
1

1

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Lecture 2: Context for RE
Last Week:

INTRO
Syllabus

Course Goals
Definitions

Last Week:
INTRO
Syllabus

Course Goals
Definitions

Next Week:
Project Starting points:

{Stakeholders, Boundaries,
Goals, Scenarios, Risks}

Next Week:
Project Starting points:

{Stakeholders, Boundaries,
Goals, Scenarios, Risks}

This Week:
Context for RE

What is Engineering?
Types of engineering project
RE in the engineering lifecycle

Systems Thinking

This Week:
Context for RE

What is Engineering?
Types of engineering project
RE in the engineering lifecycle

Systems Thinking

2

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

What is Engineering?
‹ Definition of Engineering:

ƒ Engineering is the development of cost-effective solutions to practical
problems, through the application of scientific knowledge
ÿ “…cost-effective…” - involves trade-offs, especially with resource usage
ÿ “…solutions…” - engineering is creative and interventionist
ÿ “…practical problems…” - the problems must matter to people
ÿ “…scientific knowledge…” - uses analytical techniques based on applied science

‹ Normal or Radical design?
ƒNormal design: old problems, whose solutions are well known

ÿ Engineering codifies standard solutions
ÿ Engineer selects appropriate methods and technologies
ÿ Design focuses on well understood devices

ƒ Radical design: never been done, or past solutions have failed
ÿ Often the challenge is to deal with a very complex problem
ÿ Bring together complex assemblies of devices into new systems
ÿ Systems Engineering is always radical design (by definition)!

3

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Is software different?
‹ Software is different!

ƒ software is invisible, intangible, abstract
ÿ Software alone is useless - its purpose is to configure some hardware to do

something
ƒ there are no physical laws underlying software behaviour
ƒ there are no physical constraints on software complexity
ƒ software never wears out

ÿ …traditional reliability measures don’t apply
ƒ software can be replicated perfectly

ÿ …no manufacturing variability

‹ Software Myths:
ƒMyth: Cost of software is lower than cost of physical devices
ƒMyth: Software is easy to change
ƒMyth: Computers are more reliable than physical devices
ƒMyth: Software can be formally proved to be correct
ƒMyth: Software reuse increases safety and reliability
ƒMyth? Computers reduce risk over mechanical systems

4

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Professional Responsibility
‹ ACM/IEEE code of ethics:

ƒ PUBLIC - act consistently with the public interest.
ƒ CLIENT AND EMPLOYER - act in a manner that is in the best interests of your client

and employer, consistent with the public interest.
ƒ PRODUCT - ensure that your products and related modifications meet the highest

professional standards possible.
ƒ JUDGEMENT - maintain integrity and independence in your professional judgment.
ƒ MANAGEMENT - subscribe to and promote an ethical approach to the management of

software development and maintenance.
ƒ PROFESSION - advance the integrity and reputation of the profession consistent with

the public interest.
ƒ COLLEAGUES - be fair to and supportive of your colleagues.
ƒ SELF - participate in lifelong learning and promote an ethical approach to the practice

of the profession.

‹ Of particular relevance in RE:
ƒ Competence - never misrepresent your level of competence
ƒ Confidentiality - respect confidentiality of all stakeholders
ƒ Intellectual property rights - respect protections on ideas and designs
ƒ Data Protection - be aware of relevant laws on handling personal data

2

5

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Project Management
‹ A manager can control 4 key variables:

ƒ Resources (can get more dollars, facilities, personnel)
ƒ Time (can increase schedule, delay milestones, etc.)
ƒ Product (can reduce functionality - e.g. scrub requirements)
ƒ Risk (can decide which risks are acceptable)

‹ Approach (applies to any management)
ƒ Understand the goals and objectives

ÿ quantify them where possible
ƒ Understand the constraints

ÿ if there is uncertainty, use probability estimates
ƒ Plan to meet the objectives within the constraints
ƒMonitor and adjust the plan
ƒ Preserve a calm, productive, positive work environment

‹ Note:
ƒ You cannot control what you cannot measure!

6

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Where Projects Come From
‹ Initiation of the project

ƒ Problem-driven
ÿ A problem has arisen that demands a

response
ÿ e.g. existing system is “broken”

ƒ Change-driven
ÿ Changes in the business or its

environment
ÿ existing system becoming less useful

ƒ Opportunity-driven
ÿ New technology opens up new

possibilities;
ÿ New markets open up;
ÿ etc

ƒ Legacy-driven
ÿ Project created because of prior

commitment
ÿ e.g earlier work left unfinished

‹ Source of Requirements:
ƒ Customer-specific

ÿ Specific customer with a specific
problem

ÿ The customer is the ultimate authority
ƒ Market-based

ÿ System designed to be sold widely
ÿ Marketing team acts as proxy for

customers & users
ÿ Product must generate customers

ƒ Socially-useful
ÿ System is intended as a general benefit

to society
ÿ No (paying) customer
ÿ E.g. some open source / free software;

software created in scientific research
ƒ Hybrid

ÿ developed for a specific customer, but
want to market the software eventually

7

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Software Types
‹ Information Systems

ƒ software to support organizational work
ƒ includes files/databases as well as applications
ƒMore than 70% of all software falls in this category, written in languages

such as COBOL, RPG and 4GLs.
ÿ Examples: Payroll and personnel, Financial transactions, Customer relations

database, …

‹ Control Systems
ƒ software that drives some sort of a hardware process

ÿ Examples: flight control, industrial plant, an elevator system, credit card reader.

‹ Generic Services
ƒ systems that provide some services for other systems

ÿ Examples: many internet applications, e.g. search engines, stock quote services,
credit card processing, etc.

ƒ Such systems will be developed using a variety of languages and middleware,
including Java, C++, CORBA, HTML/XML etc.

8

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Waterfall Model

Source: Adapted from Dorfman, 1997, p7 & Loucopoulos & Karakostas, 1995, p29

requirements

design

code

integrate

test

perceived
 need ‹ View of development:

ƒ a process of stepwise refinement
ƒ largely a high level management

view

‹ Problems:
ƒ Static view of requirements -

ignores volatility
ƒ Lack of user involvement once

specification is written
ƒ Unrealistic separation of

specification from design
ƒ Doesn’t accommodate

prototyping, reuse, etc.

3

9

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

document
require-
ments

design code test integrate

require-
ments

design
prototype

build
prototype

test
prototype

Source: Adapted from
Dorfman, 1997, p9Prototyping lifecycle

‹ Prototyping is used for:
ƒ understanding the requirements for the user interface
ƒ examining feasibility of a proposed design approach
ƒ exploring system performance issues

‹ Problems:
ƒ users treat the prototype as the solution
ƒ a prototype is only a partial specification

10

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

design code test integrate O&Mreqts

Phased Lifecycle Models

Requirem
ents

design code test integrate O&M

Source: Adapted from Dorfman, 1997, p10

design code test integrate O&M

design code test integrate O&M

design code test integrate O&M

design code test integrate O&Mreqts

design code test integratereqts

version 1

version 2

version 3

Release 1

release 2

release 3

release 4

lessons learnt

lessons learnt

Incremental development
(each release adds more

functionality)

Evolutionary development
(each version incorporates

new requirements)

11

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

The Spiral Model
Determine goals,

alternatives,
constraints

Evaluate
alternatives

and risks

Plan
Develop

and
test

budget1budget2budget3budget4 prototype1 prototype2 prototype3 prototype4

alt
er

na
tiv

es
4

alt
er

na
tiv

es
3

Al
te

rn
-

at
ive

s 2

constraints4

constraints3

Constr-

aints 2

alte
rnativ

es

const
rain

ts

risk analysis
4

risk analysis
3riskanalysis2risk

analysis1

concept of
operation

so
ft

wa
re

re
qu

ire
men

ts

validated

requirements

so
ft

wa
re

de
sig

n

validated,

verified design

de
ta

ile
d

de
si

gn

co
de

uni
t

test

system

testacceptance

test

requirements,lifecycle plandevelopment plan
integration and test plan

implementation plan

Source: Adapted from Pfleeger, 1998, p57 12

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Requirements in the Spiral Model
‹ Spiral model is a risk management model
‹ For each iteration:

ƒ plan next phases;
ƒ determine objectives & constraints;
ƒ evaluate alternatives;
ƒ resolve risks;
ƒ develop product

‹ Includes as Requirements processes:
ƒ Requirements risk analysis (using simulation and prototyping)
ƒ Planning for design
(these reduce the risk that requirements process has to be repeated because

requirements cannot be met)

‹ Problems:
ƒ Spiral model cannot cope with unforeseen changes during development

ÿ e.g. emergence of new business objectives
Source: Adapted from Loucopoulos & Karakostas, 1995, p30

4

13

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

V-Model

system
requirements

software
requirements

preliminary
design

detailed
design

code and
debug

unit
test

component
test

software
integration

acceptance
test

system
integration

“analyse
and

design”

“test
and

integrate”

time

Le
ve

l o
f

ab
st

ra
ct

io
n

14

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Agile Models
‹ Basic Philosophy

ƒ Reduce communication barriers
ÿ Programmer interacts with customer

ƒ Reduce document-heavy approach
ÿ Documentation is expensive and of

limited use
ƒ Have faith in the people

ÿ Don’t need fancy process models to tell
them what to do!

ƒ Respond to the customer
ÿ Rather than focussing on the contract

‹ Weaknesses
ƒ Relies on programmer’s memory

ÿ Code can be hard to maintain
ƒ Relies on oral communication

ÿ Mis-interpretation possible
ƒ Assumes single customer

representative
ÿ Multiple viewpoints not possible

ƒ Only short term planning
ÿ No longer term vision

E.g. Extreme Programming
ƒ Instead of a requirements spec,

use:
ÿ User story cards
ÿ On-site customer representative

ƒ Pair Programming
ƒ Small releases

ÿ E.g. every three weeks
ƒ Planning game

ÿ Select and estimate user story cards
at the beginning of each release

ƒ Write test cases before code
ƒ The program code is the design doc

ÿ Can also use CRC cards (Class-
Responsibility-Collaboration)

ƒ Continuous Integration
ÿ Integrate and test several times a day

E.g. Extreme Programming
ƒ Instead of a requirements spec,

use:
ÿ User story cards
ÿ On-site customer representative

ƒ Pair Programming
ƒ Small releases

ÿ E.g. every three weeks
ƒ Planning game

ÿ Select and estimate user story cards
at the beginning of each release

ƒ Write test cases before code
ƒ The program code is the design doc

ÿ Can also use CRC cards (Class-
Responsibility-Collaboration)

ƒ Continuous Integration
ÿ Integrate and test several times a day

Source: Adapted from Nawrocki et al, RE’02

15

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Inquiry Cycle

Prior Knowledge
(e.g. customer feedback)

Observe
(what is wrong with
the current system?)

Model
(describe/explain the
observed problems)

Design
(invent a better system)

Intervene
(replace the old system)

Note similarity with
Process of scientific

Investigation:
Requirements models are
theories about the world;
Designs are tests of those

theories

Initial hypothesis

Look for anomalies - what can’t
the current theory explain?

Create/refine
a better theory

Design experiments to
test the new theory

Carry out the
experiments

16

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

can you
stop the
RAIN?

RAIN, RAIN
GO AWAY!

…it’s
snowing!

what is it you
really want?

5

17

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Systems Theory

18

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

What is a system?
‹ Definition of a System:

ƒ Some part of reality that can be observed to interact with its environment
ÿ Separated from its environment by a boundary
ÿ A system receives inputs from the environment & send outputs to the environment
ÿ A system usually have subsystems
ÿ Systems that endure have a control mechanism
ÿ Systems have interesting emergent properties

ƒ Examples:
ÿ cars, cities, houseplants, rocks, spacecraft, buildings, weather,...
ÿ operating systems, DBMS, the internet, an organization

ƒNon-examples (there aren’t many!):
ÿ numbers, truth values, letters.

ƒ A closed system doesn’t interact with its environment (there aren’t many!)

‹ Systems might have no physical existence
ƒOnly manifestations are symbolic/analogical representations of the system
ƒ Such systems are social constructs: they exist because we agree on ways to

observe them

Source: Adapted from Wieringa, 1996, p10

19

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Conceptual picture of a system

20

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Types of System
‹ Natural Systems

ƒ E.g. ecosystems, weather, water cycle, the human body, bee colony, ...

‹ Abstract Systems
ƒ E.g. set of mathematical equations, computer programs, etc

‹ Designed Systems
ƒ E.g. cars, planes, buildings, interstates, telephones, the internet, ...

‹ Human Activity Systems
ƒ E.g. Organizations, markets, clubs, …

‹ Information Systems (exist to support a HAS)
ƒ E.g. MIS, transaction processing, real-time control systems,…

Source: Adapted from Carter et. al., 1988, p12

6

21

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Hard vs. Soft Systems
Hard Systems:

‹ The system is
ƒ precise,
ƒ well-defined
ƒ quantifiable

‹ No disagreement about:
ƒ Where the boundary is
ƒ What the interfaces are
ƒ The internal structure
ƒ Control mechanisms
ƒ The purpose (??)

‹ Examples
ƒ ?

Soft Systems:
‹ The system…

ƒ …is hard to define precisely
ƒ …is an abstract idea
ƒ …depends on your perspective

‹ Not easy to get agreement
ƒ The system doesn’t “really” exist
ƒ Calling something a system helps us

to understand it
ƒ Identifying the boundaries,

interfaces, controls, helps us to
predict behaviour

ƒ The “system” is a theory of how
some part of the world operates

‹ Examples:
ƒ All human activity systems
ƒ (what else?)

22

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

System Boundary
‹ System Environment:

ƒ the part of the world with which the system can interact
ÿ every system has an environment
ÿ the environment is itself a system

ƒ Distinction between system and environment depends on your viewpoint

‹ Choosing the boundary
ƒ Choice should be made to maximize modularity
ƒ Examples:

ÿ Telephone system - include: switches, phone lines, handsets, users, accounts?
ÿ Desktop computer - do you include the peripherals?
ÿ Flight control system - do you include the ground control?

ƒ Tips:
ÿ Exclude things that have no functional effect on the system
ÿ Exclude things that influence the system but which cannot be influenced or

controlled by the system
ÿ Include things that can be strongly influenced or controlled by the system
ÿ Balance between totally open and totally closed systems

Source: Adapted from Wieringa, 1996, p11-12

23

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Exchange

Example System Boundary

phone
phone

Marsha

Student

Secretary

Toby
charge
rates

Steve

interrupts

influences

influences

Exchange

Source: Adapted from Carter et. al., 1988, p6 24

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Achieving Modularity
‹ Guidelines:

ƒ does the system have an underlying idea that can be described in one or
two sentences?

ƒ Interaction among system components should be greater than interaction
between the system and it’s environment
ÿ Changes within a system should cause minimal changes outside
ÿ More ‘energy’ is required to transfer something across the system boundary than

within the system boundary
ƒ The system boundary should ‘divide nature at its joints’

‹ Choose the boundary that:
ƒ increases regularities in the behaviour of the system
ƒ simplifies the system behavior

Source: Adapted from Wieringa, 1996, p12

7

25

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Control
‹ Control holds a system together

ƒ A system with no control won’t endure

‹ A system can be characterized by the kind of control
present
ƒ Self-maintaining causal network

ÿ a self-enhancing process: e.g. growth of the internet
ÿ a self-confirming process: e.g. visibility of a footpath
ÿ a self-limiting process: e.g. pricing of commodities

ƒ Purposive Control
ÿ System has a recognizable purpose or goal
ÿ control of sub-systems is directed towards achieving this goal
ÿ “purpose without choice”

ƒ Purposeful Control
ÿ special arrangements exist for decision making and control
ÿ Free choice among competing alternatives
ÿ “purpose with choice”

Source: Adapted from Carter et. al., 1988, p16 26

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

System Structure
‹ Subsystems…

ƒ A system is an organised collection of subsystems acting as a whole
ÿ subsytems are systems too!

ƒ Subsystem boundaries should be chosen so that subsystems are modular

‹ An Aspect of a system
ƒ is a restricted subset of the interactions between its subsystems

ÿ E.g. for a car: all interactions to do with safety
ÿ note fluidity between safety as an aspect, and safety as a subsystem

‹ Visibility
ƒ Interactions between subsystems only are internal to the system
ƒ Interactions between subsystems and the environment are external
ƒ Engineers usually try to hide internal interactions

ÿ For social systems, the internal interactions can be hidden too.

‹ Observability
ƒ the state space is defined in terms of the observable behavior
ƒ the perspective of the observer determines which states are observable

Source: Adapted from Wieringa, 1996, p13

27

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

System State
‹ State

ƒ a system will have memory of its past interactions, i.e. ‘state’
ƒ the state space is the collection of all possible states

‹ Discrete vs continuous
ƒ a discrete system:

ÿ the states can be represented using natural numbers
ƒ a continuous system:

ÿ state can only be represented using real numbers
ƒ a hybrid system:

ÿ some aspects of state can be represented using natural numbers

‹ For modelling purposes:
ƒ Can approximate a continuous system with a discrete model

ÿ All models are approximations anyway!
ƒ But make sure the inaccuracies don’t matter…

Source: Adapted from Wieringa, 1996, p16-17 28

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

System Properties
‹ A system property

ƒ is an aspect of system behavior
ÿ often referred to as ‘attributes’ or ‘quality attributes’
ÿ in software engineering, also known as the “ilities”

‹ Specifying properties:
ƒ A property is specified behaviorally if an experiment has been specified

that will tell us unambiguously whether the system has the property
ÿ A property is specified non-behaviorally if no such experiment has been identified

ƒ Compare with: functional vs. non-functional requirements
ƒ Testing for non-behavioral properties requires a subjective (consensual)

decision

‹ Proxies
ƒ Sometimes it is hard to specify a desired property behaviorally

ÿ can use a different property to indicate the presence of the desired property
ƒ E.g. ‘easy to learn’, ‘easy to use’ as proxies for ‘user friendly’

Source: Adapted from Wieringa, 1996, p20-21

8

29

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook

Systems Thinking

A real-world
situation or

problem

Thinks
about

Makes
comparisons

A system that helps to understand the
real-world situation

30

University of Toronto Department of Computer Science

© 2000-2004, Steve Easterbrook
Source: Adapted from Jackson, 1995, p143, and Blum 1996, chapter 2

Phenomena
‹ A little Philosophy:

ƒ Phenomenology
ÿ the study of the things that appear to exist when you observe the world

ƒOntology
ÿ the study of what really does exist (independently from any observer)

ƒ Epistemology
ÿ the study of what people are capable of knowing (or what they believe)

ƒWeltanschauung
ÿ a world view that defines the set of phenomena that an observer is willing (likely)

to observe (‘viewpoint’)

‹ Each method has its own Weltanschauung
ƒ Examples:

ÿ OO sees the world as objects with internal state that respond to stimuli
ÿ SA sees the world as processes that transform data
ÿ Natural language also defines a viewpoint

ƒ Each method restricts the set of phenomena you can describe
ÿ ...and therefore what you can model

ƒ Choose a method that emphasizes the appropriate kinds of phenomena

