
The Global Patch Collider

Shenlong Wang1,2 Sean Ryan Fanello1 Christoph Rhemann1 Shahram Izadi1 Pushmeet Kohli1

Microsoft Research1 University of Toronto2

Abstract

This paper proposes a novel extremely efficient, fully-

parallelizable, task-specific algorithm for the computation

of global point-wise correspondences in images and videos.

Our algorithm, the Global Patch Collider, is based on de-

tecting unique collisions between image points using a col-

lection of learned tree structures that act as conditional

hash functions. In contrast to conventional approaches that

rely on pairwise distance computation, our algorithm iso-

lates distinctive pixel pairs that hit the same leaf during

traversal through multiple learned tree structures. The split

functions stored at the intermediate nodes of the trees are

trained to ensure that only visually similar patches or their

geometric or photometric transformed versions fall into the

same leaf node. The matching process involves passing

all pixel positions in the images under analysis through

the tree structures. We then compute matches by isolating

points that uniquely collide with each other ie. fell in the

same empty leaf in multiple trees. Our algorithm is lin-

ear in the number of pixels but can be made constant time

on a parallel computation architecture as the tree traver-

sal for individual image points is decoupled. We demon-

strate the efficacy of our method by using it to perform op-

tical flow matching and stereo matching on some challeng-

ing benchmarks. Experimental results show that not only

is our method extremely computationally efficient, but it is

also able to match or outperform state of the art methods

that are much more complex.

1. Introduction

Correspondence estimation ie. the task of estimating

how parts of visual signals (images or volumes) correspond

to each other, is an important and challenging problem in

Computer Vision. Point-wise correspondences between im-

ages or 3D volumes can be used for tasks such as camera

pose estimation, multi-view stereo, structure-from-motion,

co-segmentation, retrieval, and compression etc. Due to its

wide applicability, many variants of the general correspon-

dence estimation problem like stereo and optical flow have

been extensively studied in the literature.

There are two key challenges in matching visual con-

tent across images or volumes. First, robust modelling of

the photometric and geometric transformations present in

real-world data, such as occlusions, large displacements,

viewpoints, shading, and illumination change. Secondly,

and perhaps more importantly, the hardness of perform-

ing inference in the above-mentioned model. The latter

stems from the computational complexity of performing

search in the large space of potential correspondences and

is a major impediment in the development of real time

algorithms. A popular approach to handle the problem

involves detecting ‘interest or salient points’ in the im-

age which are then matched based on measuring the eu-

clidean distance between hand specified [24, 34, 20, 7] or

learned [38, 35, 23, 32, 30, 6, 39, 29, 31] descriptors that

are designed to be invariant to certain classes of transfor-

mations and in some cases can also work across different

modalties. While these methods generate accurate matches,

the computational complexity (quadratic in the number of

interest points) of matching potential interest points restricts

their applicability to small number of key-points.

An effective strategy to generate dense correspondences

is to limit the search space of possible correspondences.

For instance, in the case of optical flow by only search-

ing for matches in the immediate vicinity of the pixel lo-

cation. However, this approach fails to detect large mo-

tions/displacements. Methods like [3, 22] overcome this

problem by adaptively sampling the search space and have

been shown to be very effective for optical flow and dis-

parity estimation [1, 4]. However, they rely on the implicit

assumption that the correspondence field between images

is smooth and fail when this assumption is violated. Tech-

niques based on algorithms for finding approximate near-

est neighbors such as KD-Tree [18, 2] and hashing [22, 9]

can be used to search large-displacement correspondences

and have been used for initializing optical flow algorithms

[37, 1, 36, 25]. However, these approaches search for can-

didate matches based on the appearance similarity and they

are not robust in scenarios when geometric and photometric

transformations occurs (see Fig. 2).

1127

In this paper, we address the problem of efficiently gen-

erating correspondences that can (1) have arbitrary dis-

tribution of magnitudes, (2) and that are between im-

age elements affected by task-dependent geometric and

photometric transformations. We propose a novel fully-

parallelizable, learned matching algorithm called Global

Patch Collider (GPC) to enable extremely efficient compu-

tation of global point-wise correspondences. GPC is based

on detecting unique collisions between image points using

a collection of learned tree structures that act as conditional

hash functions. In contrast to conventional approaches that

isolate matches by computing distances between pairs of

image elements, GPC detects matches by finding which

pixel pairs hit the same leaf during traversal through mul-

tiple learned tree structures.

The split functions stored at the intermediate nodes of

the trees are trained to ensure that visually similar patches

fall into the same terminal node. The matching process in-

volves passing all pixel positions in the images under anal-

ysis through the tree structures. We then compute matches

by isolating points that uniquely collide with each other ie.

fell in the same empty leaf in multiple trees. We also in-

corporate a multi-scale top-bottom architecture, which sig-

nificantly reduces the number of outliers. Content-aware

motion patterns are learned for each leaf node, in order to

increase the recall of the retrieved matches.

Unlike existing feature matching algorithms, the pro-

posed global patch collider does not require any pairwise

comparisons or key-point detection, thus it tackles the

matching problem with linear complexity with respect to

the number of pixels. Furthermore, its computational com-

plexity can be made independent of the number of pixels by

using a parallel computation architecture as the tree traver-

sal for individual image points is decoupled.

We demonstrate the efficacy of our method by applying

it on a number of challenging vision tasks, including opti-

cal flow and stereo. Not only is GPC extremely computa-

tionally efficient, but it is also able to match or outperform

more complex state of the art algorithms. To summarize,

our contributions are two-fold: firstly, we propose a novel

learning based matching algorithm that conducts global cor-

respondence with linear complexity; secondly, we develop

a novel hashing scheme by training decision trees designed

for seeking collisions.

2. Related Work

Our work is similar to correspondence estimation al-

gorithms based on approximate nearest neighbor (ANN)

methods, such as KD-Tree [18, 2] or hashing [22, 9]. How-

ever, there are two notable differences: (1) GPC is trained

to be robust to various geometric and photometrics trans-

formations in the training data, and (2) it isolates potential

matches by looking for unique collisions in leaves of deci-

1

….

3

5

6

4721

56

4 2 3713

5

6 472 1

3

4

5

2

1

7

6 3

4

5 21 7

6

3

4

5

2

1

7

6

….

…….

1 54 1

Tree 1 Tree 2 Tree T

Source Patches Target Patches

Input: local patches (features)

Output: matched pairs
common leaf ids (1, 4, 2)common leaf ids (6, 7, 1)

Figure 1. Global Patch Collider (GPC). Local patches traverse

each tree in the decision forest, reaching different leaves. If two

patches from source and target image hit the same leaf across all

trees without collisions with other patches, they are considered as

a distinctive correspondence. For instance, source patch 4 and tar-

get patch 1 hit the same leaves of all the trees and there is no other

patch hit exactly the same leaves across all trees with them, thus it

is a distinctive correspondence.

sion trees. These leaves act like conditional hash functions.

The growing availability of real and synthetic datasets

for correspondence problems have led to the proposal of a

number of learning based approaches. In one of the earli-

est works along this direction, Roth and Black [27] showed

how optical flow estimates can be improved by incorporat-

ing a statistical prior on the distribution of flow in a Field

of Experts model. As the size of the available datasets

have grown, researchers have started to use high capacity

models such as deep convolutional neural network to either

learn the pair-wise similarity [29, 38] or learn the end-to-

end pipeline directly [16].

The computational architecture of GPC is similar to de-

cision forests [10]. Decision trees have been widely used in

various fields of computer vision, such as pose estimation

[28], image denoising [14], image classification [5], object

detection [21], depth estimation [13, 15], etc. However,

unlike all these applications, our method does not require

classification or regression labels. Our objective function

has been especially designed to ensure that visually similar

patches (or their perspective transformed versions) will fol-

low the same path in the trees and fall into the same leaf

node.

3. Global Patch Collider

GPC is a matching algorithm based on finding unique

collisions using decision trees as hash function evaluators.

Each tree learns to map patches that are in correspondence

into the same leaf while separating them from other patches

(see Fig. 1). We provide the formal description of the

Global Patch Collider (GPC) below.

128

Figure 2. Examples of matched local patches. From left to right:

Sintel, Kitti, active stereo, MVS, synthetic. We can see that cor-

respondences are task dependent with different type of variations,

e.g. non-rigid transform, scaling, intensity change, rotation, back-

ground change, etc. It is difficult to propose a generic descriptor

that is robust to all kinds of variations, whereas our approach is

able to learn those variations directly from the training data.

3.1. Formulation

Single Tree Prediction. Given two images I and I 0, our

target is to find distinctive local correspondences between

pixel positions. Given a local patch x with center coordinate

p from an image I , we pass it into a decision tree T until it

reaches one terminal node (leaf). The id of the leaf is just a

hash key for the image patch and is denoted as T (x).

After processing all the patches, for each leaf j , GPC

stores a set of patches from source image denoted as Sj

as well as a set of patches from the target image, de-

noted as S0
j . We will consider two patches to be a cor-

respondence pair if and only if they fall into the same

leaf and this leaf contains only one target patch and one

source patch. More formally, the set of correspondences

could be written as CT (I; I 0) = f (x ; x0)jT (x) = T (x0)
and jST (x) j = jS0

T (x) j = 1g:
This decision tree approach can be considered as a hash-

ing function, where correspondent patches are picked by

finding distinctive collisions between source and target im-

age in the hash table. Simple binary hash functions can be

used instead of decision trees but they would not have the

conditional execution structure that decision trees have as

only one split function needs to be evaluated at every layer.

Forest Prediction. It is worth noting that a simple tree

is not discriminative enough to generate a large amount of

distinctive pairs. For example, given a 16-layer binary tree,

the maximum number of states is 32768, but, if we con-

sider megapixel images, there are millions of patches from

one image. Moreover, due to the content similarity, most

patches within one image will fall into a small fraction of

the leaves (between 6000 to 10000on Sintel dataset). If

we merely increase the depth of the tree we will bring ad-

ditional computational and storage burdens for training the

decision trees. This motivates us to extend the single-tree

approach to a hashing forest scheme.

Specifically, instead of searching distinctive pairs that

Figure 3. Sparse matching with w/o multi-scale learning. From

top-left to bottom right: 7 � 7, 15 � 15, 31 � 31, multi-scale.

fall into the same leaf, our method seeks distinctive pairs

that fall into the same leaf across all the trees in the for-

est. In particular, two patches are considered as a distinc-

tive match if they reach the same leaves for all the trees

and there is not any other patch from both source and tar-

get image reach exactly the same leaves. Given two im-

ages I and I 0 and a random forest F , the set of corre-

spondence is formulated as CF (I; I 0) = f (x ; x0)jF (x) =
F (x0) and jSF (x) j = jS0

F (x) j = 1g. F (x) is a sequence

of leaf nodes f j 1; :::; j T g where x falls in this forest, and

SL represents a set of patches that fall into the ordered leaf

nodes sequence L . For a forest with T trees and L lay-

ers for each tree, the number of states in total is 2L (T � 1) .

In practice, the number of states is between 50k to 200k

for a 16-layer-8-tree forest on 0.4-megapixel image from

Sintel dataset [8]. Note that our method only seeks unique

matched pairs, thus no re-ranking or pairwise comparison is

needed.

Split Function. Each split node contains a set of learned

parameters � = (w ; �), where w is a hyper-plane and � rep-

resents a threshold value. The split function f is evaluated

at a patch x as:

f (x ; �) = sign(w T � (x) � �) (1)

where � (x) is the features for x , we will introduce our

patch-based features for each task individually. This hyper-

plane classifier is commonly adopted in decision forest [10].

Note the sparse hyper-planes can be used to increase effi-

ciency, since only a small fraction of the feature is tested.

Furthermore, the nature of random forest allows us to easily

process patches and trees in parallel and independently for

each pixel.

129

