
1

1

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Lecture 7: Requirements Modeling III
Last Week:

Modeling and Analysis (II)
Modeling Functionality
Structured Analysis

Object Oriented Analysis

Last Week:
Modeling and Analysis (II)

Modeling Functionality
Structured Analysis

Object Oriented Analysis

Next Week:
Communicating Reqts

Specification Languages
Documentation Standards

Traceability

Next Week:
Communicating Reqts

Specification Languages
Documentation Standards

Traceability

This Week:
Modeling and Analysis (III)
Formal Modeling Techniques

Program Specification vs. Reqts Modeling
Egs: RSML, SCR, RML, Telos, Albert II

Tips on formal modeling

This Week:
Modeling and Analysis (III)
Formal Modeling Techniques

Program Specification vs. Reqts Modeling
Egs: RSML, SCR, RML, Telos, Albert II

Tips on formal modeling

2

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Formal Methods in RE

Why formalize in RE?
ƒTo remove ambiguity and improve

precision
ƒProvides a basis for verification that

the requirements have been met
ƒAllows us to reason about the

requirements
ÿ Properties of formal requirements models

can be checked automatically
ÿ Can test for consistency, explore the

consequences, etc.

ƒAllows us to animate/execute the
requirements
ÿHelps with visualization and validation

ƒWill have to formalize eventually anyway
ÿ RE is all about bridging from the informal

world to a formal machine domain

Why formalize in RE?
ƒTo remove ambiguity and improve

precision
ƒProvides a basis for verification that

the requirements have been met
ƒAllows us to reason about the

requirements
ÿ Properties of formal requirements models

can be checked automatically
ÿ Can test for consistency, explore the

consequences, etc.

ƒAllows us to animate/execute the
requirements
ÿHelps with visualization and validation

ƒWill have to formalize eventually anyway
ÿ RE is all about bridging from the informal

world to a formal machine domain

Why people don’t formalize in RE
ƒFormal Methods tend to be lower level

than other analysis techniques
ÿ They force you to include too much detail

ƒFormal Methods tend to concentrate on
consistent, correct models
ÿ …but most of the time your models are

inconsistent, incorrect, incomplete…

ƒPeople get confused about which tools
are appropriate:
ÿ E.g. modeling program behaviour vs.

modeling the requirements
ÿ formal methods advocates get too attached

to one tool!
ƒFormal methods require more effort

ÿ ...and the payoff is deferred

Why people don’t formalize in RE
ƒFormal Methods tend to be lower level

than other analysis techniques
ÿ They force you to include too much detail

ƒFormal Methods tend to concentrate on
consistent, correct models
ÿ …but most of the time your models are

inconsistent, incorrect, incomplete…

ƒPeople get confused about which tools
are appropriate:
ÿ E.g. modeling program behaviour vs.

modeling the requirements
ÿ formal methods advocates get too attached

to one tool!
ƒFormal methods require more effort

ÿ ...and the payoff is deferred

‹ What to formalize in RE?
ƒmodels of requirements knowledge (so we can reason about them)
ƒ specifications of requirements (so we can document them precisely)

3

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

What are Formal Methods?
‹ Broad View (Leveson)

ƒ application of discrete mathematics to software engineering
ƒ …involves modeling and analysis
ƒ …with an underlying mathematically-precise notation

‹ Narrow View (Wing)
ƒ Use of a formal language

ÿ a set of strings over some well-defined alphabet, with rules for distinguishing
which strings belong to the language

ƒ Formal reasoning about formulae in the language
ÿ E.g. formal proofs: use axioms and proof rules to demonstrate that some formula

is in the language

‹ For requirements modeling…
ƒ A notation is formal if:

ÿ …it comes with a formal set of rules which define its syntax and semantics.
ÿ …the rules can be used to analyse expressions to determine if they are

syntactically well-formed or to prove properties about them.

4

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Varieties of formal analysis
‹ Consistency analysis and typechecking

ƒ “Is the formal model well-formed?”
ÿ [assuming that we only use modeling languages where “well-formedness” is a

useful thing to check]

‹ Validation:
ƒ Animation of the model on small examples
ƒ Formal challenges:

ÿ “if the model is correct then the following property should hold...”
ƒ ‘What if’ questions:

ÿ reasoning about the consequences of particular requirements;
ÿ reasoning about the effect of possible changes

ƒ State exploration
ÿ E.g. use a model checking to find traces that satisfy some property

ƒ Checking application properties:
ÿ “will the system ever do the following...”

‹ Verifying design refinement
ÿ “does the design meet the requirements?”



2

5

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Three different models??

D:
a model of the
environment

S:
a model of
the software 
behaviour

R:
a model 

of the
requirements

is
satisfied

by

co
ns

tr
ai

ns

ac
ts

 u
po

n

6

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

FM in practice
l From Shuttle Study [Crow & DiVito 1996]

ƒMore errors found in the process of formalizing the requirements than were
found in the formal analysis
ÿ Formalization forces you to be precise and explicit, hence reveals problems
ÿ Formal analysis then finds fewer, but more subtle problems

ƒ Typical errors found include:
ÿ inconsistent interfaces
ÿ incorrect requirements (system does the wrong thing in response to an input)
ÿ clarity/maintainability problems

Issue Severity With FM Existing
High Major 2 0
Low Major 5 1
High Minor 17 3
Low Minor 6 0
Totals 30 4

7

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

How do FMs differ?
‹ Mathematical Foundation

ƒ Logic
ÿ first order predicate logic - e.g. RML
ÿ temporal logic - e.g. Albert II, SCR, KAOS
ÿ multi-valued logic – e.g. Xchek

ƒOther
ÿ algebraic languages - e.g. Larch
ÿ set theory - e.g. Z

‹ Ontology
ƒ fixed

ÿ states, events, actions - e.g. SCR
ÿ entities, activities, assertions - e.g. RML

ƒ extensible
ÿ meta language for defining new concepts - e.g. Telos

‹ Treatment of Time
ƒ State/event models

ÿ time as a discrete sequence of events - e.g. SCR
ÿ time as quantified intervals - e.g. KAOS

ƒ Time as a first class object
ÿ meta-level class to represent time - e.g. Telos

8

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Three traditions …
Formal Specification Languages
ƒGrew out of work on program verification
ƒSpawned many general purpose specification languages

ÿ Suitable for specifying the behaviour of program units
ƒKey technologies: Type checking, Theorem proving

Reactive System Modeling
ƒGrew out of a need to capture dynamic models of

system behaviour
ƒFocus is on reactive systems (e.g. real-time,

embedded control systems)
ÿ support reasoning about safety, liveness, performance(?)
ÿ provide a precise requirements specification language

ƒKey technologies: Consistency checking, Model checking

Formal Conceptual Modeling
ƒGrew out of a concern for capturing real-world

knowledge in RE
ƒFocus is on modeling domain entities, activities,

agents, assertions
ÿ provide a formal ontology for domain modeling
ÿ use first order predicate logic as the underlying formalism

ƒKey technologies: inference engines, default reasoning,
KBS-shells

Applicability to RE is excellent
ÿ modeling schemes capture key

requirements concepts
Examples: Reqts Apprentice, RML,
Telos, Albert II, …

Applicability to RE is excellent
ÿ modeling schemes capture key

requirements concepts
Examples: Reqts Apprentice, RML,
Telos, Albert II, …

Applicability to RE is good
ÿ modeling languages were

developed specifically for RE
Examples: Statecharts, RSML,
Parnas-tables, SCR, …

Applicability to RE is good
ÿ modeling languages were

developed specifically for RE
Examples: Statecharts, RSML,
Parnas-tables, SCR, …

Applicability to RE is poor
ÿ No abstraction or structuring
ÿ closely tied to program

semantics
Examples: Larch, Z, VDM, …

Applicability to RE is poor
ÿ No abstraction or structuring
ÿ closely tied to program

semantics
Examples: Larch, Z, VDM, …



3

9

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

(1) Formal Specification Languages
‹ Three basic flavours:

ƒOperational - specification is executable abstraction of the implementation
ÿ good for rapid prototyping
ÿ e.g., Lisp, Prolog, Smalltalk

ƒ State-based - views a program as a (large) data structures whose state
can be altered by procedure calls…
ÿ … using pre/post-conditions to specify the effect of procedures
ÿ e.g., VDM, Z

ƒ Algebraic - views a program as a set of abstract data structures with a set
of operations…
ÿ … operations are defined declaratively by giving a set of axioms
ÿ e.g., Larch, CLEAR, OBJ

‹ Developed for specifying programs
ƒ Programs are formal, man-made objects

ÿ … and can be modeled precisely in terms of input-output behaviour
ƒ But in RE we’re more concerned with:

ÿ real-world concepts, stakeholders, goals, loosely define problems, environments
ƒ So these languages are NOT appropriate for RE

ÿ but people fail to realise that requirements specification ≠ program specification
10

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

(2) Reactive System Modeling
‹ modeling how a system should behave

ƒ General approach:
ÿ Model the environment as a state machine
ÿ Model the system as a state machine
ÿ Model safety, liveness properties of the machine as temporal logic assertions
ÿ Check whether the properties hold of the system interacting with its environment

‹ Examples:
ƒ Statecharts

ÿ Harel’s notation for modeling large systems
ÿ Adds parallelism, decomposition and conditional transitions to STDs

ƒ RSML
ÿ Heimdahl & Leveson’s Requirements State Machine Language
ÿ Adds tabular specification of complex conditions to Statecharts

ƒ A7e approach
ÿ Major project led by Parnas to formalize A7e aircraft requirements spec
ÿ Uses tables to specify transition relations & outputs

ƒ SCR
ÿ Heitmeyer et. al. “Software Cost Reduction”
ÿ Extends the A7e approach to include dictionaries & support tables

11

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

(3) Formal Conceptual Modeling
‹ General approach

ƒmodel the world beyond functional specifications
ÿ a specification is prescriptive, concentrating on desired properties of the machine
ÿ but we also need to capture an understanding of the application domain
ÿ hence build models of humans’ knowledge/beliefs about the world

ƒmake use of abstraction & refinement as structuring primitives

‹ Examples:
ƒ RML - Requirements Modeling Language

ÿ Developed by Greenspan & Mylopoulos in mid-1980s
ÿ First major attempt to use knowledge representation techniques in RE
ÿ Essentially an object oriented language, with classes for activities, entities and

assertions
ÿ Uses First Order Predicate Language as an underlying reasoning engine

ƒ Telos
ÿ Extends RML by creating a fully extensible ontology
ÿ meta-level classes define the ontology (the basic set is built in)

ƒ Albert II
ÿ developed by Dubois & du Bois in the mid-1990s
ÿ Models a set of interacting agents that perform actions that change their state
ÿ uses an object-oriented real-time temporal logic for reasoning

12

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Example: State Transition Diagram

idle connectedringing
dial
tone

busyon hook / quiet

on hook / quiet

on hook / quiet

on hook / quiet

off hook /
dial tone

Dial busy
number /
busy tone

Dial idle number /
ringing tone

Called party off
hook /

connected

Called party on hook /
dial tone

state transition
stimulus response



4

13

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Example: Statecharts

idle Dial tone Ringing tone

Busy tone connected

Off hook

Lift receiver

Replace receiver

Dial
(callee
busy)

Dial (callee idle)

Callee
replaces
receiver

Callee
lifts

receiver

state

transition

Super-state

Sub-state

guard

stimulus

Default entry state
14

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

software
Monitored

 Variables

Enviro-
ment

System

input
devices

input

data
items

data
items

output

devices

output Controlled

 Variables

Enviro-
ment

Example: SCR

CurrentModePoweredonToo ColdTemp OKToo HotNew ModeOff@T-t-Inactive@Tt--Heat@T--tACInactive@F---Off-@T--Heat---@TACHeat@F---Off--@T-InactiveAC@F---Off--@T-Inactive

ModesEventsNoFailure@T(INMODE)neverBlah@T(thingy)@T(other)DoodahneveralwaysACFailure, HeatFailurenever@T(INMODE)ACpower =OffOn

ModesEventsNoFailurefalsetrueACFailure, HeatFailuretruefalseBuzzer =OffOn

ModesEventsNoFailuretruefalseACFailuretemp > temp0temp <= temp0HeatFailurefalsewaterlevel =lowWarning light =OffOn

VariableTypeInitial ValueUnitsWarningFlagbooleanfalse-OtherFlagbooleantrueFudgelevelenumeratedone-Waterlevelreal0.0mtemperaturereal0.0degrees CBlipCounterinteger0milesTimeNowreal100.0secAirBrakeAccreal0.0m/sec

ConstantTypeValueUnitsLowTempinteger15degrees CHighTempinteger23degrees CMaxTimeOutinteger300millisecReferenceSafetyLevelsafetytypelow-TempMargininteger5degrees C

TypeBaseTypeValuesUnitsWarningLevelenumeratedlow,med,high-Temperatureinteger-100..100degrees CWaterlevelinteger0..100metersFlagenumeratedon, off-

Dictionaries:

Monitored/Controlled
Variables

Types

Constants

Mode Transition Tables

CurrentModePoweredonToo ColdTemp OKToo HotNew ModeOff@T-t-Inactive@Tt--Heat@T--tACInactive@F---Off-@T--Heat---@TACHeat@F---Off--@T-InactiveTimeout@F---No Failure-ff@TACFailure

CurrentModePoweredonToo ColdTemp OKToo HotNew ModeOff@T-t-Inactive@Tt--Heat@T--tACInactive@F---Off-@T--Heat---@TACHeat@F---Off--@T-InactiveAC@F---Off--@T-Inactive

ModesEventsNoFailure@T(INMODE)neverBlah@T(thingy)@T(other)DoodahneveralwaysACFailure, HeatFailurenever@T(INMODE)Heater =OffOn

ModesEventsNoFailure@T(INMODE)neverSensorFail@T(reset=on)@T(INMODE)TimeoutalwaysneverACFailure, HeatFailurenever@T(INMODE)Warning light =OffOn

Event Tables

Condition Tables

Tables: also:
Assertions,
Scenarios,

...

Four Variable Model:

SCR Specification

15

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

SCR basics
‹ Modes and Mode classes

ƒ A mode class is a finite state machine, with states called system modes
ÿ Transitions in each mode class are triggered by events

ƒ Complex systems are described using a number of mode classes operating in
parallel

‹ System State
ƒ A (system) state is defined as:

ÿ the system is in exactly one mode from each mode class…
ÿ …and each variable has a unique value

‹ Events
ƒ An event occurs when any system entity changes value

ÿ An input event occurs when an input variable changes value
ÿ Single input assumption - only one input event can occur at once
ÿ Notation: @T(c) means “c changed from false to true”

ƒ A conditioned event is an event with a predicate
ÿ @T(c) WHEN d means: “c became true when c was false and d was true”

Source: Adapted from Heitmeyer et. al. 1996. 16

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

‹ Mode Class Tables
ƒ Define the set of modes (states) that the software can be in.
ƒ A complex system will have many different modes classes

ÿ Each mode class has a mode table showing the conditions that cause transitions
between modes

ƒ A mode table defines a partial function from modes and events to modes

‹ Event Tables
ƒ An event table defines how a term or controlled variable changes in

response to input events
ƒ Defines a partial function from modes and events to variable values

‹ Condition Tables
ƒ A condition table defines the value of a term or controlled variable under

every possible condition
ƒ Defines a total function from modes and conditions to variable values

SCR Tables

Source: Adapted from Heitmeyer et. al. 1996.



5

17

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Example: Temp Control System

Current
Mode

Powered
on

Too Cold Temp OK Too Hot New Mode

Off @T - t - Inactive
@T t - - Heat
@T - - t AC

Inactive @F - - - Off
- @T - - Heat
- - - @T AC

Heat @F - - - Off
- - @T - Inactive

AC @F - - - Off
- - @T - Inactive

Mode transition table:

Source: Adapted from Heitmeyer et. al. 1996. 18

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Failure modes

Current
Mode

Powered
on

Cold
Heater

Too
Cold

Warm
AC

Too
Hot

New
Mode

NoFailure t @T t - - HeatFailure
t - - @T t ACFailure

HeatFailure t @F t - - NoFailure
ACFailure t - - @F t NoFailure

Mode transition table:

Modes

NoFailure @T(INMODE) never

ACFailure, HeatFailure never @T(INMODE)

Warning light = Off On

Event table:

Source: Adapted from Heitmeyer et. al. 1996.

19

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Consistency Checks in SCR
‹ Syntax

ƒ did we use the notation correctly?

‹ Type Checks
ƒ do we use each variable correctly?

‹ Disjointness
ƒ is there any overlap between rows of the mode tables?

ÿ ensures we have a deterministic state machine

‹ Coverage
ƒ does each condition table define a value for all possible conditions?

‹ Mode Reachability
ƒ is there any mode that cannot ever happen?

‹ Cycle Detection
ƒ have we defined any variable in terms of itself?

20

University of Toronto Department of Computer Science

© 2000-2003, Steve Easterbrook

Using Formal Methods
‹ Selective use of Formal Methods

ƒ Amount of formality can vary
ƒ Need not build complete formal models

ÿ Apply to the most critical pieces
ÿ Apply where existing analysis techniques are weak

ƒ Need not formally analyze every system property
ÿ E.g. check safety properties only

ƒ Need not apply FM in every phase of development
ÿ E.g. use for modeling requirements, but don’t formalize the system design

ƒ Can choose what level of abstraction (amount of detail) to model

‹ Lightweight Formal Methods
ƒ Have become popular as a means of getting the technology transferred
ƒ Two approaches

ÿ Lightweight use of FMs - selectively apply FMs for partial modeling
ÿ Lightweight FMs - new methods that allow unevaluated predicates


