
1

1

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Lecture 10: Validating Requirements

Last Week:
Communicating Requirements
Requirements Specifications

Documentation Standards
Requirements Traceability

Last Week:
Communicating Requirements
Requirements Specifications

Documentation Standards
Requirements Traceability

Next Week:
Agreeing Requirements

Negotiation
Conflict Resolution

Next Week:
Agreeing Requirements

Negotiation
Conflict Resolution

This Week:
Validating Requirements

Philosophical Issues
Reviews and Inspections

Prototyping

This Week:
Validating Requirements

Philosophical Issues
Reviews and Inspections

Prototyping

2

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Overview
‹ Two key problems for getting agreement:

1) the problem of validation
What is “truth” and what is “knowable”?

2) the problem of negotiation
How do you reconcile conflicting goals in a complex socio-cognitive setting?

‹ Validating Requirements
ƒ Inspections and Reviews
ƒ Prototyping

‹ Negotiating Requirements (next week)
ƒ Conflict and Conflict Resolution
ƒ Requirements Negotiation Techniques

ÿ Argumentation approaches
ÿ Knowledge-based approaches

ƒ Requirements Prioritization



2

3

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

The problem of validation
‹ logical positivist view:

ÿ “there is an objective world that can be modeled by building a consistent body of
knowledge grounded in empirical observation”

ƒ In RE, assumes there is an objective problem that exists in the world
ÿ Build a consistent model; make sufficient empirical observations to check validity
ÿ Use tools that test consistency and completeness of the model
ÿ Use reviews, prototyping, etc to demonstrate the model is “valid”

‹ Popper’s modification to logical positivism:
ÿ “theories can’t be proven correct, they can only be refuted by finding exceptions”

ƒ In RE, design your requirements models to be refutable
ÿ Look for evidence that the model is wrong
ÿ E.g. collect scenarios and check the model supports them

‹ post-modernist view:
ÿ “there is no privileged viewpoint; all observation is value-laden; scientific

investigation is culturally embedded”
ÿ E.g. Kuhn: science moves through paradigms
ÿ E.g. Toulmin: scientific theories are judged with respect to a weltanschauung

ƒ In RE, validation is always subjective and contextualised
ÿ Use stakeholder involvement so that they ‘own’ the requirements models
ÿ Use ethnographic techniques to understand the weltanschauungen

4

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Source: Adapted from Blum, 1992, pp369-373

Reviews, Inspections, Walkthroughs…
‹ Note: these terms are not widely agreed

ƒ formality
ÿ informal: from meetings over coffee, to team get-togethers
ÿ formal: scheduled meetings, prepared participants, defined agenda, specific

format, documented output
ƒ “Management reviews”

ÿ E.g. preliminary design review (PDR), critical design review (CDR), …
ÿ Used to provide confidence that the design is sound
ÿ Attended by management and sponsors (customers)
ÿ Usually a “dog-and-pony show”

ƒ “Walkthroughs”
ÿ developer technique (usually informal)
ÿ used by development teams to improve quality of product
ÿ focus is on finding defects

ƒ “(Fagan) Inspections”
ÿ a process management tool (always formal)
ÿ used to improve quality of the development process
ÿ collect defect data to analyze the quality of the process
ÿ written output is important
ÿ major role in training junior staff and transferring expertise



3

5

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Source: Adapted from Blum, 1992, pp369-373 & Freedman and Weinberg, 1990.

Benefits of formal inspection
‹ Formal inspection works well for programming:

ƒ For applications programming:
ÿ more effective than testing
ÿ most reviewed programs run correctly first time
ÿ compare: 10-50 attempts for test/debug approach

ƒ Data from large projects
ÿ error reduction by a factor of 5; (10 in some reported cases)
ÿ improvement in productivity: 14% to 25%
ÿ percentage of errors found by inspection: 58% to 82%
ÿ cost reduction of 50%-80% for V&V (even including cost of inspection)

ƒ Effects on staff competence:
ÿ increased morale, reduced turnover
ÿ better estimation and scheduling (more knowledge about defect profiles)
ÿ better management recognition of staff ability

‹ These benefits also apply to requirements inspections
ƒ E.g. See study by Porter et. al.

6

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Source: Adapted from Blum, 1992, pp369-373 & Freedman and Weinberg, 1990.

Inspection Constraints
‹ Size

ƒ “enough people so that all the
relevant expertise is available”

ƒ min: 3 (4 if author is present)
ƒ max: 7 (less if leader is

inexperienced)

‹ Duration
ƒ never more than 2 hours

ÿconcentration will flag if longer

‹ Outputs
ƒ all reviewers must agree on the

result
ÿaccept; re-work; re-inspect;

ƒ all findings should be documented
ÿsummary report (for management)
ÿdetailed list of issues

‹ Scope
ƒ focus on small part of a design, not

the whole thing

‹ Timing
ƒ Examines a product once its author

has finished it
ƒ not too soon

ÿproduct not ready - find problems the
author is already aware of

ƒ not too late
ÿproduct in use - errors are now very
costly to fix

‹ Purpose
ƒ Remember the biggest gains come

from fixing the process
ÿcollect data to help you not to make
the same errors next time



4

7

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Source: Adapted from Freedman and Weinberg, 1990.

Inspection Guidelines
‹ Prior to the review

ƒ schedule Formal Reviews into the project planning
ƒ train all reviewers
ƒ ensure all attendees prepare in advance

‹ During the review
ƒ review the product, not its author

ÿ keep comments constructive, professional and task-focussed
ƒ stick to the agenda

ÿ leader must prevent drift
ƒ limit debate and rebuttal

ÿ record issues for later discussion/resolution
ƒ identify problems but don’t try to solve them
ƒ take written notes

‹ After the review
ƒ review the review process

8

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Choosing Reviewers
‹ Possibilities

ƒ specialists in reviewing (e.g. QA people)
ƒ people from the same team as the author
ƒ people invited for specialist expertise
ƒ people with an interest in the product
ƒ visitors who have something to contribute
ƒ people from other parts of the organization

‹ Exclude
ƒ anyone responsible for reviewing the author

ÿ i.e. line manager, appraiser, etc.
ƒ anyone with known personality clashes with other reviewers
ƒ anyone who is not qualified to contribute
ƒ all management
ƒ anyone whose presence creates a conflict of interest

Source: Adapted from Freedman and Weinberg, 1990.



5

9

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Source: Adapted from Porter, Votta and Basili, 1995

Structuring the inspection
‹ Can structure the review in different ways

ƒ Ad-hoc
ÿ Rely on expertise of the reviewers

ƒ Checklist
ÿ uses a checklist of questions/issues
ÿ checklists tailored to the kind of document (Porter et. al. have examples)

ƒ active reviews (perspective based reading)
ÿ each reviewer reads for a specific purpose, using specialized questionnaires
ÿ effectively different reviewers take different perspectives

‹ The differences may matter
ƒ E.g. Porter et. al. study indicates that:

ÿ active reviews find more faults than ad hoc or checklist methods
ÿ no effective different between ad hoc and checklist methods
ÿ the inspection meeting might be superfluous!

10

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Prototyping
‹ Definitions

ƒ “A software prototype is a partial implementation constructed primarily to
enable customers, users, or developers to learn more about a problem or its
solution.” [Davis 1990]

ƒ “Prototyping is the process of building a working model of the system”
[Agresti 1986]

‹ Approaches to prototyping
ƒ Explanatory

ÿ explain, demonstrate and inform – then throw away
ÿ e.g. a ‘presentation prototype used at the initiation of the project

ƒ Exploratory
ÿ used to determine problems, elicit needs, clarify goals, compare design options
ÿ informal, unstructured and thrown away.

ƒ Experimental
ÿ evaluate technical issues and model behaviour; test suitability of a technology
ÿ detailed, throw away (or possibly) enhance as product.

ƒ Evolutionary (e.g. “operational prototypes”, “pilot systems”):
ÿ development seen as continuous process of adapting the system
ÿ prototype is an early deliverable, to be continually improved.



6

11

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Throwaway or Evolve?
‹ Throwaway Prototyping

ƒPurpose:
ÿ to learn more about the problem or its

solution…
ÿ hence discard after the desired knowledge

is gained.
ƒUse:
ÿ early or late

ƒApproach:
ÿ horizontal - build only one layer (e.g. UI)
ÿ “quick and dirty”

ƒAdvantages:
ÿ Learning medium for better convergence
ÿ Early delivery Æ early testing Æ less cost
ÿ Successful even if it fails!

ƒDisadvantages:
ÿ Wasted effort if requirements change

rapidly
ÿ Often replaces proper documentation of

the requirements
ÿ May set customers’ expectations too high
ÿ Can get developed into final product

‹ Evolutionary Prototyping
ƒPurpose
ÿ to learn more about the problem or its

solution…
ÿ …and to reduce risk by building parts of

the system early
ƒUse:
ÿ incremental; evolutionary

ƒApproach:
ÿ vertical - partial implementation of all

layers;
ÿ designed to be extended/adapted

ƒAdvantages:
ÿ Requirements not frozen
ÿ Return to last increment if error is found
ÿ Flexible(?)

ƒDisadvantages:
ÿ Can end up with complex, unstructured

system which is hard to maintain
ÿ early architectural choice may be poor
ÿ Optimal solutions not guaranteed
ÿ Lacks control and direction

Brooks: “Plan to throw one away - you will anyway!”


