
Supplementary Material:
Proximal Deep Structured Models

Shenlong Wang
University of Toronto

slwang@cs.toronto.edu

Sanja Fidler
University of Toronto

fidler@cs.toronto.edu

Raquel Urtasun
University of Toronto

urtasun@cs.toronto.edu

Abstract

In this supplementary material we first show the analogy between other proximal
methods and our proposed deep structured model, including proximal gradient
method and alternating direction method of multipliers. After that, we provide
more quantitive results on the three experiments.

1 More Proximal Algorithms Examples

Let us the consider the problem we defined in Eq. 1 in our main submission. We aim at tackling the
following inference problem:

y∗ = arg min
y∈Y

E(x,y;w) = arg min
y∈Y

∑
i

fi(yi,x;wu) +
∑
α

fα(yα,x;wα) (1)

where fi(yi;x,w) : Yi ×X → R is a function that depends on a single variable (i.e., a unary term)
and fα(yα) : Yα × X → R depends on a subset of variables yα = (yi)i∈α defined on a domain
Yα ⊂ Y .

We focus on the problem with potential functions satisfying the following conditions:

1. There exists a function hi and gi such that fi(yi,x;w) = gi(yi, hi(x,w)), where gi is a
distance function;

2. There exists a closed-form proximal operator for gi(yi, hi(x;w)) wrt yi;

3. There exist functions hα and gα such that fα(yα,x;w) can be re-written as fα(yα,x;w) =
hα(x;w)gα(wT

αyα);

4. There exists a proximal operator for either the dual or primal form of gα(·).

1.1 Proximal Gradient Method

Given that all the conditions (1-3) hold true and gα is differentiable wrt y, we are able to apply proxi-
mal gradient method to tackle Eq. (1). We denote

∑
i fi(yi,x;wu) as Eu(y) and

∑
α fα(yα,x;wα)

as Eho(y) for simplicity. If gα is differentiable wrt y, then Eho(y) is differentiable We can then
utilize proximal gradient descent to tackle the inference problem. The general idea of the proximal
gradient descent method is based on the fix-point theory: a point y∗ is a solution that minimizes (1)
if and only if

0 ∈ ∇Eho(y) + ∂Eu(y)

where∇Eho(y) is the gradient of Eho(y) and δEu(y) is the subgradient for Eu(y). Motivated by
this we can derive the following updating rule:

y(t+1) = proxEu
(y(t) − σu∇Eho(y))

29th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



Figure 1: The whole architecture (top) and one iteration block (bottom) of the proposed deep
structured network.

According to the chain rule and condition (3) we have ∇Eho(y) =
∑
α h(x,w)∇gα(wTy)wα. We

can thus derive the following update rule based on the chain rule in gradient computation:
z
(t+1)
α = ∇gα(0 + 1 ·wT

αy
(t)
α )

y
(t+1)
i = proxgi,hi(x,w)(y

(t)
i −

σu
hα(x;w)w

∗T
·,i z

(t+1))

ȳ(n+1) = y(n+1) + σex(y(n+1) − y(n))
(2)

where σu is the hyperparameter that represents the gradient step for high-order term and σex a
hyperparameter that represents the extrapolation gradient step. If the extrapolation gradient step
equals to 0, the abo ve update rule corresponds to the standard proximal gradient algorithm. From
this set of equations we can see that each step of the iteration corresponds to our building block of the
structured neural network in Fig. 1. The colors in the figure and equations help see the connection.

1.2 Alternating Direction Method of Multipliers

Given that all the conditions we defined for the fi and fα functions hold true, with the existence of
proxgα , we can utilize alternating direction method of multipliers (ADMM) to tackle the inference
problem in Eq. (1). The general idea of ADMM is based on augmented Lagriangian, in which we
first rewrite the problem of minimizing Eq. (1) as

arg min
y∈Y

∑
i

gi(yi, hi(x,w)) +
∑
α

hα(x;w)gα(zα) s.t. ∀α, zα = wT
αyα

The augmented Lagrangian associated with the problem is then:

L(y, z,v) =
∑
i

gi(yi, hi(x,w)) +
∑
α

hα(x;w)gα(zα) + vT (WTy − z) + (ρ/2)‖WTy − z‖22

where W is the matrix which is composed of column vectors of all wα. Here, ρ is a hyper-parameter
that controls the quadratic penalty and v is the dual variable associated with the consensus constraint
(Lagrangian multiplier). We can then minimize the above energy function in an alternating manner:

z
(n+1)
α = proxgα(z

(n)
α +

σρ
hα(x;w) (w

T
αy

(n)
α + 1

ρv
(n)
α )

y
(n+1)
i = proxgi,hi(x,w)(y

(n)
i − στ (w∗T·,i (z(n+1) − v(n)))

v
(n+1)
α = v

(n+1)
α + ρ(wT

αy
(n+1)
α − z(n)α )

(3)

Again we can see that the iterative algorithm shares the same computation block with the proposed
proximal structured network in Fig. 1. It is worth noting that although it seems that we have two
convolution layers here, the convolution required for updating z(n+1)

α and the one required for
updating v(n)α are the same. Thus we still only need one convolution layer for our computation block,
as the previous methods. Note that unlike the previous primal-dual method and proximal gradient
method, we have a bias term in the two convolution layers in order to mimic ADMM.

2



1.3 Half-Quadratic Splitting

Given that all the conditions we defined for the fi and fα functions hold true, with gi to be quadratic,
we can utilize half-quadratic splitting (HQ) to tackle the inference problem in Eq. (1). The general
idea of HQ is moving the high-order terms outside gα expression, by gradually minimizing a series
of the following new cost function:

arg min
y∈Y

min
z∈Z

∑
i

gi(yi, hi(x,w)) +
∑
α

hα(x;w)gα(zα) +
β

2

∑
α

‖wT
αyα − zα‖22

where z is the auxiliary variable. As the balancing parameter β →∞, the surrogate objective function
converges to the original energy function in Eq. (1). The alternating optimization procedure thus
contains steps including minimizing wrt z and wrt y respectively:

z
(n+1)
α = proxgα(z

(n)
α +

βσρ
hα(x;w) (w

T
αy

(n)
α )

y
(n+1)
i = proxgi,hi(x,w)(y

(n)
i − βστw∗T·,i z(n+1))

ȳ(n+1) = y(n+1) + σex(y(n+1) − y(n))
(4)

where σu, σα and σex are the hyperparameters represents unary, high-order and extrapolation gradient
step respectively. If the extrapolation gradient step equals to 0, the above update rule corresponds
to the standard half-quadratic splitting algorithm. Note that in this case with gi to be quadratic,
proxgi,hi(x,w) is a least-squares solver. From the colors in the figures and equations, we can see the
connection between each step of the iteration and the building block of the proposed neural network
in Fig. 1.

3



2 Additional Experimental Results

2.1 Depth Refinement

Figure 2: Additional depth refinement results. Top to bottom: noisy input, ground-truth depth, ours.

Figure 3: Additional depth refinement results. Top to bottom: noisy input, ground-truth depth, ours.

4



Figure 4: Additional depth refinement results. Top to bottom: noisy input, ground-truth depth, ours.

Figure 5: Additional depth refinement results. Top to bottom: noisy input, ground-truth depth, ours.

5



2.2 Natural Image Denoising

Figure 6: Additional natural image denoising results. Left to right: noisy input, ground-truth, ours.

6



2.3 Optical Flow

Figure 7: Additional optical flow results. Top to bottom: ground-truth optical flow, Flownet, ours.

7



Figure 8: Additional optical flow results. Top to bottom: ground-truth optical flow, Flownet, ours.

Figure 9: Additional optical flow results. Top to bottom: ground-truth optical flow, Flownet, ours.

8



Figure 10: Additional optical flow results. Top to bottom: ground-truth optical flow, Flownet, ours.

Figure 11: Additional optical flow results. Top to bottom: ground-truth optical flow, Flownet, ours.

9


	More Proximal Algorithms Examples
	Proximal Gradient Method
	Alternating Direction Method of Multipliers
	Half-Quadratic Splitting

	Additional Experimental Results
	Depth Refinement
	Natural Image Denoising
	Optical Flow


