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Energy minimization
MAP Inference for MRFs

I Typical energies consist of a regularization term and a data term.

min
x
{E(x) = R(x) +D(x)}

I Used for a wide range of problems.
I Minimizer provides the best configuration to the problem.
I The energy related to the posterior probability via a Gibbs

distribution:
p(x) = 1

Z
exp(−E(x))
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Energy minimization
Discrete vs Continuous MRF setting

According to different output space, we have:
I Discrete setting: each variable yi can take a label from a discrete

label set U ⊂ Z.
I Continuous setting: each variable yi is considered as a continuous

value from U ⊂ R.
We will focus on continuous setting today.
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Why not Black box convex optimization?1

tugraz
Graz University of Technology

Black box convex optimization

Generic iterative algorithm for convex optimization:

1 Pick any initial vector x0 2 Rn, set k = 0

2 Compute search direction dk 2 Rn

3 Choose step size ⌧k such that f (xk + ⌧kdk ) < f (xk )

4 Set xk+1 = xk + ⌧kdk , k = k + 1

5 Stop if converged, else goto 2

Di↵erent methods to determine the search direction dk

steepest descend

conjugate gradients

Newton, quasi-Newton

Working-horse for the lazy: Limited memory BFGS quasi-Newton method
[Nocedal ’80]

Black box methods do not exploit the structure of the problem and hence are often
less e↵ective

Daniel Cremers and Thomas Pock Frankfurt, August 30, 2011 Convex Optimization for Computer Vision
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I Plug-and-play, lots of choice: steepest descent, conjugate gradient,
newton, quasi-newton (e.g. L-BFGS)

I Do not use the structure of the problems, thus may not be the most
efficient choice.

I What if it’s difficult to compute d?
1Image from Cremers (2014)
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Notations

I Variational imaging people use different notations:

min
u

∫
x∈Ω
|∇u|+ λ

2 ‖k ∗ u− f‖
2
2dx

where u : Ω→ R is a function over the continuous image space
Ω ⊂ Rn and the objective is a functional of u.

I Keep in mind what it looks like in our language:

min
x
‖Gx‖1 + λ

2 ‖Kx− f‖22
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Warm-up
Semi-continuity2

I A function f(x) is called lower(upper) semi-continuous for a point
x0 if function values for arguments near x0 are either close to f(x0)
or greater than (less than) f(x0)

I Floor function bxc is upper semi-continuous, dxe is lower
semi-continuous.

I The indicator function of any open set is lower semicontinuous. The
indicator function of a closed set is upper semicontinuous.

I Used to convert inequality constraints to objective function.
2See https://en.wikipedia.org/wiki/Semi-continuity for a formal definition
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Warm-up
Lipschitz continuity

I A function f(x) is called Lipschitz continuous on Bn if :

|f(x)− f(y)| ≤ L‖x− y‖∞, ∀x, y ∈ Bn

where constant L is an upper bound to the maximum steepness of
f(x)

I Stronger than continuous, weaker than continuously differentiable.
I f = |x| is Lipschitz continuous but not continuously differentiable.
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Warm-up
Convex conjugate
The convex conjugate f∗(y) of a function f(x) is defined as:

f∗(y) = sup
x∈domf

〈x, y〉 − f(x)

Each pair of (y∗, f(y∗)) is a tangent line of the function3

Examples:
I f(x) = |x|:

f∗(y) = sup
x
〈x, y〉 − |x| =

{
0 if |y| < 1
∞ else

3Image from Wikipedia
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Warm-up
Proximal operator

I The proximal operator (or proximal mapping) of a convex function
f is:

proxf (x) = arg min
u

(
f(u) + 1

2‖u− x‖22
)

I f can be nonsmooth, have embedded constraints, ...
I evaluating proxf involves solving a convex optimization problem.
I but often has analytic solution, or simple linear-time algorithm.
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Warm-up
Proximal operator examples

I quadratic function f(x) = 1
2xTPx + qTx + r (P � 0):

proxf (x) = (I + P )−1(x− q)

I `1 norm f(x) = ‖x‖1:

proxf (x)i =


xi − 1 xi ≥ 1

0 |xi| ≤ 1
xi + 1 xi ≤ −1

(soft thresholding)

I logarithmic barrier f(x) = −
∑n
i=1 log xi:

proxf (x)i =
xi +

√
x2
i + 4

2
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Warm-up
Useful properties of proximal operator

I If f is closed and convex then proxf exists and is unique for all x.
I seperable sum: if f(x) =

∑N
i=1 fi(xi), then

(proxf (x))i = proxfi(xi)

I fixed point: the point x∗ minimizes f if and only if x∗ is a fixed
point:

x∗ = proxf (x∗)
I scaling and translation: define h(x) = f(tx + b) with t 6= 0:

proxh(x) = 1
t
(proxt2f (tx + b)− b)

I conjugate:
proxtf∗(x) = x− tproxf/t(x/t)

I keys to design parrallel optimization method
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Proximal gradient method
Problem

min
x
f(x) = g(x) + h(x)

I g convex, differentiable, ∇g is Lipschitz continuous with constant L
I h convex, possibly nondifferentiable; proxh is inexpensive
I rules out many methods, e.g. conjugate gradient
I e.g. lasso:

min
x
‖x‖1 + λ

2 ‖Ax + b‖22

12 / 34



Proximal gradient method
Proximal gradient method

min
x
f(x) = g(x) + h(x)

I g convex, differentiable, ∇g is Lipschitz continuous with constant L
I h convex, possibly nondifferentiable; proxh is inexpensive

proximal gradient algorithm

x(t) = proxh
(
x(t−1) − τt∇g(x(t−1))

)

I O(1/N) convergence rate
I i.e. to get f(x(k))− f(x∗) ≤ ε, need O(1/ε) iterations
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Proximal gradient method
Accelerated gradient method

min
x
f(x) = g(x) + h(x)

I g convex, differentiable, ∇g is Lipschitz continuous with constant L
I h convex, possibly nondifferentiable; proxh is inexpensive

accelerated proximal gradient algorithm4

x(t) = proxh
(
y(t−1) − τt∇g(y(t−1))

)
y(t) = x(t) + t− 1

t+ 2(x(t) − x(t−1))

I O(1/N2) convergence rate for first-order method!
I i.e. to get f(x(k))− f(x∗) ≤ ε, only need O(1/

√
ε) iterations

4Nesterov (2004), Beck and Teboulle (2009)
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Proximal gradient method
Experiments

proximal gradient vs accelerated proximal gradient5

5Image from Gordon & Tibshirani (2012)
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Motivation
Energy minimization

min
x∈X

f(Kx) + g(x)

I K is a linear and continuous operator
I X is Hilbert space
I f : X → R ∪ {∞}, g : X → R ∪ {∞}, convex, not necessarily to be

continuous and differentiable, prox is inexpensive
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Motivation
Examples
Many problems are within this subclass:

I Lasso:
min

x
‖x‖1 + λ

2 ‖Ax + b‖22
I Low-level vision:

min
u,v
‖∇u‖1 + ‖∇v‖1 + λ‖ρ(u,v)‖1

I Linear programming:

min
x
〈c,x〉, subject to

{
Ax = b
x ≥ 0

I SVM:
min
w,b
‖w‖22 +

n∑
i=1

max(0, 1− yi(〈w,xi〉+ b))
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Primal-dual algorithm
Problem formulation

min
x∈X

f(Kx) + g(x) (primal)

Recall the convex conjugate: f∗(y) = 〈Kx,y〉 − f(Kx), we have:

min
x∈X

max
y∈Y
〈Kx,y〉+ g(x)− f∗(y) (primal-dual)

max
y∈Y
−(f∗(y) + g∗(−K∗y)) (dual)

Primal-dual gap:

f(Kx) + g(x) + f∗(y) + g∗(−K∗y)

For convex function, primal-dual gap will be 0 at the optimal solution.
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Primal-dual algorithm
Optimal condition

Today we focus on primal-dual problem:

min
x∈X

max
y∈Y
〈Kx,y〉+ g(x)− f∗(y) (primal-dual)

Why primal-dual?
I proximal operator for f(Kx) is not trivial.
I but we can get proximal operator f∗(x) and g(x) easily

A saddle point (x,y) ∈ X × Y of this min-max function should satisfy:{
Kx̂− ∂f∗(ŷ) 3 0
K∗ŷ + ∂g(x̂) 3 0

We iterate according to this condition.
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Primal-dual algorithm
The algorithm6

min
x∈X

max
y∈Y
〈Kx,y〉+ g(x)− f∗(y)

I Choose step size σ > 0 and τ > 0, so that στL2 < 1, where
L = ‖K‖, and θ ∈ [0, 1].

I Choose initialization (x0,y0)
I For each iteration:

y(n+1) = proxf∗(y(n) + σKx̄(n)) (dual proximal)
x(n+1) = proxg(x(n) − τK∗ȳ(n+1)) (primal proximal)
x̄(n+1) = x(n+1) + θ(x(n+1) − x(n)) (extrapolation)

I Essentially alternately do proximal gradient descent for x and y.

6Chambolle and Pock (2011), Pock, Cremers, Bischof, Chambolle (2009)
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Primal-dual algorithm
Convergence

The algorithm’s convergence rate depending on different types of the
problem7:

I Completely non-smooth problem: O(1/N) for the duality gap.
I Sum of a smooth and non-smooth: O(1/N2) for ‖x− x∗‖2.
I Completely smooth problem: O(ωN ), ω < 1 for ‖x− x∗‖2.

7See Chambolle and Pock (2011) for a detailed proof.
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Discussion
Parallel implementation


y(n+1) = proxf∗(y(n) + σKx̄(n)) (dual proximal)
x(n+1) = proxg(x(n) − τK∗ȳ(n+1)) (primal proximal)
x̄(n+1) = x(n+1) + θ(x(n+1) − x(n)) (extrapolation)

Problems we usually have in vision
I x and y are defined on a regular grid.
I f and g is usually in a separable sum format.
I Small number of variables involved gradient part Kx (high-order

potential)
I perfect for GPU parallel computing!
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Discussion
Arrow-Hurwicz method (θ = 0)8

{
y(n+1) = proxf∗(y(n) + σKx̄(n)) (dual proximal)
x(n+1) = proxg(x(n) − τK∗ȳ(n+1)) (primal proximal)

I Also tackles primal-dual method
I Without the ‘momentum’ step
I Theoretically lose O(1/N2) convergence guarantee (or people haven’t

proved it yet)
I In practice, for some method it is still fast

8Arrow, Hurwicz, Uzawa (1958)
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Discussion
Alternating direction method of multipliers (ADMM)

min
x∈X

f(Kx) + g(x) (primal)

We can conduct a decomposition:

min
x∈X

f(y) + g(x) subject to Kx− y = 0

Solving the following augmented Lagrangian multipliers problem:

Lτ (x,y, z) = f(y) + g(x) + zT (Kx− y) + τ

2‖K
∗y− x‖22

y(n+1) = arg miny f(y) + 〈y, z(n)〉+ τ
2‖Kx(n) − y‖22 (primal)

x(n+1) = arg minx g(x)− 〈Kx, z(n)〉+ τ
2‖Kx− y(n+1)‖22 (primal)

z(n+1) = z(n) + τ(Kx− y) (dual)

I Primal-dual method is equivalent to ADMM if K = I.
I But in the general case primal-dual is usually faster, since solving the

subproblems of ADMM is harder.
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Discussion
Experimental results9

ROF-model, 500×375 grayscale image, ε error tolerance

I AHZC: Arrow-Hurwicz primal-dual method
I FISTA: Fast iterative shrinkage threshold, O(1/N2) convergence rate
I NEST: Nesterov’s method on dual problem, O(1/N2) convergence rate
I ADMM: Alternating direction method of multipliers
I PGM: Proximal gradient method , O(1/N) convergence rate
I CFP: Fixed point method on dual
9Table from Chambolle and Pock (2010)
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Example
Image denoising
ROF10 model for image denoising:

min
x
‖∇x‖1 + λ

2 ‖x− u‖22

f(x) =
∑
i ‖∇xi‖1, where ∇xi is a two-dimensional intensity gradient

vector at image pixel i

f∗(y) = δ`∞(y) =
{

0 y ∈ P
∞ y /∈ P , P = {p : ∀i, |pi| < 1}

Proximal operator for convex-set indicator function is just euclidean
projecting onto the feasible closed set P. Thus:

proxf∗(y) = y
max(‖y‖, 1)

Proximal operator for λ
2‖x− u‖22 is in closed form:

proxg(x) = x + λτu
1 + λτ

10Rudin, Osher, Fatemi (1992)
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Example
TV-L1 Optical flow11

min
u,v
‖∇u‖1 + ‖∇v‖1 + λ‖ρ(u,v)‖1

I u,v: horizontal and vertical motion field
I ρ(u,v) first-order Taylor approximation of photometric error
I uk: estimation of inverse depth from single view

11Zach, Pock, Bischof (2007)
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Example
Linear Programming

min
x
〈c,x〉, subject to

{
Ax = b
x ≥ 0

Introducing Lagrange multipliers y

min
x

max
y
〈Ax− b,y〉+ 〈c,x〉, subject to x ≥ 0

Applying primal-dual algorithm:
y(n+1) = y(n) + σAx̄(n)

x(n+1) = proj[0,∞)(x(n) − τ(ATy(n+1) + c))
x̄(n+1) = x(n+1) + θ(x(n+1) − x(n))

where proj[0,∞) is the simply truncation function.
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Example
Discrete MRF inference

min
∀i,xi∈L

∑
i

θi(xi) +
∑
f

θf (xf )

LP relaxation:

min
∀i,xi∈L

∑
i

∑
xi

θi(xi)µi(xi) +
∑
i

∑
xf
θf (xf )µf (xf )

subject to
∑
xi

µi(xi) = 1, ∀i∑
xf
µf (xf ) = 1,∀f

∑
xf ı

µf (xf ) = µi(xi), ∀f, i, xi
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Example
Binary labeling12

Potts-model over 2D grid can be written as following convex relaxation:

min
x
‖Dx‖1 + 〈x,w〉 subject to 0 ≤ xi ≤ 1,∀i

Preconditioned primal-dual algorithm:
y(n+1) = proj[−1,1](y(n) + ΣAx̄(n))
x(n+1) = proj[0,∞)(x(n) − T (ATy(n+1) + w))
x̄(n+1) = x(n+1) + θ(x(n+1) − x(n))

12Image from Cremers (2014)
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Example
Multi-view stereo reconstruction13

min
x
λ(x)‖∇x‖ε + C(x)

I x: inverse depth estimation
I λ(x): element-wise weighting function
I ‖ · ‖ε robust Huber loss function
I C(x) non-convex matching function

13Newcombie et al. (2011)
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Example
Multi-view stereo reconstruction14

Introducing auxiliary variable u:

min
x
λ(x)‖∇x‖ε + C(u) + 1

2θ‖x− u‖22

I Minimize C(u) + 1
2θ‖x− u‖22 wrt. u by smart brute-force search

I Minimize ‖∇x‖ε + 1
2θ‖x− u‖22 wrt. x by primal-dual

I Reducing θ

14Newcombie et al. (2011)
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Summary

I First-order primal-dual algorithm for a class of structured convex
optimization problems

I Objective function can be non-differentiable
I Easy to implement (we just need to derive the proximal operators)
I Optimal convergence rate on multiple sub-classes
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