-
University of Toronto Department of Computer Science L University of Toronto Department of Computer Science
Lecture 6: Requirements Modeling IT What to Model
Last Week: - Information Structure
odeting Enferpmses % Entity Relationship Models
General Modeling Issues %l DI & 0O Analysi
Modeling Human Activity, ass Diagrams (nalysis)
* etc. .
_r - Processes and Information Flow
% Dataflow diagrams (& Structured Analysis)
This Week: % UML Activity Diagrams
Modelling Infor'n.\aflon and Behaviour - Sys‘l'em Behaviour
Information Structure
] % Statecharts
Information Flow
T % Message Sequence Charts
% Tabular specifications (e.g. SCR)
Next Week:
Non-functional requirements
Modelling NFRs
Analysis techniques for NFRs
©2000-2003, Steve Easterbrook 1 ©2000-2003, Steve Easterbrook 2
-
University of Toronto Department of Computer Science T University of Toronto Department of Computer Science
Entity Relationship Diagrams Class Diagrams =
Key Class name aggregation Colour
i age ionali 0..2 | piameter
- ER dlClgrams hame nationality . o Correction
. . . O O D Entity - multiplicities
% widely used for information phtient 01— “Kidney
modeling —O Attribute attributes Name <> -
X —_— . ‘// Operational?
% simple, easy to use . . | Date of Birth Co"l
> Note: this is a notation, O Relationship ;‘/e'?':? L2
. ei .
not a method! (@b (c,d) Cardinality of szrwczs\ 9 0..1
. k > relationshi > s
- Used in many P = heart
—9 Identifier generalization Normal bpm
COHTCXTS . 1] 8lood type
% domain concepts Composite
> objects referred to in goal Identifier
models, scenarios, efc. :In-patient :Qut-patient
% Data to be represented in Room Last visit ‘organ
the system Bed next visit Natural/artif.
> for information systems Physician physician Orig/implant
% Relational Database design donor
% Meta-modeling
year
producer girector title
©2000-2003, Steve Easterbrook 3 ©2000-2003, Steve Easterbrook 4

@ University of Totonto Department of Computer Science

Generalization vs Aggregation

Source: Examples from Bennett, McRobb & Farmer, 2002

- Generalization
% Subclasses inherit attributes, associations, & operations from the superclass
% A subclass may override an inherited aspect

- Aggregation
% This is the "Has-a" or "Whole/part” relationship

Campaign
——
e —

O

- Composition

% Strong form of aggregation that implies ownership:
>if the whole is removed from the model, so is the part.
>the whole is responsible for the disposition of its parts

AdvertCopy n

: . 1
AdvertGraphic | 1 NewspaperAdvert

S~composition

AdvertPhotograph | 1.

©2000-2003, Steve Easterbrook 5

@ University of Totonto Department of Computer Science

Class associations
Multiplicit Multiplicity
A client has A staff member has
exactly one staffmember zero or more clients on
as a contact person Name His/her clientList
of the
association -Client
StaffMember z companyAddress
staffName 1 liaises with 0..* | companyEmail
staff# - — companyFax
staffStartDate | contact > ClientList| companyName
person /‘ companyTelephone
Direction
The “liaises with"
association should be
Role read in this direction
The staffmember’s Role
role in this association The clients' role
is as a contact person in this association
is as a clientList
©2000-2003, Steve Easterbrook 6

@ University of Totonto Department of Computer Science

¥ Association Classes

- Sometimes the association is itself a class
% .because we need to retain information about the association
% ..and that information doesn't naturally live in the classes at the ends of the
association

» E.g. a “title” is an object that represents information about the relationship
between an owner and her car

:person
scan Name
VIN(vehicle Id Number)| 0..* owns 1| Address
YearMade DriversLicenceNumber
Mileage < owner | permittedVehicles
:title
yearbought
initialMileage
PricePaid
LicencePlate#

%)

©2000-2003, Steve Easterbrook

@ University of Totonto Department of Computer Science

Object Oriented Analysis

- Background
% Model the requirements in terms of objects and the services they provide

% Grew out of object oriented design
> But applied to modelling the application domain rather than the program

- Motivation

% OO0 is (claimed to be) more ‘natural’
> As a system evolves, the functions (processes) it performs tend to change, but
the objects tend to remain unchanged
» Hence a model based on functions/processes will get out of date, but an object
oriented model will not...
> ..hence the claim that object-oriented designs are more maintainable
% OO emphasizes importance of well-defined interfaces between objects
» compared to ambiguities of dataflow relationships

NOTE: OO applies to requirements engineering because it is a modeling tool. But
we are modeling domain objects, not the design of the new system

©2000-2003, Steve Easterbrook 8

@’ University of Totonto

Department of Computer Science

- External Entities
% ..that interact with the system
being modeled

>E.g. people, devices, other systems
- Things
% _that are part of the domain being
modeled
>E.g. reports, displays, signals, efc.
- Occurrences or Events

% _that occur in the context of the
system
>E.g. transfer of resources, a control
action, efc.

- Roles

% played by people who interact with
the system

Nearly anything can be an object-...

Source: Adapted from Pressman, 1994, p242

- Organizational Units

% that are relevant to the application
>E.g. division, group, team, etc.

- Places

% _that establish the context of the
problem being modeled
»E.g. manufacturing floor, loading
dock, etc.

- Structures

% that define a class or assembly of
objects
>E.g. sensors, four-wheeled vehicles,
computers, etc.

Some things cannot be objects:
% procedures (e.g. print, invert, etc)
% attributes (e.g. blue, 50Mb, etc)

©2000-2003, Steve Easterbrook

@’ University of Totonto

Variants

- Coad-Yourdon
% Developed in the late 80's
% Five-step analysis method

- Shlaer-Mellor
% Developed in the late 80's
% Emphasizes modeling information and state, rather than object interfaces

- Fusion
% Second generation OO method
% Introduced use-cases

- Unified Modeling Language (UML)
% Third generation OO method
% An attempt to combine advantages of previous methods

Department of Computer Science

©2000-2003, Steve Easterbrook

@’ University of Totonto

Department of Computer Science

- Five Step Process:
3. Define Subjects

these, look for more structure!)

5a. Define services - 3 types:

every object has them

5b. Define message connections

Example method: Coad-Yourdon

Source: Adapted from Pressman, 1994, p242 and Davis 1990, p98-99

1. Identify Objects & Classes (i.e. 'is_a’ relationships)
2. Identify Structures (i.e. ‘part_of’ relationships)

» A more abstract view of a large collection of objects
> Each classification and assembly structure become one subject
» Each remaining singleton object becomes a subject (although if there a many of

> Subject Diagram shows only the subjects and their interactions
4. Define Attributes and instance connections

» Occur (create, connect, access, release) These are omitted from the model as

> Calculate (when a calculated result from one object is needed by another)
> Monitor (when an object monitors for a condition or event)

» These show how services of one object are used by another
» Shown as dotted lines on object and subject diagrams
» Each message may contain parameters

©2000-2003, Steve Easterbrook

%)

@’ University of Totonto

Unified Modeling Language

- Third generation OO method

% Booch, Rumbaugh & Jacobson are principal authors
» Still in development
» Attempt to standardize the proliferation of OO variants

% Is purely a notation
» No modeling method associated with it!

% But has been accepted as a standard for OO modeling
> But is primarily owned by Rational Corp. (who sell lots of UML tools and services)

- Has a standardized meta-model
% Use case diagrams
% Class diagrams
% Message sequence charts
% Activity diagrams
% State Diagrams (uses Harel's statecharts)
% Module Diagrams
% Platform diagrams

Department of Computer Science

©2000-2003, Steve Easterbrook

%" University of Totonto Department of Computer Science

Vv Evaluation of OOA

- Advantages of OO analysis for RE
% Fits well with the use of OO for design and implementation
> Transition from OOA to OOD ‘smoother’ than from SA to SD (but is it?)
% Removes emphasis on functions as a way of structuring the analysis

% Avoids the fragmentary nature of structured analysis
> object-orientation is a coherent way of understanding the world

- Disadvantages
% Emphasis on objects brings an emphasis on static modeling
> although later variants have introduced dynamic models
% Not clear that the modeling primitives are appropriate
> are , and really the things we need to model in RE?
% Strong temptation to do design rather than problem analysis
% Fragmentation of the analysis
» E.g. reliance on use-cases means there is no "big picture” of the user's needs

% Too much marketing hype!
> and false claims - e.g. no evidence that objects are a more natural way to think

©2000-2003, Steve Easterbrook

% University of Totonto

— Key
Timetables :
: process
Schedule
proposed : —» dataflow (no control
itinera proposed implied)

booking jtinerary

data store

Fare tables

system
réquest booked %s external entity
itinerary
tickets system boundary
booking ook
confirmation customer

system

- Notes:

% every process, flow, and datastore must be labeled
% representation is hierarchical
>each process will be represented separately as a lower level DFD
% processes are normally numbered for cross reference
% processes transform data

»can't have the same data flowing out of a process as flows into it

Department of Computer Science

V. Dataflow Diagrams (DFDs)

©2000-2003, Steve Easterbrook

% University of Totonto

V. Hierarchies of DFDs

Level O: Context Diagram

Level 1: Whole System

customer

—
Timetables
bookirig

confirma;

schedule

—
Fare tables

Level 2: subprocesse

\

booking \
onemation
system

confirm
ookedl \ pooking

itinergry

Department of Computer Science

©2000-2003, Steve Easterbrook

% University of Totonto

- Definition
% Structured Analysis is a data-oriented approach to conceptual modeling
% Common feature is the centrality of the dataflow diagram

% Mainly used for information systems
> variants have been adapted for real-time systems

- Modeling process: indicative optative

(existing system) (new system)

Abstract
(essential functions) 2. Current | | 3. New logical
logical system system
L) 7
Concrete 1. Current 4. New

(detailed model) physical system physical system

% Model of current physical system only useful as basis for the logical model

% Distinction between indicative and optative models is very important:
» Must understand which requirements are needed to continue current functionality,

and which are new with the updated system

Department of Computer Science

4 Structured Analysis

©2000-2003, Steve Easterbrook

@

%)

University of Totonto

Variants

Source: Adapted from Svoboda, 1990, p264-5
- Structured Analysis and Design Technique
(SADT)
% Developed by Doug Ross in the mid-70's Tncoming

% Uses activity diagrams rather than dataflow diagrams data
% Distinguishes control data from processing data

% Adds data access diagrams to describe contents of
data stores

R @ &@ﬂ‘ Performing
- Structured Analysis and System mechanism
Specification (SASS)
% Developed by Yourdon and DeMarco in the mid-70's
% ‘classic’ structured analysis
- Structured System Analysis (SSA) @
% Developed by Gane and Sarson <D
% Notation similar to Yourdon & DeMarco @&@@ _Name

Department of Computer Science

%)

%‘5 University of Toronto

Example method: SASS

Source: Adaped from Davis, 1990, p83-86

1. Study current environment
% draw DFD to show how data flows through current organization
% label bubbles with names of organizational units or individuals

2. Derive logical equivalents
% replace names (of people, roles,...) with action verbs
% merge bubbles that show the same logical function
% delete bubbles that don't transform data

3. Model new logical system

% Modify logical DFD to show how info will flow once new system is in place
> ..but don't distinguish (yet) which components will be automated

4. Define a number of automation alternatives
% document each as a physical DFD
% Analyze each with cost/benefit trade-off
% Select one for implementation
% Werite the specification

Department of Computer Science

©2000-2003, Steve Easterbrook

- Structured Requirements Definition (SRD) (1D
% Developed by Ken Orr in the mid-70's m
% Introduces the idea of building separate models for 5]
each perspective and then merging them @@& ame
© 2000-2003, Steve Easterbrook 17
% University of Toronto Department of Computer Science

¥ Evaluation of SA techniques

Source: Adapted from Davis, 1990, p174

- Advantages
% Facilitates communication.
% Notations are easy to learn, and don't require software expertise
% Clear definition of system boundary
% Use of abstraction and partitioning

% Automated tool support
> e.g. CASE tools provide automated consistency checking

- Disadvantages
% Little use of projection
> even SRD's 'perspectives’ are not really projection

% Confusion between modeling the problem and modeling the solution
» most of these techniques arose as design techniques

% These approaches model the system, but not its application domain
% Timing issues are completely invisible

©2000-2003, Steve Easterbrook

%‘5 University of Toronto

UML Activity Diagrams

Receive
Order

* [for each line
item on order]

[failed] Check

Line ltem

Authorize
Payment

[succeeded] I[in stock]

Assign to
Order

i 4 [need to
| X reorder]
Dispatch Reorder
Order Iltem

Department of Computer Science

©2000-2003, Steve Easterbrook

20

% University of Toronto Department of Computer Science
¥ Activity Diagram with Swimlanes
Finance | Order Stock
Processing Manager

oose
Outstanding
Order Items

*[for each cho
order item]

Assign (:oodé-

Assign to

¥ Statecharts person O

% University of Toronto Department of Computer Science

:person % dateOfBirth

dateOfDeath
age S Real world object recordBirth()
X setDOB;
havebirthday() Vs recordD(e)alh()

System representation setDateofDeath()

recordBirth()

I Order to Order
[stock assigned to | l ¥ ¥ [needt fall outstanding |
all line items and i i —I—
phyment authorized] reorder} order items filled] |
Dlspatch Reorder |(Add Remainder
Ord er It em | to Stock
1
© 2000-2003, Steve Easterbrook 21
University of Toronto Department of Computer Science

¥ States and Transitions

- A state represents a time period during which

% A predicate is true
> e.g. (budget - expenses) > O,

% An action is being performed, or an event is awaited:
> e.g. checking inventory for order items
> e.g. waiting for arrival of a missing order item

- A state can be “on” or “off".
% When a state is “"on”, all its outgoing transitions are eligible to fire.
% Transitions take the form:
event(parameters) [guard] / action
» For a transition to fire, its event must occur and its guard must be true.
> When a transition fires, its action is carried out.

- States can have associated activities:
% do/activity
> carries out some activity for as long as the state is “on”
% entry/action and exit/action
> carry out the action whenever the state is entered (exited)
% include/stateDiagramName
> “calls” another state diagram, allowing state diagrams to be nested

©2000-2003, Steve Easterbrook 23

havebirthday()
[age < 18]
havebirthday () vlnowyear-birthyear>18]
[age = 18]
v
havebirthday()
lage < 65] adult ‘
A nowyear-birthyear>65]
havebirthday()
[age = 65]
havebirthday() recordDeath()
@7 /setDateofDeath ()
deceased O
© 2000-2003, Steve Easterbrook 22
% University of Toronto Department of Computer Science

T Events

- Events are happenings the system needs to know about

% Must be relevant to the system (or object) being modelled
% Must be modellable as an instantaneous occurance (from the system's point

of view)
» E.g. completing an assignment, failing an exam, a system crash
% Are impl ted by ge passing in an OO Design

- In UML, there are four types of events:

% Change events occur when a condition becomes true
» denoted by the keyword ‘when’
> e.g. when[balance < 0]

% Call events occur when an object receives a call for one of its operations to
be perfomed
% Signal events occur when an object receives an explicit (real-time) signal

% Elapsed-time events mark the passage of a designated period of time
> e.g. after[10 seconds]

©2000-2003, Steve Easterbrook 24

% University of Totonto

)

Superstates

-+States can be nested, to make diagrams simpler

%A superstate consists of one or more states.
% Superstates make it possible to view a state diagram at different levels of abstraction.

- AND superstates

(concurrent substates)
% When the superstate is “on”, all of
its states are also “on”
% Usually, the AND substates will be
nested further as OR superstates

employed

on payroll

assigned
to project

- OR superstates
% when the superstate is “"on”, only one
of its substates is “on”

employed

probationary

after [6 months]

Department of Computer Science

©2000-2003, Steve Easterbrook

25

Department of Computer Science
Hierarchical Statecharts

registerBirth()/
setDateOfBirth()

% University of Totonto

createRecord()

registerDeath ()

adult

:

% University of Totonto

Checking your Statecharts

- Consistency Checks

% All events in a statechart should appear as:
> operations of an appropriate class in the class diagram and
» incoming messages for this object on a collaboration/sequence diagram

% All actions in a statechart should appear as:
> operations of an appropriate class in the class diagram and
> outgoing messages for this object on a collaboration/sequence diagram

- Style Guidelines
% Give each state a unique, meaningful name
% Only use superstates when the state behaviour is genuinely complex
% Do not show too much detail on a single statechart

% Use guard conditions carefully to ensure statechart is unambiguous
> Statecharts should be deterministic (unless there is a good reason)

- You probably shouldn't be using statecharts if:
% you find that most transitions are fired “"when the state completes”
% many of the trigger events are sent from the object to itself
% your states do not correspond to the attribute assignments of the class

Department of Computer Science

©2000-2003, Steve Easterbrook

27

/ & single ™~ partnered ®
spouse. registerDeath ()
[id d } registerDeath ()
widowe <
divorced |« registerDivorce(] separated
K | registerMarriage()/setSpouse() /
© 2000-2003, Steve Easterbrook 26
%" University of Totonto Department of Computer Science

UML Sequence Diagrams

participating i i
i i object T~

Initiator Staff Scheduler Participant
:Person :Person :Person :Person

Call) iteration

Respond()
., What's up?()

Give mtg details() >

:! [for all participants] *Inform()
S Acknowledge()
(\1
[for all participants] *Remind() »
Acknowledge()
conditioh Prompt()
Show schedule()

decision=0K] ScheduleOK’ed()

*Inform()

[for all panicipantﬁ H

© 20002003, Steve Easterbrook 28

%" University of Totonto Department of Computer Science

¥ Tabular Specifications: SCR

Four Variable Model:

System
Monitored
— software
Variables |
Dictionaries: Tables: also:
Monitored/Controlled Mode Transition Tables Assertions,
/ariables i Event Tables Scenarios,

=_—— L) =1

Condition Tables

Constants ——

SCR Specification

© 20002003, Steve Easterbrook 29

%" University of Totonto Department of Computer Science

SCR basics

- Modes and Mode classes
% A mode class is a finite state machine, with states called system modes
> Transitions in each mode class are triggered by events
% Complex systems are described using a number of mode classes operating in
parallel

- System State

% A (system) state is defined as:
> the system is in exactly one mode from each mode class...
» ..and each variable has a unique value

- Events

% An event occurs when any system entity changes value
> An input event occurs when an input variable changes value
> Single input assumption - only one input event can occur at once
> Notation: @T(c) means “c changed from false to true”
% A conditioned event is an event with a predicate
> @T(c) WHEN d means: "c became true when ¢ was false and d was true”

© 20002003, Steve Easterbrook 30

Source: Adapted from Heitmeyer et. al. 1996.

% University of Totonto

¥ SCR Tables
- Mode Class Tables

% Define the set of modes (states) that the software can be in.

% A complex system will have many different modes classes
» Each mode class has a mode table showing the conditions that cause transitions
between modes
% A mode table defines a partial function from modes and events to modes

- Event Tables
% An event table defines how a term or controlled variable changes in
response to input events
% Defines a partial function from modes and events to variable values

- Condition Tables
% A condition table defines the value of a term or controlled variable under
every possible condition
% Defines a total function from modes and conditions to variable values

Department of Computer Science

©2000-2003, Steve Easterbrook Source: Adapted from Heitmeyer et. al. 1996. 31

%" University of Totonto Department of Computer Science

Example: Temp Control System

Mode transition table:
Current Powered Too Cold Temp OK Too Hot New Mode
Mode on
Off @T - t - Inactive
@T t - - Heat
@T - - t AC
Inactive @F - - - Off
R @T - - Heat
- - - @T AC
Heat @F - - - Off
- - @T - Inactive
AC @F - - - Off
- - @T - Inactive

© 20002003, Steve Easterbrook 32

Source: Adapted from Heitmeyer et. al. 1996.

& University of Toronto

Mode transition table:

Failure modes

Current Powered | Cold Too | Warm | Too New

Mode on Heater | Cold [AC Hot Mode

NoFailure t @T t - |HeatFailure
t - - QT t | ACFailure
HeatFailure t @F t - | NoFailure
ACFailure t - - @F t |NoFailure
Event table:
Modes

NoFailure @T(INMODE) never

ACFailure, HeatFailure never @T(INMODE)

Warning light = Off On

Department of Computer Science

©2000-2003, Steve Easterbrook

Source: Adapted from Heitmeyer et. al. 1996.

&

University of Totonto

Consistency Checks in SCR
- Syntax

% did we use the notation correctly?

- Type Checks
% do we use each variable correctly?
- Disjointness

% is there any overlap between rows of the mode tables?
> ensures we have a deterministic state machine

- Coverage
% does each condition table define a value for all possible conditions?

- Mode Reachability

% is there any mode that cannot ever happen?

- Cycle Detection

% have we defined any variable in terms of itself?

Department of Computer Science

©2000-2003, Steve Easterbrook

34

