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Energy minimization
MAP Inference for MRFs

v

Typical energies consist of a regularization term and a data term.

m)%n{E(x) =R(x)+D(x)}

v

Used for a wide range of problems.

» Minimizer provides the best configuration to the problem.

v

The energy related to the posterior probability via a Gibbs

distribution: !
p(x) = - exp(~B(x)
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Energy minimization

Discrete vs Continuous MRF setting

According to different output space, we have:

» Discrete setting: each variable y; can take a label from a discrete
label set U C Z.

» Continuous setting: each variable y; is considered as a continuous
value from U C R.

We will focus on continuous setting today.
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Why not Black box convex optimization?!
Black box convex optimization

Generic iterative algorithm for convex optimization:
Pick any initial vector x% € R”, set k =0
Compute search direction d¥ € R”
Choose step size 7% such that f(x* + 7%d*) < f(x¥)
@ Set xkt1 = xk 4 7hkdk k= k+1
Stop if converged, else goto 2

» Plug-and-play, lots of choice: steepest descent, conjugate gradient,
newton, quasi-newton (e.g. L-BFGS)

» Do not use the structure of the problems, thus may not be the most
efficient choice.

» What if it's difficult to compute d?

'Image from Cremers (2014)
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Notations

» Variational imaging people use different notations:
. A 2
min |Vu|+ = ||k *u— f||5dx
U JzeQ 2

where u : £ — R is a function over the continuous image space
Q C R™ and the objective is a functional of w.

» Keep in mind what it looks like in our language:

) A
min [|Gx[l1 + S [ Kx — fII3
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Warm-up

Semi-continuity?

» A function f(x) is called lower(upper) semi-continuous for a point
Xg if function values for arguments near xg are either close to f(x)
or greater than (less than)

;f\ \

» Floor function |z] is upper semi-continuous, [z] is lower
semi-continuous.

c>< L
_,../\f

» The indicator function of any open set is lower semicontinuous. The
indicator function of a closed set is upper semicontinuous.

» Used to convert inequality constraints to objective function.

2See https://en.wikipedia.org/wiki/Semi-continuity for a formal definition
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Warm-up

Lipschitz continuity

> A function f(x) is called Lipschitz continuous on 3, if :

[f (@) = fFW)] < Lz = Ylloo, Vo, y € Bn

where constant L is an upper bound to the maximum steepness of
f(x)
» Stronger than continuous, weaker than continuously differentiable.

» f = |z| is Lipschitz continuous but not continuously differentiable.
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Warm-up
Convex conjugate
The convex conjugate f*(y) of a function f(x) is defined as:

[ (y)= sup (z,y)— f(z)

xedomf

\ /

L

0,1 @)

Each pair of (y*, f(y*)) is a tangent line of the function®

Examples:

> flx) = |

L o fo i <t
Hy) = st)l{p(x,?ﬁ || = {oo else

%Image from Wikipedia
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Warm-up

Proximal operator

v

The proximal operator (or proximal mapping) of a convex function
fis:
. 1
prox;(x) = argmin ( f(w) + 3 u - x|3 )

v

f can be nonsmooth, have embedded constraints, ...

v

evaluating prox  involves solving a convex optimization problem.

v

but often has analytic solution, or simple linear-time algorithm.
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Warm-up

Proximal operator examples

» quadratic function f(x) = 3x"Px+q x+7 (P = 0):
prox;(x) = (I + P)~'(x — q)
» (1 norm f(x) = ||x]|1:
Ty — 1 I, 2 1
prox(z); = 0 |z;] <1 (soft thresholding)
z,+1 z; < —1

> logarithmic barrier f(x) = —>1; logz;:

T+ /2l +4

prox(r); = 5
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Warm-up

Useful properties of proximal operator
» If f is closed and convex then prox  exists and is unique for all x.
» seperable sum: if f(x) =Y, f;(z;), then

(proxf(x))i = proxy, ()

v

fixed point: the point x* minimizes f if and only if x* is a fixed
point:
X" = prox(x”)

v

scaling and translation: define h(x) = f(tx + b) with ¢ # 0:
1
prox;,(x) = E(proxtzf(tx +b) —b)

» conjugate:
Prox; . (x) = x — tprox; ,(x/t)

v

keys to design parrallel optimization method
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Proximal gradient method

Problem

min £(x) = g(x) + h(x)

v

g convex, differentiable, Vg is Lipschitz continuous with constant L

> h convex, possibly nondifferentiable; prox;, is inexpensive

v

rules out many methods, e.g. conjugate gradient
> e.g. lasso:

) A
min [[x][s + 3 [l Ax + b3
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Proximal gradient method

Proximal gradient method

min f(x) = g(x) + h(x)

> g convex, differentiable, Vg is Lipschitz continuous with constant L
> h convex, possibly nondifferentiable; prox;, is inexpensive

proximal gradient algorithm

x = prox;, (X(t_l) - Tth(x(t_l)))

» O(1/N) convergence rate
» e to get f(x()) — f(x*) <€, need O(1/e) iterations
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Proximal gradient method

Accelerated gradient method

min £(x) = g(x) + h(x)

» g convex, differentiable, Vg is Lipschitz continuous with constant L
> h convex, possibly nondifferentiable; prox;, is inexpensive
accelerated proximal gradient algorithm*

x() = prox;, (y'~V) - n,vg(y"1))

)4 Lo e

0 _ o =1
YU =Tt

» O(1/N?) convergence rate for first-order method!
> ie. to get f(x()) — f(x*) <€, only need O(1/+/e) iterations

*Nesterov (2004), Beck and Teboulle (2009)
14/34



Proximal gradient method

Experiments
Lasso regression: 100 instances (with n = 100, p = 500): Lasso logistic regression: 100 instances (n = 100, p = 500):
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proximal gradient vs accelerated proximal gradient®

®Image from Gordon & Tibshirani (2012)
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Motivation

Energy minimization

min f(Kx) + g(x)

» K is a linear and continuous operator
» X is Hilbert space

» f: X 5> RU{oo}, g: X - RU{oo}, convex, not necessarily to be
continuous and differentiable, prox is inexpensive
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Motivation
Examples

Many problems are within this subclass:
> Lasso: )
min [[x |1 + 5[ Ax + bl|3

> Low-level vision:
min [[Vully + [[Vvi[1 + Allp(w, v)[lx
» Linear programming:

. : Ax
min(c, x), subject to
X X

AVANI
o

» SVM:

migl w3 + Z max (0,1 — y;({(w,x;) + b))
W i=1
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Primal-dual algorithm

Problem formulation

min f(Kx) + g(x) (primal)
Recall the convex conjugate: f*(y) = (Kx,y) — f(Kx), we have:

i K — imal-dual
min max(Kx,y) +g(x) - f*(y) (primal-dual)

max —(f*(y) + ¢"(=K"y)) (dual)
yey
Primal-dual gap:

FKx) +g(x) + f*(y) + 9" (= K"y)

For convex function, primal-dual gap will be 0 at the optimal solution.
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Primal-dual algorithm

Optimal condition

Today we focus on primal-dual problem:

min max(Kx,y) +g(x) - f(y) ~ (primal-dual)

Why primal-dual?
» proximal operator for f(Kx) is not trivial.
» but we can get proximal operator f*(x) and g(x) easily
A saddle point (x,y) € X x Y of this min-max function should satisfy:

{Kx —0f*(¥) >
+ dg(x) 3 O

We iterate according to this condition.
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Primal-dual algorithm
The algorithm®

. K — *
)r(xg)r(lr;lg/c( x,y) +9(x) — f(y)

Choose step size o > 0 and 7 > 0, so that o7L? < 1, where
L=|K]|, and 0 €[0,1

]
Choose initialization (x°,y?)

v

| 4

» For each iteration:
y(”+1) = Pproxj. (y(”) + O'K}_((n)) (dual proximal)
x("t) = prox (x(”) — TK*y("H)) (primal proximal)
x(tD) = x(+1) 4 g(x(+1) — x())  (extrapolation)

v

Essentially alternately do proximal gradient descent for x and y.

®Chambolle and Pock (2011), Pock, Cremers, Bischof, Chambolle (2009)
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Primal-dual algorithm

Convergence

The algorithm's convergence rate depending on different types of the
problem’:

» Completely non-smooth problem: O(1/N) for the duality gap.
» Sum of a smooth and non-smooth: O(1/N?) for ||x — x*||2.

» Completely smooth problem: O(w™),w < 1 for ||x — x*||2.

"See Chambolle and Pock (2011) for a detailed proof.
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Discussion

Parallel implementation

y" ) = prox,.(y™ +oKx(™)  (dual proximal)
x(+D) = prox, (x(™ — 7K*y(™*t1)  (primal proximal)
gt = x(41) L g(x(+1) — (M) (extrapolation)

Problems we usually have in vision
» x and y are defined on a regular grid.
» f and g is usually in a separable sum format.

» Small number of variables involved gradient part Kx (high-order
potential)

» perfect for GPU parallel computing!
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Discussion

Arrow-Hurwicz method (6 = 0)®

y"*) = prox,.(y™ +oKx™)  (dual proximal)
x(+1) = proxg(x(”)—TK*y("+1)) (primal proximal)

v

Also tackles primal-dual method

v

Without the ‘momentum’ step

v

Theoretically lose O(1/N?) convergence guarantee (or people haven't
proved it yet)

v

In practice, for some method it is still fast

8 Arrow, Hurwicz, Uzawa (1958)
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Discussion
Alternating direction method of multipliers (ADMM)

min f(Kx) 4+ g(x) (primal)
xeX
We can conduct a decomposition:
I’Ili)I(l f(y) +g(x) subjectto Kx—y=0
x€
Solving the following augmented Lagrangian multipliers problem:

Le(x,y,2) = [(y) +9(x) + 2" (Kx —y) + Z| K"y - ]

y" D = argminy f(y) + (y,z™) + 3|[Kx™ —y|3  (primal)
XD = argming g(x) — (Kx,2®) + Z|Kx — y D3 (primal)
Z(n+1) = Z(n) —+ T(KX — y) (dual)

» Primal-dual method is equivalent to ADMM if K = 1.

» But in the general case primal-dual is usually faster, since solving the
subproblems of ADMM is harder.
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Discussion

Experimental results®

A=16 A=3

ce=10""1 | £=10"0 e=10""7 | =100
PD 108 (1.95s) 037 (14.55s) 174 (2.76s) 1479 (23.74s)
AHZC 65 (0.98s) 634 (9.19s) 105 (1.65s) 1001 (14.48s)
FISTA 107 (2.11s) 999 (20.36s) 173 (3.84s) 1540 (29.48s)
NEST 106 (3.32s) 1213 (38.23s) 174 (5.54s) 1963 (58.28s)
ADMM 284 (4.91s) 25584 (421.75s) 414 (7.31s) 33917 (547 35s)
PGD 620 (9.14s) 58804 (919.64s) | 1621 (23.25s)
CFP 1396 (20.65s) - 3658 (54.52s) -

vyVvyVvYyVvYyYYyvyy

ROF-model, 500 x 375 grayscale image, € error tolerance

AHZC: Arrow-Hurwicz primal-dual method
FISTA: Fast iterative shrinkage threshold, O(1/N?) convergence rate

NEST: Nesterov's method on dual problem, O(1/N?) convergence rate
ADMM: Alternating direction method of multipliers
PGM: Proximal gradient method , O(1/N) convergence rate
CFP: Fixed point method on dual

Table from Chambolle and Pock (2010)
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Example
Image denoising
ROF!® model for image denoising:
. A 2
min [[Vx||y + 5 [Ix — ull;

f(x) =>2; [IVxi|l1, where Vz; is a two-dimensional intensity gradient
vector at image pixel ¢

© y¢P

Proximal operator for convex-set indicator function is just euclidean
projecting onto the feasible closed set P. Thus:

f*(Y)=5éoo(Y):{0 yep . P={p:Vi,|pi| <1}

prox;. (y) = —

max([|yl], 1)

Proximal operator for %Hx —ul|3 is in closed form:
X+ Atu
prox, (x) = G-

Rudin, Osher, Fatemi (1992)
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Example
TV-L! Optical flow'!

min [Vull1 + [[Vv]1 + Allp(a, v) |l

» u,Vv: horizontal and vertical motion field
» p(u,v) first-order Taylor approximation of photometric error

> ug: estimation of inverse depth from single view

KZIICT

e &
. o | “>a
(a) Input (b) Ground (c) Estimated
truth motion

1Zach, Pock, Bischof (2007)
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Example

Linear Programming

A
min(c, x), subject to {XX

AV
o

Introducing Lagrange multipliers y

min mgx(Ax —b,y) + (c,x), subjectto x>0

Applying primal-dual algorithm:

yt) =y 4 5 AzM)
x("HD = projjg o) (x™ — 7(ATy"+D + ¢))

where projjy .. is the simply truncation function.
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Example

Discrete MRF inference

a2 0iz) + Zf: 05(xy)

LP relaxation:

min ZZG () i (%5) —l—ZZGf (xp)pp(xy)
%

Vi,x; EL p

subject to Z“i (x;) = 1,Vi

Ty

Zw(xﬂ =1,Vf

Zuf Xf = Hi xz) VI, i,

Xfl
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Example
Binary labeling?
Potts-model over 2D grid can be written as following convex relaxation:

min | Dx||; + (x,w) subjectto 0<uz; <1,Vi
X

Preconditioned primal-dual algorithm:

y" ) = proj [~1,1] (y™ + 2Ax™)
x(H) = projjy o) (x™ — T(ATy™ ) + w))
gt = x(ntl) 4 9(x("+1) _ X(n))

MAXFLOW PD P-PD | P-PD-GPU
0.160s 15.75s | 8.56s 0.045s

2Image from Cremers (2014)
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Example

Multi-view stereo reconstruction®3

min AG) [ Vx|l + C(x)

> X: inverse depth estimation
> A(x): element-wise weighting function

v

|| - |le robust Huber loss function

v

C(x) non-convex matching function

5 2 28 = TEEEELEE.
Inverse Depth, d

3Newcombie et al. (2011)
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Example
Multi-view stereo reconstruction®*
Introducing auxiliary variable u:

1
min A(x)[|Vx[le + C(u) + oflx — ul3

» Minimize C(u) + 5 ||x — u||3 wrt. u by smart brute-force search
» Minimize || Vx||c + 51x — ul|3 wrt. x by primal-dual

» Reducing 0

Inverse Depth, d

Inverse Depth, d

“Newcombie et al. (2011)
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Summary

v

First-order primal-dual algorithm for a class of structured convex
optimization problems

v

Objective function can be non-differentiable

» Easy to implement (we just need to derive the proximal operators)

v

Optimal convergence rate on multiple sub-classes
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