
1

1

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Lecture 13: Summary

Last Week:
Integrated RE

method engineering
problem frames

Last Week:
Integrated RE

method engineering
problem frames

This Week:
Summary

how is RE currently done in practice?
+ Course Summary and Evaluation

This Week:
Summary

how is RE currently done in practice?
+ Course Summary and Evaluation

2

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

What is the state of the practice?

‹ Findings
ƒ Customer interaction always hard.
ƒ Many projects use doc. standards, few

adopt any particular method.
ÿ Projects using OO methods had trouble

modularizing their requirements
ÿ some thought that structured analysis led

to unintelligible specifications
ƒ Many projects use some organizational

approach to requirements validation.
ÿ About 1/3 of the projects did some sort

of prototyping.
ƒ Requirements evolution a major

concern.

‹ Conclusions
ƒ Organizational solutions preferred over

technology.
ƒ General-purpose technology preferred

over CASE.
ƒ Requirements activities under-

capitalized (only 1/3 used some tools)
ƒ Market-driven projects increasingly

important.

‹ Lubars (1993) field study of 10 organizations
ƒ Customer-specific projects:

ÿ usually given large monolithic statements of requirements
ÿ seldom in machine-readable form; are often sketchy, ill-defined;
ÿ concept of “superdesigner” used for interpretation, filling gaps.

ƒMarket-specific projects
ÿ have smaller requirements, often produced in-house.

3

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Managing Process Change
‹ Humphrey’s principles:

ƒMajor changes to software processes must start at the top
ÿ … with senior management leadership

ƒ Ultimately everyone must be involved
ƒ Effective change requires a goal and knowledge of the current process

ÿ you need a map
ÿ you need to know where you are on the map!

ƒ Change is continuous
ÿ process improvement is not a one-shot effort

ƒ Software process change will not be retained without conscious effort and
periodic reinforcement

ƒ Software process improvement requires investment

‹ Software Engineering Process Groups (SEPGs)
ƒ Team of people within a company responsible for process improvement

ÿ identifies key problems, establishes priorities, assigns resources, tracks
progress, etc.

ƒNeeds senior management support

Source: Adapted from Humphrey, 1989, chapter 1.

4

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Capability Maturity Model

Level Characteristic Key Challenges

5. Optimizing Improvement fed back
into process

Identify process indicators
“Empower” individuals

4. Managed (Quantitative)
measured process

Automatic collection of process data
Use process data to analyze and
modify the process

3. Defined
(Qualitative)

process defined and
institutionalized

Process measurement
Process analysis
Quantitative Quality Plans

2. Repeatable
(Intuitive)

process dependent on
individuals

Establish a process group
Identify a process architecture
Introduce SE methods and tools

1. Initial
Ad hoc / Chaotic

No cost estimation,
planning, management.

Project Management
Project Planning
Configuration Mgmnt, Change Control
Software Quality Assurance

Source: Adapted from Humphrey, 1989, chapter 1



2

5

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Recent Findings
‹ General issues

ƒ Developers are more aware of requirements process problems than project
managers and senior managers

ƒMost requirements problems (64%) were human/organisational in nature:
ÿ Poor staff retention has an impact on requirement process capability.
ÿ Better communication needed between developers and customers.
ÿ Requirements growth and change had less of an impact than expected.

‹ Organisational issues
ƒOrganisational problems are more important than process/technical issues

ÿ But are harder to address
ÿ Organisational problems amplify some process problems.

ƒ Lack of skills exacerbates these problems

‹ Maturity issues
ƒHigher maturity companies tend to exhibit fewer requirements problems.

ÿ Problems in higher maturity companies tend to be organisational
ÿ High maturity processes more resistant to ‘damage’ from organisational issues.

ƒManager groups in high maturity companies understand requirement process
problems better

Source: “Requirements Problems in Twelve Software Companies: An Empirical Analysis” Tracy Hall, Sarah Beecham & Austen Rainer, 2001.

6

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Example Problems
Organisational requirements problems

100230Total organisational problems
818Company culture
819Lack of training
1228User communication
1329Staff retention
1433Inadequate resources
2047Inappropriate skills
2456Developer communication

PercentageFrequency

Process-based requirements problems

100132Total process problems
34Inadequate requirements traceability
45Poor user understanding
2027Complexity of application
2331Requirements growth
2432Undefined requirements process
2533Vague initial requirements

PercentageFrequency

Source: “Requirements Problems in Twelve Software Companies: An Empirical Analysis” Tracy Hall, Sarah Beecham & Austen Rainer, 2001.

‹ Data from 12
companies
ƒ Range of maturity

levels
ƒ Small, medium and

large companies

‹ Data collection
ƒ 45 focus groups
ƒ 200 staff
ƒ Sept ‘99 to Mar ‘00

‹ 3 types of group:
ƒ Senior managers
ƒ Project managers
ƒ technical staff

7

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Barriers to cultural change
Source: Adapted from Kauppinen et. al. 2002

Documented requirements save time
later

investigating needs often reveals that a
technical solution won’t work

A well planned site visit improves the
developer’s image among customers

It is possible and useful to identify
representative potential users

Combination of observation and other
elicitation techniques works

Still need to understand the current
context and existing tasks

Developers tend to be biased by their
technical expertise

Studies show developers are often
surprised by user behaviour and
expectations

But experience shows…

“Documenting the requirements takes too
much time”

“Customers want to see the technical
specs, not user reqts”

“It is not worth
documenting user
requirements
systematically”

“May spoil relations with the customer by
asking stupid questions”

“Customers might think we don’t know the
basics of their business”“It is risky to

discover needs
directly from users”

“There are so many users we cannot
interview them all”

“Users are unable to say what they need
and want”“It is difficult to

discover needs
directly from users”

“It’s a new product - therefore users
cannot have any needs for it”

“We also use our own products and can act
as users ourselves”

“We’ve been developing such products for
a long time and know users’ needs”

“It is not worth
discovering needs
directly from users”

ExamplesObstacles

8

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

RE and Extreme Programming
‹ Example XP practices:
ƒ strong customer representation

ÿ an on-site customer rep. always available
ƒ relies on oral communication

ÿ The only documented artifacts are test-
cases and code

ƒ short planning cycle, rapid development
ÿ e.g. two month release cycle
ÿ a release split into iterations (eg 3 weeks)

ƒ the planning game
ÿ customer comes up with some user stories
ÿ developer estimates effort for each
ÿ customer chooses which to include

ƒ pair programming
ÿ very effective for producing quality code

ƒ Other XP features:
ÿ no architectural design (‘metaphor’ instead)
ÿ test-first coding - write test cases first
ÿ continuous integration - integrate new code

on daily basis
ÿ automated testing - each integration must

pass all test cases
ÿ programmers only work a 40-hour week

‹ Problems
ƒ assumes a single customer perspective

ÿ single customer rep. may be biased
ƒ no documented requirements

ÿ story cards capture key needs
ÿ but these contain very little detail…
ÿ …and are not usually maintained

ƒ maintaining test cases is hard
ÿ test cases are a substitute for

requirements…
ÿ …but are not traceable

ƒ no validation (e.g. no inspections)
ÿ pair programming is only informal

ƒ no documentation of changes
ÿ except as add/replace ‘user stories’

‹ Note:
ƒ XP only suited to small projects

ÿ e.g. up to 12 programmers
ƒ most XP projects only use a fraction

of the XP practices



3

9

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Course Summary
‹ Course Goals
ƒ Examine the state-of-the-art for

research & practice in RE.
ÿRole of RE in software & systems

engineering
ÿTechniques, notations, methods,

processes & tools used in RE
ƒ Gain practical experience in

selected RE techniques
ƒ Understand the essential nature

of RE
ÿBreadth of skills needed for RE,

and disciplines on which it draws
ÿContextual factors & practicalities

ƒ Gain a basic grounding for
research in RE
ÿMethodological issues for research
ÿCurrent research issues & direction

of the field
ÿAwareness of the literature

‹ Course Syllabus
ƒ Introductory stuff
ÿ What is RE?
ÿ Why is it important?

ƒ Foundations
ÿ inter-disciplinary aspects of RE

ƒ Basic RE activities
ÿ Eliciting Requirements
ÿ Modelling & Analysing Requirements
ÿ Communicating Requirements
ÿ Agreeing Requirements
ÿ Evolving Requirements

ƒ Integrated RE
ÿ Method Engineering
ÿ Patterns and Problem Frames

‹ Course Syllabus
ƒ Introductory stuff
ÿ What is RE?
ÿ Why is it important?

ƒ Foundations
ÿ inter-disciplinary aspects of RE

ƒ Basic RE activities
ÿ Eliciting Requirements
ÿ Modelling & Analysing Requirements
ÿ Communicating Requirements
ÿ Agreeing Requirements
ÿ Evolving Requirements

ƒ Integrated RE
ÿ Method Engineering
ÿ Patterns and Problem Frames

10

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Feedback Questions

Did the course meet your expectations?
How useful do you think the course was to you?

What do you feel you have learned?
What did you not learn, that you had hoped to?

What was the best part of the course?
What was the worst part of the course?

How might the course be improved in the future?


