&5,
85

University of Toronto Department of Computer Science

Lecture 10: Validating Requirements

Last Week:
Communicating Requirements
Requirements Specifications

Documentation Standards
Requirements Traceability

This Week:
Validating Requirements
Philosophical Issues
Reviews and Inspections
Prototyping

Next Week:
Agreeing Requirements
Negotiation
Conflict Resolution

© 2000-2003, Steve Easterbrook 1

7 University of Toronto Department of Computer Science

Overview

- Two key problems for getting agreement:

1) the problem of validation
What is “truth” and what is “knowable"?

2) the problem of negotiation
How do you reconcile conflicting goals in a complex socio-cognitive setting?

- Validating Requirements
% Inspections and Reviews
% Prototyping

- Negotiating Requirements (next week)
% Conflict and Conflict Resolution

% Requirements Negotiation Techniques
> Argumentation approaches
> Knowledge-based approaches

% Requirements Prioritization

© 2000-2003, Steve Easterbrook 2




4 University of Toronto Department of Computer Science

¥ The problem of validation

- logical positivist view:
» “there is an objective world that can be modeled by building a consistent body of
knowledge grounded in empirical observation”
% In RE, assumes there is an objective problem that exists in the world
» Build a consistent model; make sufficient empirical observations to check validity
» Use tools that test consistency and completeness of the model
» Use reviews, prototyping, etc to demonstrate the model is “valid”

- Popper's modification to logical positivism:
» “theories can't be proven correct, they can only be refuted by finding exceptions”
% In RE, design your requirements models to be refutable
» Look for evidence that the model is wrong
> E.g. collect scenarios and check the model supports them

- post-modernist view:
> “there is no privileged viewpoint; all observation is value-laden; scientific
investigation is culturally embedded”
» E.g. Kuhn: science moves through paradigms
» E.g. Toulmin: scientific theories are judged with respect to a weltanschauung
% In RE, validation is always subjective and contextualised
> Use stakeholder involvement so that they ‘own’ the requirements models
» Use ethnographic techniques to understand the weltanschauungen

© 2000-2003, Steve Easterbrook 3
o University of Toronto Department of Computer Science

¥ Reviews, Inspections, Walkthroughs...

Source: Adapted from Blum, 1992, pp369-373

- Note: these terms are not widely agreed
% formality

» informal: from meetings over coffee, to team get-togethers
» formal: scheduled meetings, prepared participants, defined agenda, specific
format, documented output
% “Management reviews”
» E.g. preliminary design review (PDR), critical design review (CDR), ...
> Used to provide confidence that the design is sound
» Attended by management and sponsors (customers)
» Usually a “dog-and-pony show”
% “Walkthroughs”
» developer technique (usually informal)
> used by development teams to improve quality of product
> focus is on finding defects
% “(Fagan) Inspections”
> a process management tool (always formal)
used to improve quality of the development process
collect defect data to analyze the quality of the process
written output is important
major role in training junior staff and transferring expertise

YV VY

© 2000-2003, Steve Easterbrook 4




& University of Toronto Department of Computer Science

Benefits of formal inspection

Source: Adapted from Blum, 1992, pp369-373 & Freedman and Weinberg, 1990.

- Formal inspection works well for programming:

% For applications programming:
> more effective than testing
> most reviewed programs run correctly first time
> compare: 10-50 attempts for test/debug approach
% Data from large projects
> error reduction by a factor of 5: (10 in some reported cases)
> improvement in productivity: 14% to 25%
> percentage of errors found by inspection: 58% to 82%
> cost reduction of 50%-80% for V&V (even including cost of inspection)
% Effects on staff competence:
> increased morale, reduced turnover
> better estimation and scheduling (more knowledge about defect profiles)
> better management recognition of staff ability

s

- These benefits also apply to requirements inspections
% E.g. See study by Porter et. al.

© 2000-2003, Steve Easterbrook

& University of Toronto Department of Computer Science

(A A3 . .
Inspection Constraints
Source: Adapted from Blum, 1992, pp369-373 & Freedman and Weinberg, 1990.
- Size - Scope
% “enough people so that all the % focus on small part of a design, not
relevant expertise is available” the whole thing
% min: 3 (4 if author is present) Timi
% max: 7 (less if leader is = liming
inexperienced) % Examines a product once its author
. has finished it
- Duration % not too soon
% never more than 2 hours »>product not ready - find problems the
>concentration will flag if longer author is already aware of
% not too late
= Ou1'pu1's >product in use - errors are now very
% all reviewers must agree on the costly to fix
resdlt o et - Purpose
>accept; re-work; re-inspect: . .
% all findings should be documented A lfl::nr:r;\;ei: t:;eb;iizzzsga‘ns come
> t (f t 9
,Z:T‘:-‘;?;;pz:: igs::smanagemen ) >collect data to help you not to make
the same errors next time

© 2000-2003, Steve Easterbrook




& University of Toronto Department of Computer Science

Inspection Guidelines
Source: Adapted from Freedman and Weinberg, 1990.
- Prior to the review

% schedule Formal Reviews into the project planning
% train all reviewers
% ensure all attendees prepare in advance

A &

- During the review
% review the product, not its author
> keep comments constructive, professional and task-focussed

% stick to the agenda
> leader must prevent drift

% limit debate and rebuttal
> record issues for later discussion/resolution

% identify problems but don't try to solve them
% take written notes

- After the review

% review the review process

© 2000-2003, Steve Easterbrook 7

& University of Toronto Department of Computer Science

Choosing Reviewers

Source: Adapted from Freedman and Weinberg, 1990.

A &

- Possibilities
% specialists in reviewing (e.g. QA people)
% people from the same team as the author
% people invited for specialist expertise
% people with an interest in the product
% visitors who have something to contribute
% people from other parts of the organization

- Exclude
% anyone responsible for reviewing the author
> i.e. line manager, appraiser, etc.
% anyone with known personality clashes with other reviewers
% anyone who is not qualified to contribute
% all management
% anyone whose presence creates a conflict of interest

© 2000-2003, Steve Easterbrook 8




4 University of Toronto Department of Computer Science

v Structuring the inspection

Source: Adapted from Porter, Votta and Basili, 1995

- Can structure the review in different ways
% Ad-hoc

> Rely on expertise of the reviewers
% Checklist
> uses a checklist of questions/issues
> checklists tailored to the kind of document (Porter et. al. have examples)
% active reviews (perspective based reading)
» each reviewer reads for a specific purpose, using specialized questionnaires
» effectively different reviewers take different perspectives

- The differences may matter

% E.g. Porter et. al. study indicates that:
> active reviews find more faults than ad hoc or checklist methods
> no effective different between ad hoc and checklist methods
» the inspection meeting might be superfluous!

© 2000-2003, Steve Easterbrook 9

é University of Toronto Department of Computer Science
Prototyping

- Definitions
% “A software prototype is a partial implementation constructed primarily to
enable customers, users, or developers to learn more about a problem or its
solution.” [Davis 1990]

% “Prototyping is the process of building a working model of the system”
[Agresti 1986]

- Approaches to prototyping

% Explanatory
» explain, demonstrate and inform - then throw away
> e.g. a 'presentation prototype used at the initiation of the project
% Exploratory
» used to determine problems, elicit needs, clarify goals, compare design options
» informal, unstructured and thrown away.
% Experimental
» evaluate technical issues and model behaviour: test suitability of a technology
» detailed, throw away (or possibly) enhance as product.
% Evolutionary (e.g. “operational prototypes”, “pilot systems"):
» development seen as continuous process of adapting the system
» prototype is an early deliverable, to be continually improved.

© 2000-2003, Steve Easterbrook 10




@ University of Toronto

Department of Computer Science

- Throwaway Prototyping

% Purpose:
> to learn more about the problem or its
solution...
> hence discard after the desired knowledge
is gained.
% Use:
> early or late
% Approach:
> horizontal - build only one layer (e.g. UI)
> “quick and dirty”
% Advantages:
> Learning medium for better convergence
> Early delivery — early testing — less cost
> Successful even if it fails!
% Disadvantages:
> Wasted effort if requirements change
rapidly
> Often replaces proper documentation of
the requirements
> May set customers’ expectations too high
> Can get developed into final product

Brooks: "Plan to throw one away - you will anyway

Throwaway or Evolve?

- Evolutionary Prototyping

% Purpose
> to learn more about the problem or its
solution...
> ..and to reduce risk by building parts of
the system early
% Use:
> incremental: evolutionary
% Approach:
> vertical - partial implementation of all
layers:
> designed to be extended/adapted
% Advantages:
> Requirements not frozen
> Return to last increment if error is found
> Flexible(?)
% Disadvantages:
> Can end up with complex, unstructured
system which is hard to maintain
> early architectural choice may be poor
> Optimal solutions not guaranteed
> Lacks control and direction

"

© 2000-2003, Steve Easterbrook

1




