% University of Totonto

Department of Computer Science

Lecture 2: Context for RE

Last Week:
INTRO
Syllabus
Course Goals

Definitions

This Week:
Context for RE
What is Engineering?
Types of engineering project
RE in the engineering lifecycle
Systems Thinking

Next Week:
Project Starting points:
{Stakeholders, Boundaries,
Goals, Scenarios, Risks}

g’ University of Totonto Department of Computer Science

What is Engineering?

- Definition of Engineering:
% Engineering is the development of cost-effective solutions to practical
problems, through the application of scientific knowledge

» “..cost-effective..” - involves trade-offs, especially with resource usage

> “.solutions..” - engineering is creative and interventionist

» “.practical problems..” - the problems must matter to people

» “..scientific knowledge..” - uses analytical techniques based on applied science

- Normal or Radical design?

% Normal design: old problems, whose solutions are well known
> Engineering codifies standard solutions
> Engineer selects appropriate methods and technologies
> Design focuses on well understood devices

% Radical design: never been done, or past solutions have failed
» Often the challenge is to deal with a very complex problem
> Bring together complex assemblies of devices into new systems
» Systems Engineering is always radical design (by definition)!

©2000-2004, Steve Easterbrook

©2000-2004, Steve Easterbrook 2

% University of Totonto

)

Department of Computer Science
Is software different?

- Software is different!

% software is invisible, intangible, abstract
> Software alone is useless - its purpose is to configure some hardware to do
something

% there are no physical laws underlying software behaviour
% there are no physical constraints on software complexity

% software never wears out
» ..traditional reliability measures don't apply

% software can be replicated perfectly
» ..no manufacturing variability

- Software Myths:
% Myth: Cost of software is lower than cost of physical devices
% Myth: Software is easy to change
% Myth: Computers are more reliable than physical devices
% Myth: Software can be formally proved to be correct
% Myth: Software reuse increases safety and reliability

% Myth? Computers reduce risk over mechanical systems

©2000-2004, Steve Easterbrook

% University of Totonto Department of Computer Science

Professional Responsibility
- ACM/IEEE code of ethics:

% PUBLIC - act consistently with the public interest.

% CLIENT AND EMPLOYER - act in a manner that is in the best interests of your client
and employer, consistent with the public interest.

% PRODUCT - ensure that your products and related modifications meet the highest
professional standards possible.

% JUDGEMENT - maintain integrity and independence in your professional judgment.

% MANAGEMENT - subscribe to and promote an ethical approach to the management of
software development and maintenance.

% PROFESSION - advance the integrity and reputation of the profession consistent with
the public interest.

% COLLEAGUES - be fair to and supportive of your colleagues.

% SELF - participate in lifelong learning and promote an ethical approach to the practice
of the profession.

- Of particular relevance in RE:
% Competence - never misrepresent your level of competence
% Confidentiality - respect confidentiality of all stakeholders
% Intellectual property rights - respect protections on ideas and designs
% Data Protection - be aware of relevant laws on handling personal data

©2000-2004, Steve Easterbrook 4

'¥’ University of Totonto

)

Department of Computer Science

Project Management

- A manager can control 4 key variables:
%, Resources (can get more dollars, facilities, personnel)
% Time (can increase schedule, delay milestones, etc.)
% Product (can reduce functionality - e.g. scrub requirements)
% Risk (can decide which risks are acceptable)

- Approach (applies to any management)
% Understand the goals and objectives
> quantify them where possible
% Understand the constraints
» if there is uncertainty, use probability estimates
% Plan to meet the objectives within the constraints
% Monitor and adjust the plan
% Preserve a calm, productive, positive work environment

- Note:

% You cannot control what you cannot measure!

)

©2000-2004, Steve Easterbrook 5

'¥’ University of Totonto Department of Computer Science

Where Projects Come From

- Initiation of the project - Source of Requirements:
% Problem-driven % Customer-specific
> A problem has arisen that demands a > Specific customer with a specific
response problem
> e.g. existing system is “"broken” > The customer is the ultimate authority
% Change-driven % Market-based
> Changes in the business or its > System designed to be sold widely
environment > Marketing team acts as proxy for
> existing system becoming less useful customers & users
% Opportunity-driven > Product must generate customers
> New technology opens up new % Socially-useful
possibilities: > System is intended as a general benefit
> New markets open up: fo society
> efc > No (paying) customer
% Legacy-driven > E.g. some open source / free software;

> Project created because of prior software created in scientific research

commitment % Hybrid
> e.g earlier work left unfinished > developed for a specific customer, but
want to market the software eventually

©2000-2004, Steve Easterbrook 6

'¥’ University of Totonto

%)

Department of Computer Science

Software Types

- Information Systems
% software to support organizational work
% includes files/databases as well as applications
% More than 70% of all software falls in this category, written in languages
such as COBOL, RPG and 46Ls.
» Examples: Payroll and personnel, Financial transactions, Customer relations
database, ..

- Control Systems

% software that drives some sort of a hardware process
» Examples: flight control, industrial plant, an elevator system, credit card reader.

- Generic Services

% systems that provide some services for other systems
» Examples: many internet applications, e.g. search engines, stock quote services,
credit card processing, etc.
% Such systems will be developed using a variety of languages and middleware,
including Java, C++, CORBA, HTML/XML etc.

©2000-2004, Steve Easterbrook 7

'¥’ University of Totonto Department of Computer Science

\ 2 Waterfall Model

- View of development:
% a process of stepwise refinement
% largely a high level management
view

need
B
:"

- Problems:

% Static view of requirements -
ignores volatility

% Lack of user involvement once
specification is written

% Unrealistic separation of
specification from design

% Doesn't accommodate
prototyping, reuse, etc.

& "

Source: Adapted from Dorfinan, 1997, p7 & Loucopoulos & Karakostas, 1995, p29

©2000-2004, Steve Easterbrook

&

University of Totonto

Prototyping lifecycle

Source: Adapted from
Dorfinan, 1997, p9

. |
require- design build test
ments prototype prototype prototype —|
document
require- design code test integrate

- Prototyping is used for:
% understanding the requirements for the user interface
% examining feasibility of a proposed design approach
% exploring system performance issues

- Problems:
% users treat the prototype as the solution
% a prototype is only a partial specification

Department of Computer Science

©2000-2004, Steve Easterbrook

&

University of Totonto

Department of Computer Science

4 Phased Lifecycle Models

Sl Incremental development
design | code | test |in’regr'nfe| O&M | P
(each release adds more
g release 2 functionality)
= design | code | test |in’regr'nfe| O&M |
g release 3
3 —)I design | code | test |in’regr'nfe| O&M |
@
Irelease4
| design | code | test |in’regr'nfe| O&M |
version 1

reqts | design | code | test in’regr'nfel O&M |

lessons leqrnt
version 2.

reqts | design

in’regr'nfel 0&M |

llessons Ieérn? i

code | test

Evolutionary development yersion 3

(each version incorporates reqts | design | code | test |in’regr'nfe

new requirements)

©2000-2004, Steve Easterbrook Source: Adapted from Dorfman, 1997, p10

@

University of Totonto

V. The Spiral Model

Determine goals,
alternatives,
constraints

3.
Lg%
W% o0

Plan
acceptance

implementqs:
"ation plan test

Evaluate
alternatives
and risks

Develop
and
test

©2000-2004, Steve Easterbrook Source: Adapted from Pfleeger, 1998, p57

Department of Computer Science

@

Requirements in the Spiral Model

- Spiral model is a risk management model

- For each iteration:
% plan next phases;
% determine objectives & constraints:
% evaluate alternatives;
% resolve risks;
% develop product

- Includes as Requirements processes:
% Requirements risk analysis (using simulation and prototyping)
% Planning for design
(these reduce the risk that requirements process has to be repeated because
requirements cannot be met)

- Problems:

% Spiral model cannot cope with unforeseen changes during development
> e.q. emergence of new business objectives

University of Totonto Department of Computer Science

©2000-2004, Steve Easterbrook Source: Adapted from Loucopoulos & Karakostas, 1995, p30

University of Totonto

Department of Computer Science

V-Model

system

A
§
kS system
g requirements
£
v
e
o
s software
] requirement:
3

preliminary

S

software
integration

integration

acceptance
test

.|

\ design
“analyse ~a “test
and | demfled I component ' and
design” des{; /’r:s‘r integrate
\ code and unit /
debug test
time -

©2000-2004, Steve Easterbrook

University of Totonto

Department of Computer Science

- Basic Philosophy
% Reduce communication barriers
> Programmer interacts with customer
% Reduce document-heavy approach

> Documentation is expensive and of
limited use
% Have faith in the people
> Don't need fancy process models to tell
them what to dol

% Respond to the customer
> Rather than focussing on the contract

- Weaknesses

% Relies on programmer's memory
> Code can be hard to maintain

% Relies on oral communication
> Mis-interpretation possible

% Assumes single customer

representative

> Multiple viewpoints not possible

% Only short term planning

> No longer term vision

Agile Models

E.g. Extreme Programming
% Instead of a requirements spec,
use:
> User story cards
> On-site customer representative
% Pair Programming
% Small releases
> E.g. every three weeks
% Planning game
> Select and estimate user story cards
at the beginning of each release
% Werite test cases before code
% The program code is the design doc
> Can also use CRC cards (Class-
Responsibility-Collaboration)
% Continuous Integration
> Integrate and test several times a day

©2000-2004, Steve Easterbrook

Source: Adapted from Nawrocki et al, RE 02

&

University of Totonto

Department of Computer Science

Inquiry Cycle

Prior Knowledge
(e.g. customer feedback)

Initial hypothesis

A 4
Observe
(what is wrong with
the current system?)

Look for anomalies - what can”
the current theory explain?

Intervene
(replace the old system)

Carry out the
experiments

Design experiments to
test the new theory

Design
(invent a better system)

Note similarity with
Process of scientific
Investigation:
Requirements models are
theories about the world:
Designs are tests of those
theories

A 4
Model
(describe/explain the
observed problems)

Create/refine
a better theory

©2000-2004, Steve Easterbrook

Department of Computer Science

g Haky
RAIN, RAIN
60 AWAY!

LT3

what is it you o
really want?

©2000-2004, Steve Easterbrook

% University of Totonto

)

Department of Computer Science

Systems Theory

© 20002004, Steve Easterbrook 17

)

@’ University of Totonto Department of Computer Science

What is a system?

- Definition of a System:

% Some part of reality that can be observed to interact with its environment
> Separated from its environment by a boundary
> A system receives inputs from the environment & send outputs to the environment
» A system usually have subsystems
» Systems that endure have a control mechanism
» Systems have interesting emergent properties
% Examples:
> cars, cities, houseplants, rocks, spacecraft, buildings, weather,...
> operating systems, DBMS, the internet, an organization
% Non-examples (there aren't manyl!):
> numbers, truth values, letters.
% A closed system doesn't interact with its environment (there aren't many!)

- Systems might have no physical existence
% Only manifestations are symbolic/analogical representations of the system

% Such systems are social constructs: they exist because we agree on ways to
observe them

©2000-2004, Steve Easterbrook Source: Adapted from Wieringa, 1996, p10

% University of Totonto

%)

Department of Computer Science

Conceptual picture of a system

.ot System boundary *--..,

e
What the system does g@g Outpulf

F | Control :
3 | A :
Lo, %wmg‘w\ L. W,wf
“, Feed-forward “, | How the system Feedback -
'W;//} is controlled
System environment e
© 2000-2004, Steve Easterbrook To

%)

@’ University of Totonto Department of Computer Science

Types of System

- Natural Systems

% E.g. ecosystems, weather, water cycle, the human body, bee colony, ...

- Abstract Systems

% E.g. set of mathematical equations, computer programs, etc

- Designed Systems

% E.g. cars, planes, buildings, interstates, telephones, the internet, ...

- Human Activity Systems

% E.g. Organizations, markets, clubs, ..

- Information Systems (exist to support a HAS)

% E.g. MIS, transaction processing, real-time control systems, ...

© 20002004, Steve Easterbrook 20

Source: Adapted from Carter et. al., 1988, p12

%" University of Totonto

Department of Computer Science

Hard Systems:

- The system is
% precise,
% well-defined
% quantifiable

- No disagreement about:
% Where the boundary is
% What the interfaces are
% The internal structure
% Control mechanisms
% The purpose (??)

- Examples
% ?

Hard vs. Soft Systems

Soft Systems:

- The system...
% _is hard to define precisely
% _is an abstract idea
% ..depends on your perspective

- Not easy to get agreement

% The system doesn't “really” exist

% Calling something a system helps us
to understand it

% Identifying the boundaries,
interfaces, controls, helps us to
predict behaviour

% The “system” is a theory of how
some part of the world operates

- Examples:
% All human activity systems
% (what else?)

©2000-2004, Steve Easterbrook

21

Department of Computer Science

System Boundary

- System Environment:
% the part of the world with which the system can interact
> every system has an environment
> the environment is itself a system
% Distinction between system and environment depends on your viewpoint

@’ University of Totonto

- Choosing the boundary

% Choice should be made to maximize modularity

% Examples:
> Telephone system - include: switches, phone lines, handsets, users, accounts?
» Desktop computer - do you include the peripherals?
» Flight control system - do you include the ground control?

% Tips:
» Exclude things that have no functional effect on the system
» Exclude things that influence the system but which cannot be influenced or

controlled by the system
» Include things that can be strongly influenced or controlled by the system

> Balance between totally open and totally closed systems

22

©2000-2004, Steve Easterbrook Source: Adapted from Wieringa, 1996, p11-12

%" University of Totonto

Department of Computer Science

¥ Example

System Boundary

S Departmen;

@’ University of Totonto Department of Computer Science

v Achieving Modularity

- Guidelines:
% does the system have an underlying idea that can be described in one or
two sentences?
% Interaction among system components should be greater than interaction

between the system and it's environment
» Changes within a system should cause minimal changes outside
> More ‘energy’ is required to transfer something across the system boundary than
within the system boundary
% The system boundary should ‘divide nature at its joints’

- Choose the boundary that:
% increases regularities in the behaviour of the system
% simplifies the system behavior

©2000-2004, Steve Easterbrook

©2000-2004, Steve Easterbrook

Source: Adapted from Carter et. al., 1988, p6

Source: Adapted from Wieringa, 1996, p12

% University of Totonto

Control

- Control holds a system together
% A system with no control won't endure

-+ A system can be characterized by the kind of control

present

% Self-maintaining causal network
> a self-enhancing process: e.g. growth of the internet
> a self-confirming process: e.g. visibility of a footpath
> a self-limiting process: e.g. pricing of commodities
% Purposive Control
> System has a recognizable purpose or goal
> control of sub-systems is directed towards achieving this goal
> “purpose without choice”
% Purposeful Control
> special arrangements exist for decision making and control
> Free choice among competing alternatives
> “purpose with choice”

Department of Computer Science

©2000-2004, Steve Easterbrook Source: Adapted from Carter et. al., 1988, pl6

25

'i% University of Totonto

System Structure
- Subsystems...

% A system is an organised collection of subsystems acting as a whole
> subsytems are systems too!

% Subsystem boundaries should be chosen so that subsystems are modular

- An Aspect of a system

% is a restricted subset of the interactions between its subsystems
» E.g. for a car: dll interactions to do with safety
» note fluidity between safety as an aspect, and safety as a subsystem

- Visibility
% Interactions between subsystems only are internal to the system

% Interactions between subsystems and the environment are external

% Engineers usually try to hide internal interactions
» For social systems, the internal interactions can be hidden too.

- Observability

% the state space is defined in terms of the observable behavior
% the perspective of the observer determines which states are observable

Department of Computer Science

©2000-2004, Steve Easterbrook Source: Adapted from Wieringa, 1996, p13

26

%’ University of Totonto

v System State

- State

% a system will have memory of its past interactions, i.e. 'state’
% the state space is the collection of all possible states

- Discrete vs continuous
% a discrete system:
> the states can be represented using natural numbers
% a continuous system:
> state can only be represented using real numbers

% a hybrid system:

> some aspects of state can be represented using natural numbers

- For modelling purposes:
% Can approximate a continuous system with a discrete model
» All models are approximations anyway!
% But make sure the inaccuracies don’t matter...

Department of Computer Science

©2000-2004, Steve Easterbrook Source: Adapted from Wieringa, 1996, pl6-17

27

%

% University of Totonto

System Properties

- A system property
% is an aspect of system behavior
> often referred to as ‘attributes’ or ‘quality attributes’
> in software engineering, also known as the “ilities”

- Specifying properties:
% A property is specified behaviorally if an experiment has been specified
that will tell us unambiguously whether the system has the property
> A property is specified non-behaviorally if no such experiment has been identified
% Compare with: functional vs. non-functional requirements
% Testing for non-behavioral properties requires a subjective (consensual)
decision

- Proxies
% Sometimes it is hard to specify a desired property behaviorally
> can use a different property to indicate the presence of the desired property
% E.g. 'easy to learn’, ‘easy to use’ as proxies for 'user friendly’

Department of Computer Science

©2000-2004, Steve Easterbrook Source: Adapted from Wieringa, 1996, p20-21

28

% University of Totonto

)

Systems Thinking

A system that helps to understand the
real-world situation

Makes
comparisons

A real-world
situation or
problem

Department of Computer Science

©2000-2004, Steve Easterbrook

29

)

% University of Totonto

Phenomena

- A little Philosophy:

% Phenomenology
» the study of the things that appear to exist when you observe the world
% Ontology
» the study of what really does exist (independently from any observer)
% Epistemology
> the study of what people are capable of knowing (or what they believe)
% Weltanschauung
> a world view that defines the set of phenomena that an observer is willing (likely)
to observe (‘viewpoint')

- Each method has its own Weltanschauung
% Examples:

> OO sees the world as objects with internal state that respond to stimuli
> SA sees the world as processes that transform data
» Natural language also defines a viewpoint
% Each method restricts the set of phenomena you can describe
> ...and therefore what you can model
% Choose a method that emphasizes the appropriate kinds of phenomena

Department of Computer Science

©2000-2004, Steve Easterbrook Source: Adapted from Jackson, 1995, p143, and Blum 1996, chapter 2

30

