goals, loosely define problems, environments
 So these languages are NOT appropriate for RE

 but people fail to realise that requirements specification ≠ program specification
10

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

(2) Reactive System Modeling
 modeling how a system should behave

 General approach:
 Model the environment as a state machine
 Model the system as a state machine
 Model safety, liveness properties of the machine as temporal logic assertions
 Check whether the properties hold of the system interacting with its environment

 Examples:
 Statecharts

 Harel’s notation for modeling large systems
 Adds parallelism, decomposition and conditional transitions to STDs

 RSML
 Heimdahl & Leveson’s Requirements State Machine Language
 Adds tabular specification of complex conditions to Statecharts

 A7e approach
 Major project led by Parnas to formalize A7e aircraft requirements spec
 Uses tables to specify transition relations & outputs

 SCR
 Heitmeyer et. al. “Software Cost Reduction”
 Extends the A7e approach to include dictionaries & support tables

11

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

(3) Formal Conceptual Modeling
 General approach

model the world beyond functional specifications
 a specification is prescriptive, concentrating on desired properties of the machine
 but we also need to capture an understanding of the application domain
 hence build models of humans’ knowledge/beliefs about the world

make use of abstraction & refinement as structuring primitives

 Examples:
 RML - Requirements Modeling Language

 Developed by Greenspan & Mylopoulos in mid-1980s
 First major attempt to use knowledge representation techniques in RE
 Essentially an object oriented language, with classes for activities, entities and

assertions
 Uses First Order Predicate Language as an underlying reasoning engine

 Telos
 Extends RML by creating a fully extensible ontology
 meta-level classes define the ontology (the basic set is built in)

 Albert II
 developed by Dubois & du Bois in the mid-1990s
 Models a set of interacting agents that perform actions that change their state
 uses an object-oriented real-time temporal logic for reasoning

12

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Using Formal Methods
 Selective use of Formal Methods

 Amount of formality can vary
 Need not build complete formal models

 Apply to the most critical pieces
 Apply where existing analysis techniques are weak

 Need not formally analyze every system property
 E.g. check safety properties only

 Need not apply FM in every phase of development
 E.g. use for modeling requirements, but don’t formalize the system design

 Can choose what level of abstraction (amount of detail) to model

 Lightweight Formal Methods
 Have become popular as a means of getting the technology transferred
 Two approaches

 Lightweight use of FMs - selectively apply FMs for partial modeling
 Lightweight FMs - new methods that allow unevaluated predicates


