Lecture 3: starting points

Last Week:
Context for RE
What is Engineering?
Lifecycle models
Systems Theory

This Week:
Initiating an RE process:
Stakeholders and Boundaries
Goals and Scenarios
Feasibility and Risk

Next Week:
Elicitation Techniques:
Interviews & Questionnaires
Cognitive approaches
Ethnography

Starting Points
→ Stakeholders
% Importance of Customer Links
% Who are the stakeholders?

→ Boundaries
% How do you scope the problem?

→ Goals and Scenarios
% A useful way to organise initial collection of information

→ Feasibility
% How to conduct a feasibility study
% How to choose which project to pursue

→ Risk
% Continuous Risk Management
% Identifying risks through hazard and fault analysis

Finding out about the four worlds
→ Subject World
% The subject matter of the information system:
 ➔ e.g., customers, accounts, transactions for a bank information system

→ Usage World
% The environment within which the planned system will operate
 ➔ e.g., people, such as managers, clerks, customers; also business processes such as handling a withdrawal, a deposit of foreign currency, ...,

→ System World
% What the system does within its operational environment;
% What information it contains and what functions it performs;
 ➔ e.g., system records all transactions in a database, reports on transactions for a particular account, gives account balance, ...

→ Development World
% The development process, team, schedule, required qualities (security, performance,...) etc.
 ➔ e.g., system to be delivered in 12 months, fully tested to MCDC standard, etc.
Stakeholders

- **Stakeholder analysis:**
 - Identify all the people who must be consulted during information acquisition
 - Look for stakeholders associated with each of the four worlds

- **Example stakeholders**
 - Users
 - concerned with the features and functionality of the new system
 - Designers
 - want to build a perfect system, or reuse existing code
 - Systems analysts
 - want to "get the requirements right"
 - Training and user support staff
 - want to make sure "we are doing better than the competition"
 - Technical authors
 - will prepare user manuals and other documentation for the new system
 - The project manager
 - wants to complete the project on time, within budget, with all objectives met.
 - "the customer"
 - whoever it is that pays for the new system!

Links with customers

- **Successful projects tend to have more links with customer(s)**

From Keil & Carmel, CACM May 1995

Customer-Developer Links

- **Customer-Developer Links**

Difficulties of Elicitation

- **Thin spread of domain knowledge**
 - The knowledge might be distributed across many sources
 - It is rarely available in an explicit form (i.e., not written down)
 - There will be conflicts between knowledge from different sources
 - People have conflicting goals
 - People have different understanding of the problem

- **Tacit knowledge (The "say-do" problem)**
 - People find it hard to describe knowledge they regularly use
 - Descriptions may be inaccurate rationalizations of expert behaviour

- **Limited Observability**
 - The problem owners might be too busy solving it using the existing system
 - Presence of an observer may change the problem
 - E.g., the Probe Effect and the Hawthorne Effect

- **Bias**
 - People may not be free to tell you what you need to know
 - Political climate & organisational factors matter
 - People may not want to tell you what you need to know
 - The outcome will affect them, so they may try to influence you (hidden agendas)
Example

→ The problem area:
 - Loan approval department in a large bank

→ Why this might be difficult:
 - Implicit knowledge:
 - There is no document in which the rules for approving loans are written down
 - Conflicting information:
 - Different members of the department have different ideas about what the rules are
 - Say-do problem:
 - The loan approval process described to you by the loan approval officers is quite different from your observations of what they actually do
 - Probe effect:
 - The loan approval process used by the officers while you are observing is different from the one they normally use
 - Bias:
 - The loan approval officers fear that your job is to computerize their jobs out of existence, so they are deliberately emphasizing the need for case-by-case discretion (to convince you it has to be done by a human)

Psychological Considerations

→ Experts are not used to describing what they do.
 - Three stage model of learning:
 1) Cognitive - verbal rehearsal of tasks;
 2) Associative - reinforcement through repetition, verbal mediation disappears
 - Procedural and declarative are different mechanisms
 - Declarative knowledge becomes procedural with repeated application - experts lose awareness of what they know and cannot introspect reliably
 - Experts have little or no introspective access to higher order cognitive processes

Representational Problems

→ Experts don’t have the language to describe their knowledge
 - No spoken language offers the necessary precision
 - Knowledge Engineer and Expert must work together to create a suitable language
 - Different knowledge representations are good for different things
 - Epistemological adequacy: does the formalism express expert’s knowledge well?

Brittleness

→ Knowledge is created, not extracted.
 - Knowledge models are abstractions of reality and hence are unavoidably selective
 - Brittleness caused by the simplifying assumptions - instead of adding more knowledge, a better (more comprehensive) model is needed.

Expert Bias

→ What is bias?
 - Bias only exists in relation to some reference point
 - can there ever be “no bias” (reflects reality or truth)
 - We cannot perceive reality directly:
 - It is interpreted through a filter of mental models
 - mediated by our senses and perceptual pathways
 - All decision making is based partly on personal value systems

→ Types of bias:
 - Methodological bias
 - expert makes assumptions to please the interviewer or some other audience
 - Cognitive bias
 - expert filters information to fit with her own mental model

Sources of Bias

→ Scoping decision 1

→ Decide the scope of the problem:
 - E.g. Bookstore example:
 - “Textbooks are often not ordered in time for the start of classes”
 - But that’s just a symptom. (Do you ask the manager “why?”)
 - “Because we don’t receive the booklists from instructors early enough”
 - “Is that just a symptom of some other problem? (as you ask the instructors “why?”)
 - “Because the instructors aren’t allocated to courses early enough”
 - “Is that just a symptom of some other problem? (as you ask the book office “why?”)
 - “Because we never know who’s available to teach until the last minute”
 - “Is that just a symptom of some other problem? (as you ask the dept chair “why?”)
 - “Because there’s always uncertainty about who gets hired, sabbaticals, etc.”
 - “Is that just a symptom of some other problem? (as you ask the dept chair “why?”)
 - “Because instructors we want to hire don’t accept our offers early enough”
 - “Is that just a symptom of some other problem? (as you ask the new recruits “why?”)
 - “Because other universities seem to wait for ages before making offers”
 - “Is that just a symptom of some other problem? (as you ask the provost “why?”)
 - “Because it takes us a long time to reach consensus on hiring”
 - “Is that just a…oh wait…maybe we can develop a decision support system for faculty hiring at U of Waterloo, and that will help us get our textbooks for the start of class.”
How to scope the problem

→ Difficulty:
 % Every problem can be seen as as symptom of some other (larger) problem
 % You can keep on tracing root causes forever if you’re not careful
→ Approach: (...) ask yourself these questions...
 % Is there a reasonable expectation that this problem can be solved?
 (independently of the larger problem?)
 % Is there a reasonable expectation that solving this problem will help?
 (without also solving the larger problem?)
 % Is this a problem that the stakeholders want solved?
 (do the “local experts” think this problem is the one that matters?)
 % Is this a problem that someone will pay you to solve?
 (hint: a feasibility study should quantify the return on investment)

→ Difficulty:
 % We could keep on throwing more technology at the problem forever
 % It’s hard to decide when to stop adding extra “bells and whistles”
→ Approach: (...) select among alternatives carefully...
 % Is there a reasonable expectation that this alternative can be implemented?
 (independently of all the other options?)
 % Is there a reasonable expectation that implementing this alternative will
 (help to) solve the original problem?
 (without also having to address other aspects of the problem?)
 % Is this a solution that someone will pay you to build?
 (hint: a feasibility study should quantify the return on investment for each
 alternative)

→ Decide the scope of the solution
 % Say you decided that delay in processing booklists from instructors is the
 right level of problem to tackle.
 % “So, let’s computerize the submission of textbook forms from instructors”
 % But while we’re at it:
 “It would help if we also computerized the submission of orders to the publishers”
 % and of course:
 “we ought to computerize the management of book inventories too, as we can
 quickly check stock levels before ordering new books”
 % and in that case:
 “we might as well computerize the archives of past years booklists so that we can
 predict demand better”
 % and therefore:
 “it would also make sense to provide a computerized used book exchange, because
 that has a big effect on demand for new books”
 % and then of course there’s... oh, wait, this is going to cost millions!
 “Bookstore manager: ‘tell me again how this automated used book exchange will help me order
 books faster’?”

→ Focus on why systems are constructed
→ Express the ‘why’ as a set of stakeholder goals
→ Use goal refinement to arrive at specific requirements
→ Goal analysis
 % document, organize and classify goals
→ Goal evolution
 % refine, elaborate, and operationalize goals
→ Goal hierarchies show refinement and obstacle relationships between goals

→ Advantages
 % Reasonably intuitive
→ Explicit declaration of goals provides sound basis for conflict resolution

→ Disadvantages
 % Hard to cope with evolution of goals
 % Can regress forever up (or down) the goal hierarchy
Using a goal-based approach

→ Goals
 % High level objectives of the business or organization

→ Requirements
 % Specify how a goal is to be accomplished by the new system

→ Types
 % Achievement goals
 % Maintenance goals
 % Soft goals

→ Obstacles & constraints
 % Obstacles are behaviors that prevent achievement of a given goal
 % Constraints are conditions on the achievement of goals

→ Tips
 % Multiple sources yield better goals
 % Associate stakeholders with each goal (reveals viewpoints and conflict)
 % Use scenarios to explore how goals can be met
 % Explicit consideration of obstacles helps to elicit exceptions

Source: Adapted from Easterbrook, 1993.

Goal Analysis

→ Goal Elaboration:
 % "Why" questions explore higher goals (context)
 % "How" questions explore lower goals (operations)
 % "How else" questions explore alternatives

→ Dependency Analysis:
 % Precedence ordering - must achieve goals in a particular order
 % Obligation - achieving one goal requires achievement of another
 % Thwarting - achieving one goal prevents achievement of another

→ Obstacle Analysis:
 % Can this goal be obstructed, if so how?
 % What are the consequences of obstructing it?

Modelling Goals

Crucial planning decision made

Decision made by email discussion

Decision mode at a meeting

Agenda defined

Meeting scheduled

Meeting held

Minutes circulated

Meeting requested

Attendee AV & other needs defined

Attendee preferences known

Room availability determined

Facilities booked

Meeting announced

Attendance confirmed

Changes handled

Attendees notified

Source: Adapted from Easterbrook, 1993.

Scenarios

→ Scenarios
 % Specific sequence of interaction between actor and system
 % Tend to be short (e.g. between 3 and 7 steps)
 % May be:
 % positive (i.e. required behavior)
 % negative (i.e. an undesirable interaction)
 % May be indicative (describe current system) or optative (how it should be)

→ Advantages
 % Very natural: stakeholders tend to use them spontaneously
 % E.g. "Suppose I'm admitted to hospital - what happens during my admission?"
 % Typical answer: "You, or the person accompanying you would talk to the person
 at the admissions desk. You have to show your OHIP card and explain who referred
 you to the hospital. Then you..." (and so on)
 % Short scenarios very good for quickly illustrating specific interactions

→ Disadvantages
 % Lack of structure: need use cases or task models to provide higher level view

Source: Adapted from Easterbrook, 1993.
Example Scenario

Title: Successful meeting scheduled using messaging option

Participants: Alice (initiator, not attending); Bob, Carlo, Daphne (attendees)

<table>
<thead>
<tr>
<th>Action</th>
<th>Goals satisfied</th>
<th>Obstacles / Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice requests meeting, specifying participants, timeframe</td>
<td>Meeting requested, attendee list obtained</td>
<td>What if selected timeframe is inconvenient?</td>
</tr>
<tr>
<td>Daphne sends participant requests to Bob, Carlo and Daphne</td>
<td></td>
<td>Did we miss a goal?</td>
</tr>
<tr>
<td>Bob reads message</td>
<td>Participants informed</td>
<td>Can’t detect when messages are read, what happens if Bob reads the message but doesn’t reply?</td>
</tr>
<tr>
<td>Carlo reads message</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphne reads message</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bob replies with preferences</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphne replies with preferences</td>
<td>Attendee preferences known</td>
<td>What if the preferences are mutually exclusive?</td>
</tr>
<tr>
<td>Daphne replies with preferences</td>
<td></td>
<td>Should we allow some to be higher priority?</td>
</tr>
<tr>
<td>AS schedules meeting</td>
<td>Room availability determined, room booked</td>
<td></td>
</tr>
<tr>
<td>AS notifies Alice, Bob, Carlo, Daphne of time and location</td>
<td>Meeting announced, attendance confirmed (?)</td>
<td>How do we know if they’ve all read the announcement? What if the schedule is no longer convenient for one of them?</td>
</tr>
</tbody>
</table>

Goal Models & Scenarios

Goal Models:
- Hierarchical collections of desired goals
- Subgoals are tasks (or possibly use-cases)
 - Subgoals may occur in sequence, in parallel, or as alternatives.
 - Subgoals may occur periodically or in response to contingencies.

Scenarios:
- % are paths through a goal model, taking in a specific time-sequence of steps
- % can be used to organize requirements
- Can include parallelism
 - but only one alternative at each choice point.

Exceptions:
- % are important (often “business critical”) variants on the scenario.
- Cannot be modeled as scenarios themselves, as they interact with many concrete executable scenarios.

Use Cases

What is a use case?
- Each different way that an actor interacts with a system is a use case
 - “A description of a sequence of actions that a system performs that yields an observable result of value to a particular actor” [Bosch]
 - All the use cases need to be enumerated (or the requirements will not be complete)
- A description of a set of possible scenarios, with a common purpose
- Typically written in natural language
- No internal description of the system; just the interaction.

Combining use cases
- Extends/uses

Advantages & Disadvantages
- Detailed characterization of all possible interaction with the system
- Helps in drawing system boundary, and scoping the requirements
- Use cases do not capture domain knowledge
- Don’t confuse use cases with a precise specification

Use Cases - Example

Use Case Description
Name: Place Order
Precondition: A valid user has logged into the system.
Description:
1. The use case starts when the customer selects Place Order.
2. The customer enters his or her name and address.
3. If the customer enters only the zip code, the system will supply the city & state.
4. The customer will enter product codes for the desired products.
5. The system will supply a product description and price for each item.
6. The system will keep a running total of items ordered as they are entered.
7. The customer will enter credit card payment information.
8. The customer will select Submit.
9. The system will verify the information, save the order as pending, and forward payment information to the accounting system.
10. When payment is confirmed, the order is marked Confirmed, an order ID is returned to the customer, and the use case ends.

Exceptions:
In step 9, any information is incorrect, the system will prompt the customer to correct the information.
Postcondition: The order has been saved in the system and marked confirmed.
Feasibility studies

→ Objectives of a feasibility study:
 - To find out if a software development project can be done:
 > ... is it possible?
 - To suggest possible alternative solutions;
 - To provide management with enough information to know:
 > Whether the project can be done
 > Whether the final product will benefit its intended users
 > What the alternatives are (so that a selection can be made in subsequent phases)
 > Whether there is a preferred alternative

→ A feasibility study is a management-oriented activity

 - After a feasibility study, management makes a "go/no-go" decision.

Content of feasibility study

→ Things to be studied in the feasibility study:
 - The present organizational system
 - Problems with the present system
 - Objectives and other requirements for the new system
 - Which problems need to be solved?
 - What needs to change?
 - Constraints
 > including nonfunctional requirements on the system (preliminary pass)
 - Possible alternatives
 > Stick with the current system should always be studied as one alternative
 > Different business processes for solving the problems
 > Different levels/types of computerization for the solutions
 - Advantages and disadvantages of the alternatives

→ Things to conclude:
 - Feasibility of the project
 - The preferred alternative.

Operational Feasibility

→ How do end-users and managers feel about...
 - ... the problem you identified?
 - ... the alternative solutions you are exploring?

→ You must evaluate:
 - Not just whether a system can work...
 - ...but also whether a system will work.

→ A workable solution might fail because of end user or management resistance:
 - Does management support the project?
 - How do the end users feel about their role in the new system?
 - Which users or managers may resist (or not use) the system?
 > People tend to resist change
 > Can this problem be overcome? If so, how?
 - How will the working environment of the end users change?
 - Can or will end users and management adapt to the change?

Technical Feasibility

→ Is the proposed technology or solution practical?
 - Do we currently possess the necessary technology?
 - Do we possess the necessary technical expertise, and is the schedule reasonable?
 - Is relevant technology mature enough to be easily applied to our problem?

→ What kinds of technology will we need?
 - Some organizations like to use state-of-the-art technology
 - but most prefer to use mature and proven technology.
 - A mature technology has a larger customer base for obtaining advice concerning problems and improvements.

→ Is the required technology available "in house"?
 - If the technology is available:
 > ... does it have the capacity to handle the solution?
 - If the technology is not available:
 > can it be acquired?
Schedule Feasibility

→ How long will it take to get the technical expertise?
 % We may have the technology, but that doesn't mean we have the skills
 required to properly apply that technology.
 > True, all information systems professionals learn new technologies.
 > However, that learning curve will impact the schedule.

→ Assess the schedule risk:
 % Given our technical expertise, are the project deadlines reasonable?
 % If there are specific deadlines, are they mandatory or desirable?
 > If the deadlines are desirable rather than mandatory, the analyst can propose
 alternative schedules.

→ What are the real constraints on project deadlines?
 % If the project overruns, what are the consequences?
 > Deliver a properly functioning information system two months late...
 > ... or deliver an error-prone, useless information system on time?
 % Missed schedules are bad, but inadequate systems are worse!

3 ways of analyzing Costs vs. Benefits

→ Payback Analysis
 % how long will it take (usually, in years) to pay back the project, and
 accrued costs:
 Total costs (initial + incremental) - Yearly return (or savings)

→ Net Present Value Analysis
 % determines the profitability of the new project in terms of today's dollar
 values
 > if you invest in the proposed project, after n years you will have $XXX
 profit/loss on your investment.

→ Return on Investment Analysis:
 % compares the lifetime profitability of alternative solutions.
 Lifetime benefits - Lifetime costs

Economic Feasibility

→ Can the bottom line be quantified yet?
 % Very early in the project, economic feasibility analysis is just a judgement
 of whether possible benefits of solving the problem are worthwhile.
 % As soon as specific requirements and solutions have been identified, the
 costs and benefits of each alternative can be assessed.

→ Cost-benefit analysis
 % Purpose - answer questions such as:
 > Is the project justified (because benefits outweigh costs)?
 > Can the project be done, within given cost constraints?
 > What is the minimal cost to attain a certain system?
 > What is the preferred alternative, among candidate solutions?
 % Examples of things to consider:
 Hardware/software selection
 > How to convince management to develop the new system
 Selection among alternative financing arrangements (rent/lease/purchase)
 % Difficulties
 discovery and assessing benefits and costs...
 > they can both be intangible, hidden and/or hard to estimate
 ranking multi-criteria alternatives

Risk Management

→ Two Parts:
 % Risk Assessment
 % Risk Control

→ Definitions
 % Risk Exposure (RE) = p(unsat. outcome) X loss(unsat. outcome)
 % Risk Reduction Leverage (RRL) = (REbefore - REafter) / cost of intervention

→ Example Assessment framework (from NASA)

<table>
<thead>
<tr>
<th>Likelihood of Occurrence</th>
<th>Very High</th>
<th>High</th>
<th>Moderate</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low of Life</td>
<td>Catastrophic</td>
<td>Catastrophic</td>
<td>Severe</td>
<td></td>
</tr>
<tr>
<td>Low of Spacecraft</td>
<td>Catastrophic</td>
<td>Severe</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>Low of Mission</td>
<td>Severe</td>
<td>Severe</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td>Degraded Mission</td>
<td>High</td>
<td>Moderate</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Inconveniences</td>
<td>Moderate</td>
<td>Low</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>

Source: Adapted from Blum, 1992, p441-447.
Top Ten Risks (with Countermeasures)

<table>
<thead>
<tr>
<th>Personnel Shortfalls</th>
<th>Continuing stream of reqts changes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% use top talent</td>
</tr>
<tr>
<td></td>
<td>% team building</td>
</tr>
<tr>
<td></td>
<td>% training</td>
</tr>
<tr>
<td></td>
<td>Unrealistic schedules/budgets</td>
</tr>
<tr>
<td></td>
<td>% multi-source estimation</td>
</tr>
<tr>
<td></td>
<td>% designing to cost</td>
</tr>
<tr>
<td></td>
<td>% requirements scrubbing</td>
</tr>
<tr>
<td></td>
<td>Developing the wrong Software functions</td>
</tr>
<tr>
<td></td>
<td>% better requirements analysis</td>
</tr>
<tr>
<td></td>
<td>% organizational/operational analysis</td>
</tr>
<tr>
<td></td>
<td>Developing the wrong User Interface</td>
</tr>
<tr>
<td></td>
<td>% prototypes, scenarios, task analysis</td>
</tr>
<tr>
<td></td>
<td>Gold Plating</td>
</tr>
<tr>
<td></td>
<td>% requirements scrubbing</td>
</tr>
<tr>
<td></td>
<td>% cost benefit analysis</td>
</tr>
<tr>
<td></td>
<td>% designing to cost</td>
</tr>
<tr>
<td></td>
<td>Shortfalls in externally furnished components</td>
</tr>
<tr>
<td></td>
<td>% early benchmarking</td>
</tr>
<tr>
<td></td>
<td>% inspections, compatibility analysis</td>
</tr>
<tr>
<td></td>
<td>Shortfalls in externally performed tasks</td>
</tr>
<tr>
<td></td>
<td>% pre-award audits</td>
</tr>
<tr>
<td></td>
<td>% competitive designs</td>
</tr>
<tr>
<td></td>
<td>Real-time performance shortfalls</td>
</tr>
<tr>
<td></td>
<td>% targeted analysis</td>
</tr>
<tr>
<td></td>
<td>% simulations, benchmarks, models</td>
</tr>
<tr>
<td></td>
<td>Straining computer science capabilities</td>
</tr>
<tr>
<td></td>
<td>% technical analysis</td>
</tr>
<tr>
<td></td>
<td>% checking scientific literature</td>
</tr>
</tbody>
</table>