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What is Engineering?
‹ Definition of Engineering:

ƒ Engineering is the development of cost-effective solutions to practical
problems, through the application of scientific knowledge
ÿ “…cost-effective…” - involves trade-offs, especially with resource usage
ÿ “…solutions…” - engineering is creative and interventionist
ÿ “…practical problems…” - the problems must matter to people
ÿ “…scientific knowledge…” - uses analytical techniques based on applied science

‹ Normal or Radical design?
ƒNormal design: old problems, whose solutions are well known

ÿ Engineering codifies standard solutions
ÿ Engineer selects appropriate methods and technologies
ÿ Design focuses on well understood devices

ƒ Radical design: never been done, or past solutions have failed
ÿ Often the challenge is to deal with a very complex problem
ÿ Bring together complex assemblies of devices into new systems
ÿ Systems Engineering is always radical design (by definition)!
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Is software different?
‹ Software is different!

ƒ software is invisible, intangible, abstract
ÿ Software alone is useless - its purpose is to configure some hardware to do

something
ƒ there are no physical laws underlying software behaviour
ƒ there are no physical constraints on software complexity
ƒ software never wears out

ÿ …traditional reliability measures don’t apply
ƒ software can be replicated perfectly

ÿ …no manufacturing variability

‹ Software Myths:
ƒMyth: Cost of software is lower than cost of physical devices
ƒMyth: Software is easy to change
ƒMyth: Computers are more reliable than physical devices
ƒMyth: Software can be formally proved to be correct
ƒMyth: Software reuse increases safety and reliability
ƒMyth? Computers reduce risk over mechanical systems
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Professional Responsibility
‹ ACM/IEEE code of ethics:

ƒ PUBLIC - act consistently with the public interest.
ƒ CLIENT AND EMPLOYER - act in a manner that is in the best interests of your client

and employer, consistent with the public interest.
ƒ PRODUCT - ensure that your products and related modifications meet the highest

professional standards possible.
ƒ JUDGEMENT - maintain integrity and independence in your professional judgment.
ƒ MANAGEMENT - subscribe to and promote an ethical approach to the management of

software development and maintenance.
ƒ PROFESSION - advance the integrity and reputation of the profession consistent with

the public interest.
ƒ COLLEAGUES - be fair to and supportive of your colleagues.
ƒ SELF - participate in lifelong learning and promote an ethical approach to the practice

of the profession.

‹ Of particular relevance in RE:
ƒ Competence - never misrepresent your level of competence
ƒ Confidentiality - respect confidentiality of all stakeholders
ƒ Intellectual property rights - respect protections on ideas and designs
ƒ Data Protection - be aware of relevant laws on handling personal data
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Project Management
‹ A manager can control 4 key variables:

ƒ Resources (can get more dollars, facilities, personnel)
ƒ Time (can increase schedule, delay milestones, etc.)
ƒ Product (can reduce functionality - e.g. scrub requirements)
ƒ Risk (can decide which risks are acceptable)

‹ Approach (applies to any management)
ƒ Understand the goals and objectives

ÿ quantify them where possible
ƒ Understand the constraints

ÿ if there is uncertainty, use probability estimates
ƒ Plan to meet the objectives within the constraints
ƒMonitor and adjust the plan
ƒ Preserve a calm, productive, positive work environment

‹ Note:
ƒ You cannot control what you cannot measure!
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Where Projects Come From
‹ Initiation of the project

ƒ Problem-driven
ÿ A problem has arisen that demands a

response
ÿ e.g. existing system is “broken”

ƒ Change-driven
ÿ Changes in the business or its

environment
ÿ existing system becoming less useful

ƒ Opportunity-driven
ÿ New technology opens up new

possibilities;
ÿ New markets open up;
ÿ  etc

ƒ Legacy-driven
ÿ Project created because of prior

commitment
ÿ e.g earlier work left unfinished

‹ Source of Requirements:
ƒ Customer-specific

ÿ Specific customer with a specific
problem

ÿ The customer is the ultimate authority
ƒ Market-based

ÿ System designed to be sold widely
ÿ Marketing team acts as proxy for

customers & users
ÿ Product must generate customers

ƒ Socially-useful
ÿ System is intended as a general benefit

to society
ÿ No (paying) customer
ÿ E.g. some open source / free software;

software created in scientific research
ƒ Hybrid

ÿ developed for a specific customer, but
want to market the software eventually
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Software Types
‹ Information Systems

ƒ software to support organizational work
ƒ includes files/databases as well as applications
ƒMore than 70% of all software falls in this category, written in languages

such as COBOL, RPG and 4GLs.
ÿ Examples: Payroll and personnel, Financial transactions, Customer relations

database, …

‹ Control Systems
ƒ software that drives some sort of a hardware process

ÿ Examples: flight control, industrial plant, an elevator system, credit card reader.

‹ Generic Services
ƒ systems that provide some services for other systems

ÿ Examples: many internet applications, e.g. search engines, stock quote services,
credit card processing, etc.

ƒ Such systems will be developed using a variety of languages and middleware,
including Java, C++, CORBA, HTML/XML etc.
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Waterfall Model

Source: Adapted from Dorfman, 1997, p7  & Loucopoulos & Karakostas, 1995, p29

requirements

design

code

integrate

test

perceived
 need ‹ View of development:

ƒ a process of stepwise refinement
ƒ largely a high level management

view

‹ Problems:
ƒ Static view of requirements -

ignores volatility
ƒ Lack of user involvement once

specification is written
ƒ Unrealistic separation of

specification from design
ƒ Doesn’t accommodate

prototyping, reuse, etc.
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document
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require-
ments

design
prototype

build
prototype

test
prototype

Source: Adapted from
Dorfman, 1997, p9Prototyping lifecycle

‹ Prototyping is used for:
ƒ understanding the requirements for the user interface
ƒ examining feasibility of a proposed design approach
ƒ exploring system performance issues

‹ Problems:
ƒ users treat the prototype as the solution
ƒ a prototype is only a partial specification

10

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

design code test integrate O&Mreqts

Phased Lifecycle Models

Requirem
ents

design code test integrate O&M

Source: Adapted from Dorfman, 1997, p10

design code test integrate O&M

design code test integrate O&M

design code test integrate O&M

design code test integrate O&Mreqts

design code test integratereqts

version 1

version 2

version 3

Release 1

release 2

release 3

release 4

lessons learnt

lessons learnt

Incremental development
(each release adds more

functionality)

Evolutionary development
(each version incorporates

new requirements)
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The Spiral Model
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Requirements in the Spiral Model
‹ Spiral model is a risk management model
‹ For each iteration:

ƒ plan next phases;
ƒ determine objectives & constraints;
ƒ evaluate alternatives;
ƒ resolve risks;
ƒ develop product

‹ Includes as Requirements processes:
ƒ Requirements risk analysis (using simulation and prototyping)
ƒ Planning for design
(these reduce the risk that requirements process has to be repeated because

requirements cannot be met)

‹ Problems:
ƒ Spiral model cannot cope with unforeseen changes during development

ÿ e.g. emergence of new business objectives
Source: Adapted from Loucopoulos & Karakostas, 1995, p30
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Agile Models
‹ Basic Philosophy

ƒ Reduce communication barriers
ÿ Programmer interacts with customer

ƒ Reduce document-heavy approach
ÿ Documentation is expensive and of

limited use
ƒ Have faith in the people

ÿ Don’t need fancy process models to tell
them what to do!

ƒ Respond to the customer
ÿ Rather than focussing on the contract

‹ Weaknesses
ƒ Relies on programmer’s memory

ÿ Code can be hard to maintain
ƒ Relies on oral communication

ÿ Mis-interpretation possible
ƒ Assumes single customer

representative
ÿ Multiple viewpoints not possible

ƒ Only short term planning
ÿ No longer term vision

E.g. Extreme Programming
ƒ Instead of a requirements spec,

use:
ÿ User story cards
ÿ On-site customer representative

ƒ Pair Programming
ƒ Small releases

ÿ E.g. every three weeks
ƒ Planning game

ÿ Select and estimate user story cards
at the beginning of each release

ƒ Write test cases before code
ƒ The program code is the design doc

ÿ Can also use CRC cards (Class-
Responsibility-Collaboration)

ƒ Continuous Integration
ÿ Integrate and test several times a day

E.g. Extreme Programming
ƒ Instead of a requirements spec,

use:
ÿ User story cards
ÿ On-site customer representative

ƒ Pair Programming
ƒ Small releases

ÿ E.g. every three weeks
ƒ Planning game

ÿ Select and estimate user story cards
at the beginning of each release

ƒ Write test cases before code
ƒ The program code is the design doc

ÿ Can also use CRC cards (Class-
Responsibility-Collaboration)

ƒ Continuous Integration
ÿ Integrate and test several times a day

Source: Adapted from Nawrocki et al, RE’02
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Inquiry Cycle

Prior Knowledge
(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Note similarity with
Process of scientific

Investigation:
Requirements models are
theories about the world;
Designs are tests of those

theories

Initial hypothesis

Look for anomalies - what can’t
the current theory explain?

Create/refine
a better theory

Design experiments to
test the new theory

Carry out the
experiments
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can you
stop the
RAIN?

RAIN, RAIN
GO AWAY!

…it’s
snowing!

what is it you
really want?
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Systems Theory
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What is a system?
‹ Definition of a System:

ƒ Some part of reality that can be observed to interact with its environment
ÿ Separated from its environment by a boundary
ÿ A system receives inputs from the environment & send outputs to the environment
ÿ A system usually have subsystems
ÿ Systems that endure have a control mechanism
ÿ Systems have interesting emergent properties

ƒ Examples:
ÿ cars, cities, houseplants, rocks, spacecraft, buildings, weather,...
ÿ operating systems, DBMS, the internet, an organization

ƒNon-examples (there aren’t many!):
ÿ numbers, truth values, letters.

ƒ A closed system doesn’t interact with its environment (there aren’t many!)

‹ Systems might have no physical existence
ƒOnly manifestations are symbolic/analogical representations of the system
ƒ Such systems are social constructs: they exist because we agree on ways to

observe them

Source: Adapted from Wieringa, 1996, p10
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Conceptual picture of a system
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Types of System
‹ Natural Systems

ƒ E.g. ecosystems, weather, water cycle, the human body, bee colony, ...

‹ Abstract Systems
ƒ E.g. set of mathematical equations, computer programs, etc

‹ Designed Systems
ƒ E.g. cars, planes, buildings, interstates, telephones, the internet, ...

‹ Human Activity Systems
ƒ E.g. Organizations, markets, clubs, …

‹ Information Systems (exist to support a HAS)
ƒ E.g. MIS, transaction processing, real-time control systems,…

Source: Adapted from Carter et. al., 1988, p12
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Hard vs. Soft Systems
Hard Systems:

‹ The system is
ƒ precise,
ƒ well-defined
ƒ quantifiable

‹ No disagreement about:
ƒ Where the boundary is
ƒ What the interfaces are
ƒ The internal structure
ƒ Control mechanisms
ƒ The purpose (??)

‹ Examples
ƒ ?

Soft Systems:
‹ The system…

ƒ …is hard to define precisely
ƒ …is an abstract idea
ƒ …depends on your perspective

‹ Not easy to get agreement
ƒ The system doesn’t “really” exist
ƒ Calling something a system helps us

to understand it
ƒ Identifying the boundaries,

interfaces, controls, helps us to
predict behaviour

ƒ The “system” is a theory of how
some part of the world operates

‹ Examples:
ƒ All human activity systems
ƒ (what else?)
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System Boundary
‹ System Environment:

ƒ the part of the world with which the system can interact
ÿ every system has an environment
ÿ the environment is itself a system

ƒ Distinction between system and environment depends on your viewpoint

‹ Choosing the boundary
ƒ Choice should be made to maximize modularity
ƒ Examples:

ÿ Telephone system - include: switches, phone lines, handsets, users, accounts?
ÿ Desktop computer - do you include the peripherals?
ÿ Flight control system - do you include the ground control?

ƒ Tips:
ÿ Exclude things that have no functional effect on the system
ÿ Exclude things that influence the system but which cannot be influenced or

controlled by the system
ÿ Include things that can be strongly influenced or controlled by the system
ÿ Balance between totally open and totally closed systems

Source: Adapted from Wieringa, 1996, p11-12
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Exchange

Example System Boundary

phone
phone

Marsha

Student

Secretary

Toby
charge
rates

Steve

interrupts

influences

influences

Exchange

Source: Adapted from Carter et. al., 1988, p6 24
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Achieving Modularity
‹ Guidelines:

ƒ does the system have an underlying idea that can be described in one or
two sentences?

ƒ Interaction among system components should be greater than interaction
between the system and it’s environment
ÿ Changes within a system should cause minimal changes outside
ÿ More ‘energy’ is required to transfer something across the system boundary than

within the system boundary
ƒ The system boundary should ‘divide nature at its joints’

‹ Choose the boundary that:
ƒ increases regularities in the behaviour of the system
ƒ simplifies the system behavior

Source: Adapted from Wieringa, 1996, p12
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Control
‹ Control holds a system together

ƒ A system with no control won’t endure

‹ A system can be characterized by the kind of control
present
ƒ Self-maintaining causal network

ÿ a self-enhancing process: e.g. growth of the internet
ÿ a self-confirming process: e.g. visibility of a footpath
ÿ a self-limiting process: e.g. pricing of commodities

ƒ Purposive Control
ÿ System has a recognizable purpose or goal
ÿ control of sub-systems is directed towards achieving this goal
ÿ “purpose without choice”

ƒ Purposeful Control
ÿ special arrangements exist for decision making and control
ÿ Free choice among competing alternatives
ÿ “purpose with choice”

Source: Adapted from Carter et. al., 1988, p16 26
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System Structure
‹ Subsystems…

ƒ A system is an organised collection of subsystems acting as a whole
ÿ subsytems are systems too!

ƒ Subsystem boundaries should be chosen so that subsystems are modular

‹ An Aspect of a system
ƒ is a restricted subset of the interactions between its subsystems

ÿ E.g. for a car: all interactions to do with safety
ÿ note fluidity between safety as an aspect, and safety as a subsystem

‹ Visibility
ƒ Interactions between subsystems only are internal to the system
ƒ Interactions between subsystems and the environment are external
ƒ Engineers usually try to hide internal interactions

ÿ For social systems, the internal interactions can be hidden too.

‹ Observability
ƒ the state space is defined in terms of the observable behavior
ƒ the perspective of the observer determines which states are observable

Source: Adapted from Wieringa, 1996, p13
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System State
‹ State

ƒ a system will have memory of its past interactions, i.e. ‘state’
ƒ the state space is the collection of all possible states

‹ Discrete vs continuous
ƒ a discrete system:

ÿ the states can be represented using natural numbers
ƒ a continuous system:

ÿ state can only be represented using real numbers
ƒ a hybrid system:

ÿ some aspects of state can be represented using natural numbers

‹ For modelling purposes:
ƒ Can approximate a continuous system with a discrete model

ÿ All models are approximations anyway!
ƒ But make sure the inaccuracies don’t matter…

Source: Adapted from Wieringa, 1996, p16-17 28
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System Properties
‹ A system property

ƒ is an aspect of system behavior
ÿ often referred to as ‘attributes’ or ‘quality attributes’
ÿ in software engineering, also known as the “ilities”

‹ Specifying properties:
ƒ A property is specified behaviorally if an experiment has been specified

that will tell us unambiguously whether the system has the property
ÿ A property is specified non-behaviorally if no such experiment has been identified

ƒ Compare with: functional vs. non-functional requirements
ƒ Testing for non-behavioral properties requires a subjective (consensual)

decision

‹ Proxies
ƒ Sometimes it is hard to specify a desired property behaviorally

ÿ can use a different property to indicate the presence of the desired property
ƒ E.g. ‘easy to learn’, ‘easy to use’ as proxies for ‘user friendly’

Source: Adapted from Wieringa, 1996, p20-21
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Systems Thinking

A real-world
situation or

problem

Thinks
about

Makes
comparisons

A system that helps to understand the
real-world situation
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Source: Adapted from Jackson, 1995, p143, and Blum 1996, chapter 2

Phenomena
‹ A little Philosophy:

ƒ Phenomenology
ÿ the study of the things that appear to exist when you observe the world

ƒOntology
ÿ the study of what really does exist (independently from any observer)

ƒ Epistemology
ÿ the study of what people are capable of knowing (or what they believe)

ƒWeltanschauung
ÿ a world view that defines the set of phenomena that an observer is willing (likely)

to observe (‘viewpoint’)

‹ Each method has its own Weltanschauung
ƒ Examples:

ÿ OO sees the world as objects with internal state that respond to stimuli
ÿ SA sees the world as processes that transform data
ÿ Natural language also defines a viewpoint

ƒ Each method restricts the set of phenomena you can describe
ÿ ...and therefore what you can model

ƒ Choose a method that emphasizes the appropriate kinds of phenomena


