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Abstract

Eye-tracking technology provides accessibility to many kinds of people; such as
individuals with motor control disabilities. The task is difficult, however, because
a subtle mixture of head, pupil, and face movements can correspond to a large
difference in screen coordinates, as shown in physiology research. Current state-of-
the-art neural networks, such as iTracker, intake both zoomed-in pupil images and
zoomed-out face images, and show exceptional empirical results with eyetracking.
However, a concrete interpretibility study has yet to be done on iTracker, and it’s
unknown if the model actually accumulates small differences in the head, pupil,
and face movements when making predictions. In this paper, we perform such a
study by applying Deep Dream and SmoothGrad on the iTracker model. We isolate
the zoomed-in pupil branches from the network, and compare their Deep Dream
and SmoothGrad results with the whole iTracker model. Our results show that the
zoomed-in branches alone require large differences to change screen positioning,
whereas the whole iTracker model only requires small differences. Thus, we
conclude that the whole iTracker model indeed converges with physiology research
by collecting small differences in the head, face, and pupil movements, and that’s
plausibly why it’s so accurate.

1 Introduction

Eye-tracking has profound applications; from computer vision, to accessibility, to healthcare. Classi-
cal eye-tracking models have not performed very well at the task, and it’s only the recent advancement
of neural networks that have made eye-tracking models a bigger research area [4]. A current state-of-
the-art eye-tracking model is iTracker, which is a convolutional neural network (CNN) model that
vastly outperforms classical models [5]]. But what makes eye-tracking a hard computational task?
Many studies have been done on the physiology of eye-tracking, and one such reason is that the
task depends on a mixture of subtle movements from the head, face, and pupils [9]. With iTracker’s
excellent empirical performance, it’s plausible that it converges with research in physiology, however
no such interpretibility study has been done to verify this hypothesis.

2 Related work

The CNN-based approaches to eye-tracking that we are comparing fall under the broader set of
appearance-based methods [3]], where the algorithm is given the raw image data as input. Rather
than use a single network, CNN-based eye-tracking models typically make use of several networks,
each responsible for a smaller region of the input (for example, one network per eye). A common
enhancement for the purpose of efficiency is weight-sharing between these networks. Some works
exist which compare standard models on the task [2] [[7] [[1]. There are many existing papers
comparing the accuracy of different models and how various transformations on the input impact it
[7] [[1]], yet to the best of our knowledge, there is little work attempting to understand and interpret
the features learned by these models [2] .



3 Methods
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Figure 1: Algorithm Box of iTracker [5]]

We’ll start by explaining the iTracker CNN model [5], shown in Figure[T] It is composed of three
AlexNet [|6] branches, which process the right eye, left eye, and face, and one dense MLP branch that
processes a face grid (boolean grid identifying the location of the face) as input.

In our study we will analyze 4 different models: the left-eye, right-eye, and face branches,
and the full iTracker model. Our goal is to show that the individual branches require large changes in
the input image to move screen coordinates, and the whole model will only require small changes.

The three branch models don’t directly connect to an MLP that outputs screen coordinates,
so we isolated those branches and reconnected them with their own FC layers. Our choice of FC
layers mimicks what’s done in the whole iTracker, as we compress from size 4192, to 128, to 2.

3.1 Transfer Learning

For each branch, we pre-populate the convolutional layers with weights from the full iTracker model,
and then initialize the new FC layers randomly. Then, we retrain all layers with a 10GB partition of the
GazeCapture dataset [5] for finetuning. We have two reasons for choosing a subset of GazeCapture:
the first is for tractability given our computational resources, and the second is to emphasize our
final results. If we can show that an individual branch that is pre-trained from the whole model still
requires large differences in the input image to change screen positions, then we would only see that
result more prominently if the branch was trained from scratch on a larger dataset.

3.2 DeepDream and SmoothGrad

DeepDream (originally called "Inceptionism") [8]] is a method where we use gradient methods to
alter an input image, rather than the model parameters. We will use a variant of DeepDream, which
will focus on the final output layer rather than the intermediate layers. This method consists of using
stochastic gradient descent on an input image for a fixed number of iterations to learn an input that
gives a desired target output. We use gradient descent instead of ascent, because we want to minimize
the distance to the new target, rather than maximizing the total activation on an intermediate layer.
We will compare the initial input to the learned input to observe the difference needed to change the
output of the model.

We will use SmoothGrad [10]] to study the gradients of the model as a function. This method consists
of computing the gradient with respect to a particular image, making several copies of this gradient,
adding independent Gaussian noise to each copy, and finally taking the average of these copies. The
purpose of this procedure is to eliminate noise from the gradient to more clearly observe the features
that impact the behaviour of the model. We will produce plots of the denoised gradient to perform
these observations.



4 Results
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Figure 2: Left eye branch (first row), right eye branch (second row), face branch (third row). Deep
dream is used to move the gaze from down to upwards.
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Figure 3: Results for the whole iTracker model. Left-eye image (first row), right-eye image (second
row), and face images (third row). Deep dream is used to move the gaze from down to upwards.

Figures 2] and 3]shown here and Figures[d}{7)in the Appendix show the outputs of our analysis methods
on 3 hand-picked examples. To clarify, the third column shows the natural logarithm of the squared
difference between the original image and the DeepDream learned image.



5 Discussion

5.1 Visual interpretation

First we will discuss the SmoothGrad denoised gradients. For gradients of the eye images in the
individually trained branches, we see that the area where the gradient is strongest is mostly at the eye
itself, whereas in the full model, the gradient in the area surrounding the eye is also noticeable. For
the face images, we see the gradient of the full model more closely resembles the features of a face
(eyes, nose, mouth, face contour) than the gradient of the individually trained branches.

Now we will discuss the DeepDream learned images. The left and right eye images in the
individual branches show changes in the shape of the eyelid and lighting (an added reflection to the
left eye in Figure[2]and a darkened bottom eyelid in Figure[6)). In the second example (Figure [)), we
see a white patch added to right side of each eye, covering the right corner of the eye and the right
edge of the iris. This white patch can be interpreted as extending the sclera (the white part of the eye).

The learned face images for the individually trained branches are not readily interpretable,
however the difference images (shown in the third column) can provide insight into which features
most strongly impact the output of the model. We see stronger changes made in the contour of the
face, as well as the eyes, eyebrows, and nose. For the nose, we see that the strongest changes occur
at the nostrils. It is worth noting that the shape and relative location of the nostrils can be used to
identify the angle of the head.

The learned images for the full model (in Figures are not noticeably different from
the original images. However, the difference images show that subtle changes were made to the
image, which were enough to strongly influence the output of the image. This supports our hypothesis
that the full model can detect subtle changes in the eyes and other facial features.

5.2 Numerical difference comparison

We also compare the whole iTracker model to the individual branches numerically. For each image in
a set of 20, we compute the DeepDream difference matrix and sum all elements inside. We do the
same with the associated SmoothGrad matrix. The summed DeepDream values tell us how much
"difference" is computed for the image, and the summed SmoothGrad values tells us how much
"importance” is computed by the model. In Table|l| (last page) we show these summed values for
each model, averaged across the 20 images.

In Table [, we can see that the full iTracker model computes higher DeepDream sums and
lower SmoothGrad sums than each of the individual branches on the left, right, and face inputs.
Intuitively, this numerically shows that the full iTracker model computes large differences, but does
not set high importance on any specific area. This is in contrast to an individual branch, which
computes smaller overall differences, while placing high importance on a specific targeted area. This
continues to provide evidence that the full iTracker model detects many small, subtle differences in
the input images, as defined in physiology research.

6 Conclusion

In this work, we perform an interpretation study on the state-of-the-art eye-tracking model, iTracker.
We compare the whole iTracker model with it’s three individual branch components, visually and
numerically. We use DeepDream to investigate the differences each model looks for, and we use
SmoothGrad to investigate what each model deems important. In our numerical comparisons, we find
that the whole iTracker model produces larger summed Deep Dream differences and smaller summed
SmoothGrad results compared to separated individual branches. Our results conclusively show
that the whole iTracker model collects many differences across the head, face, and pupil areas, but
doesn’t highlight any one region specifically. This converges with research in eye-tracking physiology.

Sidharth trained the iTracker models, while David and Halim trained Deep Dream and
SmoothGrad respectively. For a specific description of each team member’s contributions, please see
the Attributions section (last page). Project code is included as interpreting_itracker.ipynb.
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7 Appendix
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Figure 4: Left eye branch (first row), right eye branch (second row), face branch (third row). Deep
dream is used to move the gaze from right to leftwards.
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Figure 5: Results for the whole iTracker model. Left-eye image (first row), right-eye image (second
row), and face images (third row). Deep dream is used to move the gaze from right to leftwards.
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Figure 6: Left eye branch (first row), right eye branch (second row), face branch (third row). Deep
dream is used to move the gaze from up to downwards.
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Figure 7: Results for the whole iTracker model. Left-eye image (first row), right-eye image (second
row), and face images (third row). Deep dream is used to move the gaze from up to downwards.



Left-eye Right-eye Face iTracker left  iTracker right iTracker
branch branch branch  eye image eye image face image
Avg summed 684.97  850.48 161.16  898.88 904.07 645.28
DeepDream difference
Avg summed 6.85 4.26 0.17 4.18 4.16 0.09
SmoothGrad

Table 1: Averaged across size 20 image set, we compute a DeepDream difference matrix, and sum all
elements inside. We do the same with the image’s SmoothGrad matrix.

8 Attributions

Percentage | Work
Sidharth | 33% Codebase setup, methods / abstract / intro, creating branch models,
pretraining, numerical difference comparison
David 33% DeepDream: research, implementation, producing results, visual
interpretation of results
Halim 33% SmoothGrad: research, implementation, testing, producing results,
conclusion
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