A Tutorial on Primal-Dual Algorithm

Shenlong Wang

University of Toronto

March 31, 2016

Energy minimization

MAP Inference for MRFs

► Typical energies consist of a regularization term and a data term.

$$\min_{\mathbf{x}} \{ E(\mathbf{x}) = \mathcal{R}(\mathbf{x}) + \mathcal{D}(\mathbf{x}) \}$$

- Used for a wide range of problems.
- Minimizer provides the best configuration to the problem.
- The energy related to the posterior probability via a Gibbs distribution:

$$p(\mathbf{x}) = \frac{1}{Z} \exp(-E(\mathbf{x}))$$

Energy minimization

Discrete vs Continuous MRF setting

According to different output space, we have:

- ► Discrete setting: each variable y_i can take a label from a discrete label set U ⊂ Z.
- ► Continuous setting: each variable y_i is considered as a continuous value from U ⊂ R.

We will focus on continuous setting today.

Why not Black box convex optimization?¹

Black box convex optimization

Generic iterative algorithm for convex optimization:

- I Pick any initial vector $x^0 \in \mathbb{R}^n$, set k = 0
- **2** Compute search direction $d^k \in \mathbb{R}^n$
- Solution Choose step size τ^k such that $f(x^k + \tau^k d^k) < f(x^k)$
- **4** Set $x^{k+1} = x^k + \tau^k d^k$, k = k+1
- 5 Stop if converged, else goto 2

- Plug-and-play, lots of choice: steepest descent, conjugate gradient, newton, quasi-newton (e.g. L-BFGS)
- Do not use the structure of the problems, thus may not be the most efficient choice.
- ▶ What if it's difficult to compute *d*?

¹Image from Cremers (2014)

Notations

Variational imaging people use different notations:

$$\min_{u} \int_{x \in \Omega} |\nabla u| + \frac{\lambda}{2} \|k * u - f\|_2^2 dx$$

where $u: \Omega \to \mathbb{R}$ is a function over the continuous image space $\Omega \subset \mathbb{R}^n$ and the objective is a functional of u.

▶ Keep in mind what it looks like in our language:

$$\min_{\mathbf{x}} \|G\mathbf{x}\|_1 + \frac{\lambda}{2} \|K\mathbf{x} - f\|_2^2$$

Semi-continuity²

► A function f(x) is called lower(upper) semi-continuous for a point x₀ if function values for arguments near x₀ are either close to f(x₀) or greater than (less than) f(x₀)

- ► Floor function [x] is upper semi-continuous, [x] is lower semi-continuous.
- The indicator function of any open set is lower semicontinuous. The indicator function of a closed set is upper semicontinuous.
- ► Used to convert inequality constraints to objective function.

²See https://en.wikipedia.org/wiki/Semi-continuity for a formal definition

Warm-up Lipschitz continuity

• A function f(x) is called **Lipschitz continuous** on \mathcal{B}_n if :

$$|f(x) - f(y)| \le L ||x - y||_{\infty}, \forall x, y \in \mathcal{B}_n$$

where constant L is an upper bound to the maximum steepness of $f(\boldsymbol{x})$

- ► Stronger than continuous, weaker than continuously differentiable.
- ▶ f = |x| is Lipschitz continuous but not continuously differentiable.

Convex conjugate

The **convex conjugate** $f^*(\mathbf{y})$ of a function f(x) is defined as:

$$f^*(y) = \sup_{\mathbf{x} \in \mathbf{dom}f} \langle x, y \rangle - f(x)$$

Each pair of $(\mathbf{y}^*, f(\mathbf{y}^*))$ is a tangent line of the function 3

Examples:

$$\blacktriangleright f(x) = |x|:$$

$$f^*(\mathbf{y}) = \sup_{\mathbf{x}} \langle x, y \rangle - |x| = \begin{cases} 0 & \text{if} \quad |y| < 1\\ \infty & \text{else} \end{cases}$$

³Image from Wikipedia

Proximal operator

The proximal operator (or proximal mapping) of a convex function f is:

$$\mathbf{prox}_{f}(\mathbf{x}) = \arg\min_{\mathbf{u}} \left(f(\mathbf{u}) + \frac{1}{2} \|\mathbf{u} - \mathbf{x}\|_{2}^{2} \right)$$

- $\blacktriangleright~f$ can be nonsmooth, have embedded constraints, ...
- evaluating \mathbf{prox}_f involves solving a convex optimization problem.
- ▶ but often has analytic solution, or simple linear-time algorithm.

Proximal operator examples

• quadratic function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T P \mathbf{x} + \mathbf{q}^T \mathbf{x} + r \ (P \succeq 0)$:

$$\mathbf{prox}_f(\mathbf{x}) = (I+P)^{-1}(\mathbf{x}-\mathbf{q})$$

• ℓ_1 norm $f(\mathbf{x}) = \|\mathbf{x}\|_1$:

$$\mathbf{prox}_f(x)_i = \begin{cases} x_i - 1 & x_i \ge 1\\ 0 & |x_i| \le 1\\ x_i + 1 & x_i \le -1 \end{cases}$$
 (soft thresholding)

• logarithmic barrier $f(\mathbf{x}) = -\sum_{i=1}^{n} \log x_i$:

$$\mathbf{prox}_f(x)_i = \frac{x_i + \sqrt{x_i^2 + 4}}{2}$$

Useful properties of proximal operator

- If f is closed and convex then \mathbf{prox}_f exists and is unique for all x.
- seperable sum: if $f(\mathbf{x}) = \sum_{i=1}^{N} f_i(x_i)$, then

$$(\mathbf{prox}_f(\mathbf{x}))_i = \mathbf{prox}_{f_i}(x_i)$$

fixed point: the point x* minimizes f if and only if x* is a fixed point:

$$\mathbf{x}^* = \mathbf{prox}_f(\mathbf{x}^*)$$

▶ scaling and translation: define $h(\mathbf{x}) = f(t\mathbf{x} + \mathbf{b})$ with $t \neq 0$:

$$\mathbf{prox}_h(\mathbf{x}) = \frac{1}{t}(\mathbf{prox}_{t^2f}(t\mathbf{x} + \mathbf{b}) - \mathbf{b})$$

conjugate:

$$\mathbf{prox}_{tf^*}(\mathbf{x}) = \mathbf{x} - t\mathbf{prox}_{f/t}(\mathbf{x}/t)$$

keys to design parrallel optimization method

Problem

$$\min_{\mathbf{x}} f(\mathbf{x}) = g(\mathbf{x}) + h(\mathbf{x})$$

- $\blacktriangleright\ g$ convex, differentiable, ∇g is Lipschitz continuous with constant L
- h convex, possibly nondifferentiable; \mathbf{prox}_h is inexpensive
- rules out many methods, e.g. conjugate gradient
- ► e.g. lasso:

$$\min_{\mathbf{x}} \|\mathbf{x}\|_1 + \frac{\lambda}{2} \|A\mathbf{x} + \mathbf{b}\|_2^2$$

Proximal gradient method

$$\min_{\mathbf{x}} f(\mathbf{x}) = g(\mathbf{x}) + h(\mathbf{x})$$

- $\blacktriangleright\ g$ convex, differentiable, ∇g is Lipschitz continuous with constant L
- h convex, possibly nondifferentiable; \mathbf{prox}_h is inexpensive proximal gradient algorithm

$$\mathbf{x}^{(t)} = \mathbf{prox}_h \left(\mathbf{x}^{(t-1)} - \tau_t \nabla g(\mathbf{x}^{(t-1)}) \right)$$

- O(1/N) convergence rate
- ▶ i.e. to get $f(\mathbf{x}^{(k)}) f(\mathbf{x}^*) \le \epsilon$, need $O(1/\epsilon)$ iterations

Accelerated gradient method

$$\min_{\mathbf{x}} f(\mathbf{x}) = g(\mathbf{x}) + h(\mathbf{x})$$

- $\blacktriangleright\ g$ convex, differentiable, ∇g is Lipschitz continuous with constant L
- ► h convex, possibly nondifferentiable; \mathbf{prox}_h is inexpensive accelerated proximal gradient algorithm⁴

$$\begin{aligned} \mathbf{x}^{(t)} &= \mathbf{prox}_h \left(\mathbf{y}^{(t-1)} - \tau_t \nabla g(\mathbf{y}^{(t-1)}) \right) \\ \mathbf{y}^{(t)} &= \mathbf{x}^{(t)} + \frac{t-1}{t+2} (\mathbf{x}^{(t)} - \mathbf{x}^{(t-1)}) \end{aligned}$$

- $O(1/N^2)$ convergence rate for first-order method!
- ▶ i.e. to get $f(\mathbf{x}^{(k)}) f(\mathbf{x}^*) \le \epsilon$, only need $O(1/\sqrt{\epsilon})$ iterations

⁴Nesterov (2004), Beck and Teboulle (2009)

Experiments

proximal gradient vs accelerated proximal gradient⁵

⁵Image from Gordon & Tibshirani (2012)

Motivation

Energy minimization

$$\min_{\mathbf{x}\in X} f(K\mathbf{x}) + g(\mathbf{x})$$

- \blacktriangleright K is a linear and continuous operator
- ► X is Hilbert space
- ▶ $f: X \to \mathbb{R} \cup \{\infty\}$, $g: X \to \mathbb{R} \cup \{\infty\}$, convex, not necessarily to be continuous and differentiable, **prox** is inexpensive

Motivation

Examples

Many problems are within this subclass:

► Lasso:

$$\min_{\mathbf{x}} \|\mathbf{x}\|_1 + \frac{\lambda}{2} \|A\mathbf{x} + \mathbf{b}\|_2^2$$

Low-level vision:

$$\min_{\mathbf{u},\mathbf{v}} \|\nabla \mathbf{u}\|_1 + \|\nabla \mathbf{v}\|_1 + \lambda \|\rho(\mathbf{u},\mathbf{v})\|_1$$

Linear programming:

$$\min_{\mathbf{x}} \langle \mathbf{c}, \mathbf{x} \rangle, \text{ subject to } \begin{cases} A\mathbf{x} = \mathbf{b} \\ \mathbf{x} \ge 0 \end{cases}$$

$$\min_{\mathbf{w},b} \|\mathbf{w}\|_2^2 + \sum_{i=1}^n \max(0, 1 - y_i(\langle \mathbf{w}, \mathbf{x}_i \rangle + b))$$

Problem formulation

$$\begin{split} \min_{\mathbf{x}\in X} f(K\mathbf{x}) + g(\mathbf{x}) \quad \text{(primal)} \\ \text{Recall the convex conjugate: } f^*(\mathbf{y}) &= \langle K\mathbf{x}, \mathbf{y} \rangle - f(K\mathbf{x}) \text{, we have:} \\ \min_{\mathbf{x}\in X} \max_{\mathbf{y}\in Y} \langle K\mathbf{x}, \mathbf{y} \rangle + g(\mathbf{x}) - f^*(\mathbf{y}) \quad \text{(primal-dual)} \\ \max_{\mathbf{y}\in Y} - (f^*(\mathbf{y}) + g^*(-K^*\mathbf{y})) \quad \text{(dual)} \end{split}$$

Primal-dual gap:

$$f(K\mathbf{x}) + g(\mathbf{x}) + f^*(\mathbf{y}) + g^*(-K^*\mathbf{y})$$

For convex function, primal-dual gap will be 0 at the optimal solution.

Optimal condition

Today we focus on primal-dual problem:

 $\min_{\mathbf{x} \in X} \max_{\mathbf{y} \in Y} \langle K\mathbf{x}, \mathbf{y} \rangle + g(\mathbf{x}) - f^*(\mathbf{y}) \quad \text{(primal-dual)}$

Why primal-dual?

- proximal operator for $f(K\mathbf{x})$ is not trivial.
- \blacktriangleright but we can get proximal operator $f^*(\mathbf{x})$ and $g(\mathbf{x})$ easily

A saddle point $(\mathbf{x}, \mathbf{y}) \in X \times Y$ of this min-max function should satisfy:

$$\begin{cases} K\hat{\mathbf{x}} - \partial f^*(\hat{\mathbf{y}}) \ni 0\\ K^*\hat{\mathbf{y}} + \partial g(\hat{\mathbf{x}}) \ni 0 \end{cases}$$

We iterate according to this condition.

The algorithm⁶

$$\min_{\mathbf{x}\in X} \max_{\mathbf{y}\in Y} \langle K\mathbf{x}, \mathbf{y} \rangle + g(\mathbf{x}) - f^*(\mathbf{y})$$

- Choose step size $\sigma > 0$ and $\tau > 0$, so that $\sigma \tau L^2 < 1$, where L = ||K||, and $\theta \in [0, 1]$.
- \blacktriangleright Choose initialization $(\mathbf{x}^0,\mathbf{y}^0)$
- ► For each iteration:

$$\begin{cases} \mathbf{y}^{(n+1)} &= \mathbf{prox}_{f^*}(\mathbf{y}^{(n)} + \sigma K \bar{\mathbf{x}}^{(n)}) & (\text{dual proximal}) \\ \mathbf{x}^{(n+1)} &= \mathbf{prox}_g(\mathbf{x}^{(n)} - \tau K^* \bar{\mathbf{y}}^{(n+1)}) & (\text{primal proximal}) \\ \bar{\mathbf{x}}^{(n+1)} &= \mathbf{x}^{(n+1)} + \theta(\mathbf{x}^{(n+1)} - \mathbf{x}^{(n)}) & (\text{extrapolation}) \end{cases}$$

 \blacktriangleright Essentially alternately do proximal gradient descent for ${\bf x}$ and ${\bf y}.$

⁶Chambolle and Pock (2011), Pock, Cremers, Bischof, Chambolle (2009)

Convergence

The algorithm's convergence rate depending on different types of the problem⁷:

- Completely non-smooth problem: O(1/N) for the duality gap.
- ▶ Sum of a smooth and non-smooth: $O(1/N^2)$ for $\|\mathbf{x} \mathbf{x}^*\|^2$.
- $\blacktriangleright \text{ Completely smooth problem: } O(\omega^N), \omega < 1 \text{ for } \|\mathbf{x} \mathbf{x}^*\|^2.$

⁷See Chambolle and Pock (2011) for a detailed proof.

Parallel implementation

$$\begin{cases} \mathbf{y}^{(n+1)} = \mathbf{prox}_{f^*}(\mathbf{y}^{(n)} + \sigma K \bar{\mathbf{x}}^{(n)}) & (\text{dual proximal}) \\ \mathbf{x}^{(n+1)} = \mathbf{prox}_g(\mathbf{x}^{(n)} - \tau K^* \bar{\mathbf{y}}^{(n+1)}) & (\text{primal proximal}) \\ \bar{\mathbf{x}}^{(n+1)} = \mathbf{x}^{(n+1)} + \theta(\mathbf{x}^{(n+1)} - \mathbf{x}^{(n)}) & (\text{extrapolation}) \end{cases}$$

Problems we usually have in vision

- $\blacktriangleright \ {\bf x}$ and ${\bf y}$ are defined on a regular grid.
- f and g is usually in a **separable sum** format.
- Small number of variables involved gradient part Kx (high-order potential)
- perfect for GPU parallel computing!

Arrow-Hurwicz method ($\theta = 0$)⁸

$$\begin{cases} \mathbf{y}^{(n+1)} &= \mathbf{prox}_{f^*}(\mathbf{y}^{(n)} + \sigma K \bar{\mathbf{x}}^{(n)}) & \text{(dual proximal)} \\ \mathbf{x}^{(n+1)} &= \mathbf{prox}_g(\mathbf{x}^{(n)} - \tau K^* \bar{\mathbf{y}}^{(n+1)}) & \text{(primal proximal)} \end{cases}$$

- Also tackles primal-dual method
- Without the 'momentum' step
- \blacktriangleright Theoretically lose $O(1/N^2)$ convergence guarantee (or people haven't proved it yet)
- In practice, for some method it is still fast

⁸Arrow, Hurwicz, Uzawa (1958)

Alternating direction method of multipliers (ADMM)

$$\min_{\mathbf{x}\in X} f(K\mathbf{x}) + g(\mathbf{x}) \quad (primal)$$

We can conduct a decomposition:

$$\min_{\mathbf{x} \in X} f(\mathbf{y}) + g(\mathbf{x}) \text{ subject to } K\mathbf{x} - \mathbf{y} = 0$$

Solving the following augmented Lagrangian multipliers problem:

$$L_{\tau}(\mathbf{x}, \mathbf{y}, \mathbf{z}) = f(\mathbf{y}) + g(\mathbf{x}) + \mathbf{z}^{T}(K\mathbf{x} - \mathbf{y}) + \frac{\tau}{2} \|K^{*}\mathbf{y} - \mathbf{x}\|_{2}^{2}$$

$$\mathbf{y}^{(n+1)} = \arg\min_{\mathbf{y}} f(\mathbf{y}) + \langle \mathbf{y}, \mathbf{z}^{(n)} \rangle + \frac{\tau}{2} \|K\mathbf{x}^{(n)} - \mathbf{y}\|_{2}^{2} \quad \text{(primal)}$$

$$\mathbf{x}^{(n+1)} = \arg\min_{\mathbf{x}} g(\mathbf{x}) - \langle K\mathbf{x}, \mathbf{z}^{(n)} \rangle + \frac{\tau}{2} \|K\mathbf{x} - \mathbf{y}^{(n+1)}\|_{2}^{2} \quad \text{(primal)}$$

$$\mathbf{z}^{(n+1)} = \mathbf{z}^{(n)} + \tau(K\mathbf{x} - \mathbf{y}) \quad \text{(dual)}$$

- Primal-dual method is equivalent to ADMM if K = I.
- But in the general case primal-dual is usually faster, since solving the subproblems of ADMM is harder.

Experimental results⁹

	$\lambda = 16$		$\lambda = 8$	
	$\varepsilon = 10^{-4}$	$\varepsilon = 10^{-6}$	$\varepsilon = 10^{-4}$	$\varepsilon = 10^{-6}$
PD	108 (1.95s)	937 (14.55s)	174 (2.76s)	1479 (23.74s)
AHZC	65 (0.98s)	634 (9.19s)	105 (1.65s)	1001 (14.48s)
FISTA	107 (2.11s)	999 (20.36s)	173 (3.84s)	1540 (29.48s)
NEST	106 (3.32s)	1213 (38.23s)	174 (5.54s)	1963 (58.28s)
ADMM	284 (4.91s)	25584 (421.75s)	414 (7.31s)	33917 (547.35s)
PGD	620 (9.14s)	58804 (919.64s)	1621 (23.25s)	-
CFP	1396 (20.65s)	_	3658 (54.52s)	-

ROF-model, 500 \times 375 grayscale image, ϵ error tolerance

- AHZC: Arrow-Hurwicz primal-dual method
- ▶ FISTA: Fast iterative shrinkage threshold, $O(1/N^2)$ convergence rate
- ▶ NEST: Nesterov's method on dual problem, $O(1/N^2)$ convergence rate
- ADMM: Alternating direction method of multipliers
- $\blacktriangleright\,$ PGM: Proximal gradient method , O(1/N) convergence rate
- CFP: Fixed point method on dual

⁹Table from Chambolle and Pock (2010)

Image denoising ROF¹⁰ model for image denoising:

$$\min_{\mathbf{x}} \|\nabla \mathbf{x}\|_1 + \frac{\lambda}{2} \|\mathbf{x} - \mathbf{u}\|_2^2$$

 $f(\mathbf{x}) = \sum_i \|\nabla x_i\|_1$, where ∇x_i is a two-dimensional intensity gradient vector at image pixel i

$$f^*(\mathbf{y}) = \delta_{\ell_{\infty}}(\mathbf{y}) = \begin{cases} 0 & \mathbf{y} \in \mathcal{P} \\ \infty & \mathbf{y} \notin \mathcal{P} \end{cases}, \quad \mathcal{P} = \{\mathbf{p} : \forall i, |p_i| < 1\} \end{cases}$$

Proximal operator for convex-set indicator function is just euclidean projecting onto the feasible closed set \mathcal{P} . Thus:

$$\mathbf{prox}_{f^*}(\mathbf{y}) = \frac{\mathbf{y}}{\max(\|\mathbf{y}\|, 1)}$$

Proximal operator for $\frac{\lambda}{2}\|\mathbf{x}-\mathbf{u}\|_2^2$ is in closed form:

$$\mathbf{prox}_g(\mathbf{x}) = \frac{\mathbf{x} + \lambda \tau \mathbf{u}}{1 + \lambda \tau}$$

¹⁰Rudin, Osher, Fatemi (1992)

Example TV-L¹ Optical flow¹¹

$$\min_{\mathbf{u},\mathbf{v}} \|\nabla \mathbf{u}\|_1 + \|\nabla \mathbf{v}\|_1 + \lambda \|\rho(\mathbf{u},\mathbf{v})\|_1$$

- $\blacktriangleright~\mathbf{u},\mathbf{v}:$ horizontal and vertical motion field
- $\blacktriangleright~\rho(\mathbf{u},\mathbf{v})$ first-order Taylor approximation of photometric error
- ▶ **u**_k: estimation of inverse depth from single view

(a) Input

(b) Ground truth

(c) Estimated motion

¹¹Zach, Pock, Bischof (2007)

Linear Programming

$$\min_{\mathbf{x}} \langle \mathbf{c}, \mathbf{x} \rangle, \text{ subject to } \begin{cases} A\mathbf{x} = \mathbf{b} \\ \mathbf{x} \ge 0 \end{cases}$$

Introducing Lagrange multipliers \mathbf{y}

$$\min_{\mathbf{x}} \max_{\mathbf{y}} \langle A\mathbf{x} - b, \mathbf{y} \rangle + \langle \mathbf{c}, \mathbf{x} \rangle, \text{ subject to } \mathbf{x} \ge 0$$

Applying primal-dual algorithm:

$$\begin{cases} \mathbf{y}^{(n+1)} &= \mathbf{y}^{(n)} + \sigma A \bar{\mathbf{x}}^{(n)} \\ \mathbf{x}^{(n+1)} &= \mathbf{proj}_{[0,\infty)} (\mathbf{x}^{(n)} - \tau (A^T \mathbf{y}^{(n+1)} + \mathbf{c})) \\ \bar{\mathbf{x}}^{(n+1)} &= \mathbf{x}^{(n+1)} + \theta (\mathbf{x}^{(n+1)} - \mathbf{x}^{(n)}) \end{cases}$$

where $\mathbf{proj}_{[0,\infty)}$ is the simply truncation function.

Example Discrete MRF inference

$$\min_{\forall i, x_i \in \mathcal{L}} \sum_i \theta_i(x_i) + \sum_f \theta_f(\mathbf{x}_f)$$

LP relaxation:

$$\begin{split} \min_{\forall i, x_i \in \mathcal{L}} \sum_i \sum_{x_i} \theta_i(x_i) \mu_i(\mathbf{x}_i) + \sum_i \sum_{\mathbf{x}_f} \theta_f(\mathbf{x}_f) \mu_f(\mathbf{x}_f) \\ \text{subject to } \sum_{x_i} \mu_i(x_i) = 1, \forall i \\ \sum_{\mathbf{x}_f} \mu_f(\mathbf{x}_f) = 1, \forall f \\ \sum_{\mathbf{x}_f1} \mu_f(\mathbf{x}_f) = \mu_i(x_i), \forall f, i, x_i \end{split}$$

Binary labeling¹²

Potts-model over 2D grid can be written as following convex relaxation:

$$\min_{\mathbf{x}} \|D\mathbf{x}\|_1 + \langle \mathbf{x}, \mathbf{w} \rangle \text{ subject to } 0 \le x_i \le 1, \forall i$$

Preconditioned primal-dual algorithm:

$$\begin{cases} \mathbf{y}^{(n+1)} &= \mathbf{proj}_{[-1,1]}(\mathbf{y}^{(n)} + \Sigma A \bar{\mathbf{x}}^{(n)}) \\ \mathbf{x}^{(n+1)} &= \mathbf{proj}_{[0,\infty)}(\mathbf{x}^{(n)} - T(A^T \mathbf{y}^{(n+1)} + \mathbf{w})) \\ \bar{\mathbf{x}}^{(n+1)} &= \mathbf{x}^{(n+1)} + \theta(\mathbf{x}^{(n+1)} - \mathbf{x}^{(n)}) \end{cases}$$

¹²Image from Cremers (2014)

Multi-view stereo reconstruction¹³

$$\min_{\mathbf{x}} \lambda(\mathbf{x}) \| \nabla \mathbf{x} \|_{\epsilon} + C(\mathbf{x})$$

- x: inverse depth estimation
- $\lambda(\mathbf{x})$: element-wise weighting function
- $\|\cdot\|_\epsilon$ robust Huber loss function
- $\blacktriangleright\ C(\mathbf{x})$ non-convex matching function

¹³Newcombie et al. (2011)

Multi-view stereo reconstruction¹⁴ Introducing auxiliary variable **u**:

$$\min_{\mathbf{x}} \lambda(\mathbf{x}) \|\nabla \mathbf{x}\|_{\epsilon} + C(\mathbf{u}) + \frac{1}{2\theta} \|\mathbf{x} - \mathbf{u}\|_{2}^{2}$$

- ▶ Minimize $C(\mathbf{u}) + \frac{1}{2\theta} \|\mathbf{x} \mathbf{u}\|_2^2$ wrt. \mathbf{u} by smart brute-force search
- Minimize $\|\nabla \mathbf{x}\|_{\epsilon} + \frac{1}{2\theta} \|\mathbf{x} \mathbf{u}\|_2^2$ wrt. \mathbf{x} by primal-dual
- Reducing θ

¹⁴Newcombie et al. (2011)

Summary

- First-order primal-dual algorithm for a class of structured convex optimization problems
- Objective function can be non-differentiable
- Easy to implement (we just need to derive the proximal operators)
- Optimal convergence rate on multiple sub-classes

Reference

- Chambolle, Antonin, and Thomas Pock. "A first-order primal-dual algorithm for convex problems with applications to imaging." Journal of Mathematical Imaging and Vision 40.1 (2011): 120-145.
- Nesterov, Yurii. Introductory lectures on convex optimization: A basic course. Vol. 87. Springer Science & Business Media, 2013.
- Nesterov, Yurii. Gradient methods for minimizing composite objective function. No. CORE Discussion Papers (2007/76). UCL, 2007.
- Parikh, Neal, and Stephen P. Boyd. "Proximal Algorithms." Foundations and Trends in optimization 1.3 (2014): 127-239.
- Newcombe, Richard A., Steven J. Lovegrove, and Andrew J. Davison. "DTAM: Dense tracking and mapping in real-time." Computer Vision (ICCV), 2011 IEEE International Conference on. IEEE, 2011.
- Pock, Thomas, et al. "Global solutions of variational models with convex regularization." SIAM Journal on Imaging Sciences 3.4 (2010): 1122-1145.
- Nieuwenhuis, Claudia, Eno TÃűppe, and Daniel Cremers. "A survey and comparison of discrete and continuous multi-label optimization approaches for the Potts model." International journal of computer vision 104.3 (2013): 223-240.
- Zach, Christopher, Thomas Pock, and Horst Bischof. "A duality based approach for realtime TV-L 1 optical flow." Pattern Recognition. Springer Berlin Heidelberg, 2007. 214-223.
- http://gpu4vision.icg.tugraz.at/