

UNIVERSITY OF TORONTO

INSTITUTE FOR AEROSPACE STUDIES

4925 Dufferin Street, Toronto, Ontario, Canada, M3H 5T6

Simplex

Team: #48

Members:

Xi Chen 995249431

Tianle Dai 995398430

Sida Wang 995324037

Course: Engineering Design AER201S

Instructor: Professor M. R. Emami

TA: Bardia Bina

Due Date: April 16, 2008

Simplex

Team: #48

Members:

Xi Chen 995249431

Tianle Dai 995398430

Sida Wang 995324037

Course: Engineering Design AER201S

Instructor: Professor M. R. Emami

TA: Bardia Bina

Due Date: April 16, 2008

ACKNOWLEDGEMENTS

We received enormous support from many people in this project. We would like to especially acknowledge the support of Prof. M.R. Emami, TA Bardia Bina and the owner of Creatron Inc. for their quality advice throughout the design and development process.

We owe the success of this project to the class of EngSci 1T0, many groups and individuals generously shared with us their experience and expertise in many aspects of the construction process. Special thanks go to Yuheng Huang, Xiaoyin Liu, Qiuchen Zhang, Lei Wu, Ze Wang, Tang Tang and He Huang. This list is far from exhaustive for such a list would probably be too long to include.

Last but not least, we acknowledge the enormous support we received from our parents, for tolerating the mess we made during the process and for tolerating the noises late at night.

ABSTRACT

Simplex is a robotic prototype that was designed and built over the past 4 months to solve the closet light inspection problem. The closet light inspection problem calls for a machine that can quickly and reliably determine and display the functionality and position of closet lights placed on an egg tray. This report contains the complete design and construction process, detailed description of the final prototype, suggestions for further improvements and a variety of related information such as budget, schedule, operating procedures etc.

Simplex takes a tray of closet lights. It inspects the tray row-by-row. It turns the lights on and off using an arm that cover all possible positions. Both functionality and position sensors are implemented using the same 5 phototransistors. The horizontal motion of the testing arm is powered by a stepper motor for accuracy and the vertical motion of the testing arm is powered by a DC motor for power.

The finished machine performed fairly well during the demo. The machine correctly determined the positions of 5 out of 5 lights and correctly determined the functionalities of 4 out of 5 lights in each of the two trials in 40 seconds and 30 seconds. The machine is fairly reliable since it went through about 15 successful full runs and over 100 test runs before the demo.

However, Simplex is not perfect; it often passes lights that have only one or two bright LED(s). Many suggestions for improvements are given in this report.

TABLE OF CONTENTS

Ackno	wledgement	iii
Abstra	act	iv
Table	of Contents	v
Symbo	ols and Abbreviations	ix
1 Ir	ntroduction	1
	escription of the Overall Machine	
2.1	Features	
2.2	Description	5
2.3	Key information	6
2	.3.1 Key Quantitative Parameters	6
2	.3.2 Key Qualitative Information	6
2.4	the testing arm	7
2	.4.1 side view	7
2	.4.2 back view	7
2	.4.3 Bottom view	8
2	.4.4 top view	8
2	.4.5 front view	9
2.5	Circuit and control	10
2.6	Mechanisms	11
2.7	Control Panel	12
3 P	roblem Division	13
3.1	Electromechanical Components	13
3.2	Circuit Components	13
3.3	PIC	13
4 P	erspective	15
4.1	Theory/Survey	15
4.2	History	16
5 0	bjectives Constrains and Acceptance Criteria	18
5.1	Statement of Problem	18
5.2	Goals and Objectives	18
	.2.1 Criteria and objectives	
6 B	udget	20

7	Elect	rome	chanical Subsystem	23
-	7.1	Asses	sment of the problems	23
	7.2	Soluti	on to the problem	23
-	7.3	Sugge	stions for improvement (electromechanical part)	27
8	Data	Chart	S	29
9	Supp	orting	g Calculations	29
	9.1	Curre	nt to Torque ratios of DC motors	30
10	Circu	ıit sub	system	31
	10.1	Asses	sment of the Problem	31
	10.1.	1 A	ssessment of Sensor Design	31
	10	.1.1.1	Number of Detectors	32
	10	.1.1.2	Design considerations of Functionality Detector	33
	10	.1.1.3	Design Considerations of Position Detectors	33
	10	.1.1.4	Illumination Device for Position Detection	34
	10	.1.1.5	Type of Photosensors for Position and Functionality Detectors	34
	10	.1.1.6	Sensor Fixation	34
	10	.1.1.7	Sensor Isolation	35
	10.1.	2 A	ssessment of Stepper motor driver	35
	10.1.	3 A	ssessment of DC motor driver	35
	10.2	Soluti	on	36
	10.2.	1 G	eneral	36
	10.2.	2 S	olution for sensor	38
	10	.2.2.1	Position sensor	38
	10	.2.2.2	Functionality sensor	38
	10	.2.2.3	Infrared Illumination System Design	41
	10	.2.2.4	Sensor driver	43
	10.2.	3 S	olution for stepper motor Driver	44
	10.2.	4 S	olution for D.C. Motor driver	45
	10.2.	5 P	IC proto64 board Solution	46
	10.2.	6 F	eedback Sensors	46
	10.3	Sugge	stions For Improvement of the Subsystem	47
11	Micro	oconti	oller Subsystem	49
	11.1	Overv	iew	49
	11.1.	1 P	rogram Flow	49
	11.2	Machi	ne Interface	51

11.2.1	Problem Definition	51
11.2.3	1.1 Position Sensor	51
11.2.1	1.2 Light Sensor	51
11.2.3	1.3 Vertical DC Motor	52
11.2.3	1.4 Vertical Feedback	52
11.2.3	1.5 Stepper Motor	52
11.2.2	1.6 Horizontal Feedback	52
11.2.2	Solutions/Algorithms	53
11.2.2	2.1 PIC Pin Assignment	53
11.2.2	2.2 Stepper Motor	53
11.2.3	Initialization	55
11.2.4	A/D convertor	55
11.3 Use	er Interface	56
11.3.1	Problem Definition	56
11.3.2	Solutions/Algorithms	56
11.3.2	2.1 LCD interface	56
11.3.2	2.2 Keypad	56
11.3.2	2.3 Display	57
11.4 Log	gic	58
11.4.1	Problem Definition	58
11.4.2	Solutions/Algorithms	58
11.5 Tin	ning	60
11.5.1	Problem Definition	60
11.5.2	Solutions/Algorithms	60
11.5.2	2.1 Running Time	60
11.5.2	2.2 Real Time Clock	60
11.6 Log	<u>5</u>	64
11.6.1	Problem Definition	64
11.6.2	Solution/Algorithms	65
11.7 Mis	scellaneous	66
11.7.1	Program originations	66
11.7.2	RAM Layout	66
11.7.3	Test program	66
11.8 Ov	erall Subsystem improvement	66
11.8.1	Save calibration constants in EEPROM	66

	11.8	8.2	Program should be written in C	67
12	Inte	egrat	tion	68
1	2.1	Но	rizontal/ vertical moving arm	68
1	2.2	PIC	C board and circuit board	68
1	2.3	Po	wer supply	69
1	2.4	Dra	awer	69
1	2.5	Ad	ditional items for Aesthetic purposes	70
13	Acc	omp	olished Schedule	71
1	3.1	Div	vision of work:	72
	13.	1.1	Microcontroller Member (Xi Chen)	72
	13.	1.2	Circuit Member (Sida Wang)	72
	13.	1.3	Electromechanical Member (Tianle Dai)	73
1	3.2	Re	view Mechanism	73
1	3.3	Tas	sk Assignment	73
	13.	3.1	Microcontroller System Category:	73
	13.	3.2	Circuit System Category:	74
	13.	3.3	Electromechanically System Category:	75
	13.	3.4	System Integration Category:	75
1	3.4	Mil	lestones (Level2)	75
1	3.5	Cri	tical Path Analysis (PERT)	76
14	Sta	ndar	d Operating Procedure	78
1	4.1	Tes	st Procedure	78
1	4.2	Cha	ange PIC Board Battery	78
15	Sys	tem	improvement suggestions	80
1	5.1	Iss	ues with the current design	80
1	5.2	Im	provement suggestions	81
16	Cor	ıclus	sion	83
17	Ref	eren	nce	85
18	Tab	ole of	f Figures and Tables	86
1	8.1	Tal	ble of figures	86
1	8.2	7	Гable of Tables	87
19	Apr	end	lix	88

SYMBOLS AND ABBREVIATIONS

Symbol or Abbreviations	Explanation
A/D	Analog to digital
ADC	Analog to digital converter
IR	Infrared
IC	Integrated circuit
LCD	Liquid crystal display
PERT	Project evaluation & review technique
LED	Lighting-emitting diode
GANTT	Chart developed by Henry GANTT
PIC	Peripheral interface controller
DC Motor	Direct current motor
τ	Torque
ω	Angular frequency
V	Voltage
I	Current
TN i.e. T10, T20, T40 etc.	Gear with N teeth

1 INTRODUCTION

Simplex is a robotic prototype that was designed and built over the past 4 months to solve the closet light inspection problem. The closet light inspection problem calls for a machine that can quickly and reliably determine and display the functionality and position of closet lights placed on an egg tray [citation].

Simplex is a simple machine that solves the complex problem of closet light inspection. Simplex takes a tray of closet lights. It inspects the tray row-by-row. It turns the lights on and off using an arm that cover all possible positions. Both functionality and position sensors are implemented using the same 5 phototransistors. It takes about 20 seconds to load the tray and it has a user-friendly interface. The microcontroller, the circuits, the sensors and two motors are all placed on a testing arm that moves row-by-row. The horizontal motion of the testing arm is powered by a stepper motor for accuracy and the vertical motion of the testing arm is powered by a DC motor for power.

Our machine has the following features that distinct itself from others,

- Simple circuit system, no logic elements used, no op-amps used
- Customize made PIC proto64 board
- Single phototransistor for both position by infrared reflection and functionality detection by intensity threshold
- Continuous operation despite row-by-row design (i.e. the starting position of the testing arm for the second run is the end position of the first run)
- Hold up to 12 logs with date and time accurate to seconds
- PIC is powered by 6 x 1.5V battery
- Isolated testing environment, black box. Operates under any external lighting condition
- Intuitive display of results in the form of a matrix,

XXXXP XXXXX XXFXX XXXPX

where P stands for pass, X for empty, F for fail.

The first section of the report contains important information about the overall machine. Including a description of the overall machine, the standard operating procedures of the machine, an evaluation of the criteria and task division.

The majority of the rest of this report is then divided into its three subsystems, namely electromechanical, circuits and PIC. Each section contains DETAILED information about the subsystem of concern including problem assessment, detailed description of the solution, supporting calculations, computer programs and results. Many details are also included in the appendix.

The rest of this report contains information about how it is integrated, how task scheduling worked as well as information on budget and how it can be improved.

description of	report contains the final protot action such as bud	ype, suggestioi	ns for further	improvements	

FIGURE 2-1, MACHINE OVERVIEW

FIGURE 2-2, WITH THE TOP LID OPEN

FIGURE 2-3, TOP VIEW WITH THE LID OPEN

The top lid can be opened to give access to internal machinery. The two thick ribbon cables connect the LCD and keypad to the PIC on the testing arm.

2.1 FEATURES

- Simple circuit system, no logic elements used, no op-amps used
- Customized PIC proto64 board
- Single phototransistor for both position by infrared reflection and functionality detection by intensity threshold
- Continuous operation despite row-by-row design (i.e. the starting position of the testing arm for the second run is the end position of the first run)
- Hold up to 12 logs with date and time accurate to seconds
- PIC is powered by 6 x 1.5V battery
- Isolated testing environment, black box. Operates under any external lighting condition
- Intuitive display of results in the form of a matrix,

XXXXP XXXXX XXFXX XXXPX

where P stands for pass, X for empty, F for fail.

2.2 DESCRIPTION

Simplex takes a tray of closet lights. It inspects the tray row-by-row. It turns the lights on and off using an arm that cover all possible positions. Both functionality and position sensors are implemented using the same 5 phototransistors. The microcontroller (PIC16F877), the circuits, the sensors and two motors are all placed on a testing arm that moves row-by-row. The horizontal motion of the testing arm is powered by a stepper motor for accuracy and the vertical motion of the testing arm is powered by a D.C motor for power.

2.3 KEY INFORMATION

2.3.1 KEY QUANTITATIVE PARAMETERS

Parameter	Value	Unit	Comments
Weight	9	kg	
Operation Time	10~54	Sec	Depending on the rows of light
Cost	142.85	CDN\$	Depends on the supplier. This estimate is based
			on unit price of [citation] for a min-order of 1.
Max Dimension	40x65x55	cm ³	
Height	40	cm	
Maximum Length	65	cm	Length of bottom board
Maximum Width	55	cm	Width of bottom board
Box Length	42	cm	Length of machine body
Box Width	35	cm	Width of machine body
Volume	~0.06	m³	Volume of the box
AC RMS Voltage	110	V	
AC frequency	60	Hz	
Setup Time	85	sec	As timed on the demo by officials. Basic setup
			time + time to check the if lights are horizontal
Basic Setup time	10	sec	Time needed to load the tray

2.3.2 KEY QUALITATIVE INFORMATION

Name	Description
Horizontal	1 x 12V Stepper motor driven by L293D. Rack and pinion mechanism.
Drive	
Vertical Drive	1 x 12V 100rpm D.C. Motor driven by H-bridge made by TIP142
	(Appendix C3) and TIP147 (Appendix C4). Rack and pinion mechanism.
Microcontroller	PIC16F877 on customized PIC proto64 board.
Material	Spruce STDRD plywood for bottom board, Pine wood for testing arm
	frame, thin 1/8" composite board for the shell, black paper board on the
	outside
Functionality	PT481 Phototransistor (Appendix C2) driven by custom sensor driver.
Sensor	Intensity threshold.
Position Sensor	Infrared reflection position sensing by a combination of LTE5208
	Infrared Diode (Appendix C2) and PT481 phototransistor (Appendix C2)
	driven by custom sensor driver. Intensity threshold.

2.4 THE TESTING ARM

The testing arm is our most important component. All the motors, circuits and control systems are all on this arm! (with the exception of LCD, keypad and power supply)

2.4.1 SIDE VIEW

FIGURE 2-4 SIDE VIEW

2.4.2 BACK VIEW

FIGURE 2-5 BACK VIEW

2.4.3 BOTTOM VIEW

FIGURE 2-6 BOTTOM VIEW

2.4.4 TOP VIEW

FIGURE 2-7 TOP VIEW

2.4.5 FRONT VIEW

FIGURE 2-8 FRONT VIEW

FIGURE 2-9, TESTING ARM IN THE MACHINE

FIGURE 2-10, CIRCUIT AND CONTROL SYSTEM

Shown above is the entire circuit in Simplex. Refer to circuit section for details. The PIC microcontroller is mounted on its own board customly made for this project it is powered by 6 batteries.

FIGURE 2-11, STEPPER GEAR SYSTEM FOR HORIZONTAL MOTION

The stepper motor rotates a gear with 30 teeth, which turns a gear of 50 teeth and ultimately contacts the rack with a 10 teeth pinion (pinion is just another small gear).

FIGURE 2-12 DC MOTOR FOR VERTICAL MOTION

The D.C. motor powers a gear with 10 teeth which then powers a gear with 40 teeth and ultimately contact the rack with a 10 teeth pinion (pinion is just another small gear).

FIGURE 2-13 ADJUSTABLE VERTICAL MOTION PINION AND RACK VIEWED FROM TOP

FIGURE 2-14, CONTROL PANEL INSTRUCTION

The control panel of the machine is relatively straight forward. The log contains detailed information of the results of previous runs; including statistics (# light, # pass and #fail), detailed locations, start time, end time and duration. Scroll up and down are used to view the many lines of each log and last/next log is used to switch between past logs. The stop button here is for emergency stop while another hard emergency stop is also provided.

FIGURE 2-15, CONTROL PANEL

3 PROBLEM DIVISION

The development process was first separated into 3 components, namely the microcontroller, the electrical circuits and the mechanical system.

All members participated in the design process of every components. For example, all three members participated in the design of the mechanical parts. The circuit design was developed in close relation with the PIC pin layout and sometimes the design of the program was modified to accommodate the circuit

In terms of fabrication, the task division is as follows,

3.1 ELECTROMECHANICAL COMPONENTS

Task	Member(s)
Cutting, sawing and other machine shop	Electromechanical
tasks	
Drilling, screwing, assembling	Electromechanical, Circuit
electromechanical parts	
Drawing	PIC, Circuit
Shopping	All
Design	All

3.2 CIRCUIT COMPONENTS

Task	Member(s)
Soldering	All
Layout	Circuit, PIC
Drawing	PIC, Circuit
Shopping	All
Design	Circuit and PIC

3.3 PIC

Task	Member(s)
Program Design	PIC
Program Implementation	PIC

Members of this team never worked in isolation and the role divisions were never rigid. The electromechanical member helped with circuit components, the circuit member assembled some of the electromechanical parts and the microcontroller member helped both the circuit member and the electromechanical member. There was a lot of communication throughout the process and each member was aware of what others are doing.

4.1 THEORY/SURVEY

Currently, closet lights have been more and more frequently used in modern housing. As people tends to place more and more of their items into their closet for long term storage, the demand for closet light has increased over time. Especially for walk in closets, these lights are almost essential. In response to the high demand, companies and factories are always coming up with new and more efficient closet lights to meet the demand, because of this, new methods to quality check the closet lights are also in demand. Our machine fits the purpose of checking a cylindrical closet light with a thickness of 25±1mm and a varying diameter from 63±2mm to 73±2mm. This push light consists of 3 LEDs in the middle of a round dome. The push light is usually used for closet and cupboards. [9] This type of light generates very little heat, and it has a battery life up to 10 times longer than normal bulbs, and it can be attached to virtually any surface with a double sided adhesive pad. [9] This product is currently sold by many companies, including Lifemax, a company that provides electronics in Hong Kong for over 30 years. The manufacturer is based at a group factory in Dong Guan, China.

There are 3 components required in the design of this machine. ...

- 1. A method for accurate and consistent horizontal movement of the robotic arm
- 2. A strong and reliable method to press the lights on the row of the egg tray
- 3. A reliable method to determine the brightness of the light emitted from the closet lights

Generally a good reliable method of controlling the accurate position of the required horizontal motion is by using stepper motor. A stepper motor is a brushless, synchronous electric motor that divides one rotation into a large number of steps. With the correct voltage provided to the terminals, the stepper motor will be activated to move one step at a time.

A good method to transfer the force from the stepper motor to horizontal motion is through a rack pinion system. The main purpose of a rack and pinion system is to transform rotary motion to linear motion and vice versa. [10]

The most common method of providing mechanical energy is through a DC motor, compared to a stepper motor, DC motor is less accurate in terms of precision of the distance travelled. However it will be able to generate much more power for the required task.

In order to convert the rotary motion from the DC motor to a vertical straight forward motion, there are many alternatives. As discussed previously, a variation of the gear pinion system can be used, as shown

4-1 RACK AND PINION SYSTEM

in the diagram below (to the left). Also, a more slow but power alternative would be the acme screw, a diagram of the acme screw is also shown below (to the right).

4-3 RACK AND PINION APPLIED TO VERTICAL MOTION[11]

4-2 ACME SCREW[12]

There are three types of light sensors that are available, photoresistors, phototransistors, and photodiodes.

Photoresistors are variable resistors depending on the light hitting the surface of the resistor. They can be calibrated to be very sensitive to light, however it is slow in terms of detection. It takes photoresistors a few milliseconds to respond to light but a few second to return back to its normal state.

Phototransistor is a transistor with its base lead replaced by a light sensitive surface. When there is no light hitting the phototransistor, it acts as a open circuit. However, when some light hits the surface of the phototransistor, it will generate a small base current which will allow a big collector to emitter current through the two remaining leads.

The idea behind photodiodes is to convert light energy directly into electric current. When a photon of sufficient energy hits the diode, it will excite the electrons causing current to flow. It is able to act as a small current source when there is lighting. They are most commonly used to detect fast infrared light pulses.

4.2 HISTORY

Throughout history, quality control has always played important. At ancient times, civil engineers spent a great amount of time to check if the building materials were up to the standard. For example, one of the specifications that were imposed in the early years was the four sides of the base of the Great Pyramid of Giza perpendicular to within 3.5 arcseconds. Nowadays, buyers always tend to buy equipments that are more reliable and want reassurance when spending money. Companies are forced to provide this reassurance to

the buyers to ensure their stance in the competitive market. As new products come into the market for mass production, engineers are often asked to design an automated system that inspects the new product to ensure its quality before the product reaches the market. As of today, RFPs relating quality control becomes more and more frequent in the market.

5.1 STATEMENT OF PROBLEM

The proposal addresses the RFP for a closet light test machine. At most 6 closet lights will be placed inside an egg-tray at 20 possible positions in the upward facing orientation. Each closet light has 3 LEDs and is powered by 3 batteries. Several situations might occur for each light,

- A. All 3 LEDs light up when the button is pressed and remains on when the button is released.
 - a. All 3 LEDs turn off when the button is pressed and released a second time.
 - b. One or more LFD does not turn off
- B. Otherwise

Where A. and a. represent functional closet lights and B. and b. represent dysfunctional lights.

A machine is required to quickly and reliably determine whether the closet lights placed on an egg tray are functional or not. The machine should be able to determine the positions of both functional and dysfunctional lights on the egg tray. The machine should also be able to calculate its operation time.

5.2 GOALS AND OBJECTIVES

The goal of this design project is to build a closet light inspection machine such that meets all the design constrains and gets most evaluation points, as specified in the RFP.

5.2.1 CRITERIA AND OBJECTIVES

- Reliability = $\frac{\text{\# of lights whose functionality \& location is successfully determined}}{\text{total \# of lights inspected}}$, the reliability should be as high as possible, ideally it is 1.
 - o Objective: Reliability> 0.8
- Runing Rate = $\frac{\text{\# of lights inspected}}{\text{total running time}}$, the running rate should be as high as possible.
 - Objective: Running Rate > 3 light / min
- Light Counter Reliability = $\frac{\text{# of runs whose total # of lights are correctly counted}}{\text{total # of runs}}$, the light counter reliability should be as high as possible, ideally it is 1.
 - o Objective: Counter Reliability>0.95
- Runtime Clock Error = $\left|1 \frac{\text{machined measured running time}}{\text{real running time}}\right| \times 100\%$, the runtime clock error should be as small as possible.
 - Objective: it should be controlled to be less than 5%.
- Deactivation Failure Rate $=\frac{\text{\# of good lights that areleft on after inspection}}{\text{Each Run}}$, the deactivation failure rate show be as low as possible, ideally 0.
 - o Objective: Deactivation Failure Rate ≤ 0.1

- Setup Time = time to setup (initialization and/or calibration) the machine, the setup time should be at little as possible.
 - o Objective: This time should never exceed 2 minutes.
- Egg Tray Capacity = # of egg trays can be loaded to the machine every time, the egg tray capacity should be as high as possible.
 - Objective: Egg Tray Capacity = 1
- Log Length = total entries of log the machine can hold, the log length should be as long as possible.
 - o Objective: Log Length ≥ 5
- Weight = total weight of the machine, the weight should be as low as possible.
- Backup Power, Boolean value.
 - o Objective: achieve it
- Robustness Rating = the number of successive inspections that the machine can handle without any adjustments
 - o Objective: Robustness Rating ≥ 5

Among these objectives, reliability and running rate are most crucial. The machine must be check more than 1 light/min to qualify. Light counter reliability, runtime clock error and deactivation failure rate are the second group of most important objects. The rest objectives are aimed at extra features.

6 BUDGET

Item	Descriptions	Location Used	#	Price	Total
TIP147T(transistor)	TO220	DC Driver	2	\$0.96	\$1.92
Resistor	470 1/8W	DC Driver/sensor	3	\$0.01	\$0.03
TIP142T(transistor)	TO220	DC Driver/Sensor	3	\$1.10	\$3.30
black connector	2 pins male	DC Motor	1	\$0.28	\$0.28
Ceramic resistor	12Ω 5W	DC Motor	1	\$0.40	\$0.40
DC Motor	Zheng Gearhead 100rmp	DC Motor	1	\$8.00	\$8.00
DC Motor Coupler		DC Motor	1	\$2.00	\$2.00
black connector	2 pins female	DC Motor/feedback	4	\$0.15	\$0.60
white connector	7 pins pair	DC/Stepper Driver	2	\$0.40	\$0.80
Resistor	1K 1/8W	DC/Stepper Driver/sensor	9	\$0.01	\$0.09
Resistor	22K 1/8W	feedback	3	\$0.01	\$0.03
Switch	0.5cm small push button	feedback	1	\$0.22	\$0.22
Switch	2cm microswitch	feedback	1	\$1.20	\$1.20
card board	black color 40"*26"	frame	2	\$2.32	\$4.64
Conner (L-shaped)	5"	frame	2	\$0.99	\$1.98
Conner (L-shaped)	8"	frame	2	\$1.29	\$2.58
Drawer track	40cm pair	frame	1	\$3.99	\$3.99
Handle	black plastic, pair	frame	1	\$2.00	\$2.00
handle	bronze	frame	1	\$2.00	\$2.00
Screws with nuts	3/16*1/2"	frame	8	\$0.05	\$0.40
thin wood	2'*2'*1/8"	frame	2.5	\$1.35	\$3.38
battery box	6 AA batteries	PIC	1	\$1.95	\$1.95
bus connector	16 pins pair	PIC	1	\$0.35	\$0.35
Capacitor	22pF	PIC	2	\$0.05	\$0.10
Capacitor	0.1μF	PIC	2	\$0.05	\$0.10
Capacitor	0.33μF	PIC	1	\$0.05	\$0.05
Capacitor	1μF	PIC	1	\$0.05	\$0.05
Crystal oscillator	10MHz	PIC	1	\$0.80	\$0.80
Green LED		PIC	1	\$0.20	\$0.20
L7805(power				_	
regulator)	T0220	PIC	1	\$0.60	\$0.60
ICD8 kovpad	LCD: 16×2, Keypad:	DIC	1	¢6.00	\$6.00
LCD& keypad male stand	16keys	PIC PIC	8	\$6.00	\$6.00
		PIC	1	\$0.01 \$6.20	\$0.09
MM74C922N		FIL	1	\$6.20	\$6.20 \$10.0
PIC Board	PIC Proto64	PIC	1	310.0	310.0

		<u> </u>		¢10.0	\$10.0
PIC16F877		PIC	1	\$10.0 0	\$10.0
potentiometer	0-20ΚΩ	PIC	2	\$0.30	\$0.60
Resistor	10K 1/8W	PIC	3	\$0.01	\$0.03
socket	14 pins	PIC	1	\$0.01	\$0.03
socket	40 pins	PIC	1	\$0.30	\$0.30
white connector	2 pins pair	power	5	\$0.30	\$0.55
PC Power supply	2 pins pan	power supply	1	\$4.95	\$4.95
white connector	3 pins pair	power/sensor	5	\$0.15	\$0.75
	2 hiiiz haii	' '	5		
LTE4208(IR Emitter)	100 1 /0\\	Sensor	2	\$0.65	\$3.25
Resistor TP481(phototransist	100 1/8W	sensor		\$0.01	\$0.02
or)		Sensor	5	\$0.88	\$4.40
bus connector	10 pins pair	sensor/PIC	5	\$0.28	\$1.40
L293D(motor driver)	10 pins pan	Stepper Driver	1	\$4.20	\$4.20
Zener Diode	15V	Stepper Driver	4	\$0.15	\$0.60
Stepper Motor	PM55L-048	Stepper Motor	1	\$8.00	\$8.00
''			0.2	\$8.00	
Acrylic plate	5cm (out of 30cm) 4'	testing arm			\$1.60
Black Plastic Tube	-	testing arm	0.5	\$2.73	\$1.37
Brace (T-shaped)	pairs	testing arm	1	\$0.49	\$0.49
Circuit Board	3"*4"	testing arm	2	\$1.20	\$2.40
Conner (L-shaped)	4 holes in a row, package of 4	testing arm	1	\$0.49	\$0.49
Conner (L-Snapeu)	21cm (out of 110cm) &	testing arm		ŞU.43	Ş0.43
Door track	heads	testing arm	2	\$1.14	\$2.29
	135*90×1, 280*90×1,	0			, -
Pine wood	93*72×1	testing arm	1	\$2.00	\$2.00
Plastic Mounting	Package of 4	testing arm	4	\$0.85	\$3.40
plywood	155*105	testing arm	2	\$0.60	\$1.20
Screws	11/64*1 1/4"	testing arm	2	\$0.27	\$0.54
Sensor Board	5cm (out of 30cm)	testing arm	1	\$1.00	\$1.00
Wood screws	9/64*1/2"	testing arm	32	\$0.05	\$1.60
	1 hole on each side,	J			-
Conner (L-shaped)	package of 4	testing arm/frame	2	\$0.49	\$0.98
	2 holes parallel on each				
Conner (L-shaped)	side, package of 4	testing arm/frame	1	\$0.49	\$0.49
Drawer track	30cm pair	testing arm/frame	1	\$3.19	\$3.19
plastic pinion	22cm	testing arm/frame	3	\$2.00	\$6.00
Screws with nuts	1/8*1/2"	testing arm/frame	31	\$0.05	\$1.55
bumper pad	package of 12	transmission	0.4	\$3.69	\$1.48
nut	11/64"	transmission	2	\$0.12	\$0.24
	T10×5, T30×1, T40×1,				
plastic gear set	T50×1	transmission	1	\$2.98	\$2.98

shaft	11/64"*1'	transmission	2	\$1.00	\$2.00
washer	11/64"	transmission	2	\$0.06	\$0.12
				total	\$143

TABLE 6-1 BUDGET

The budge depends on supplier. The price listed in the table is retailer price. If large quantity is bought, i.e. mass production of the machine, the price can be much lower.

This design saves budget compare to other design, for the following reasons:

- Customized PIC board is used instead of DevBugger
- Very little elements used in circuit, i.e. no comparator and logic gates
- Cheap wood is used for building frame

7.1 ASSESSMENT OF THE PROBLEMS

In order to keep up with the plan, several components of the robot are required.

- 1. There must be an outer frame from the robot where the robotic arm will be supported onto. The egg tray will be placed into the frame with the closet lights that needs to be checked.
- 2. A horizontal moving mechanism is required to move either the egg tray or the robotic arm horizontally. Since we are checking one row of the egg tray at a time. The horizontal mechanism must be able to move forward and backward, and must have high consistency on how far it will move each time.
- 3. A vertical mechanism is required to move the pressing arm down. The pressing face (IE the material that is required to turn the lights on) must be transparent so that light sensors can receive a reading when the lights are turned on.
- 4. There must be a convenient method for the closet lights to be placed into the frame. The position of the egg tray that will be placed into the frame should be fixed to reduce probable errors.
- 5. There must be space allocated inside the frame for circuit boards, since information hiding should be considered and also it will provide protection for the circuits.
- 6. Since there is a good chance that the closet lights are too close to each other and the light might cause interference, there also needs to be a mechanism to ensure that all the lights emitted are isolated.
- 7. Since the title of our robot is Simplex, the electrical mechanical parts of the robot should be as simple and elegant as possible.
- 8. The outer frame of the robot must fit in an 75cm * 75cm *75 cm envelope
- 9. The max budget of the electromechanical part is around \$70, the rest will be given to the microcontroller and circuit member.
- 10. The weight of the Frame should not pass 7kg.

After considering all these key components of our design it is also required to make the outlook of our robot as aesthetically pleasing as possible. In addition, the machine should be easily disassembled to ensure that the debugging process will go more smoothly and also there will be less trouble when parts of the machine breaks. There should be mechanisms that will make the robot user friendly and durable.

7.2 SOLUTION TO THE PROBLEM

The key highlights to the solution for the electromechanical system are

- 1. A drawer with an egg tray mounted on top to allow the user to put the corresponding egg tray onto the same position with ease.
- 2. One arm will be made containing both vertical and horizontal motors; the circuit board will also be attached to this arm.
- 3. An acrylic plate will be used to press the closet lights. Since the acrylic plate is transparent, the phototransistors will be located on top of the acrylic plate on the

- moving arm and still receive accurate reading from the closet lights. (Infrared LED will be located beside the photo transistor to check for the position of the lights)
- 4. The horizontal motion will be powered by a stepper motor to ensure accurate stepping, the vertical motion will be powered by a DC motor to give the correct about of torque.
- 5. 5 small cylindrical pipes will be used to isolate the closet lights from each other and avoid interference of the readings received on the photo transistor.

A more detailed explanation of the integration of the electromechanical system will be provided below, diagrams of the robot will also be provided in the following section:

7-1 DRAWER USED TO MOUNT THE EGG TRAY

Our general design is very simple. At the bottom of our machine, there will be a drawer (Fig 1), which the user will pull open to stack the egg tray with the closet light onto another mounted egg tray, and then the user can push the drawer fully into the machine and press start to initiate the quality checking process.

There are 5 light sensors mounted above the acrylic plate along with 5 infrared LEDs (Fig 2). The main purpose of the LEDs is to accurately locate the positions for all the closet lights. The position of the LED is located by shining infrared LEDs onto the egg tray, and taking advantage of the shiny surface that is on all of the closet lights, a portion of the light emitted by the infrared LEDs will be reflected back onto the phototransistor located beside the LED on the positions where there is a closet light. Then, the phototransistor will be able to send a signal to the microchip indicating that there is a light at the particular position.

7-2 LIGHT SENSORS AND INFRA RED LEDS

In addition to the lights and phototransistors, our design also consists of two moving parts. First of all, two pinion and rack system are used to turn on the closet lights. One end of the racks is attached onto the rectangular acrylic plate which will be used to turn on the lights; the respective pinions will be attached to one 100 step/minute gearbox motor. When the motor move, it will push the pinion which will force the rack to move down and provide sufficient power to press all the closet lights on that row (7-4). This motion will begin once closet lights are found in the row through the infrared sensors. Once all of the closet lights

have been turned on, the phototransistor will be able to pick up the light emitted on all of 7-3 TOP VIEW OF TESTING ARM, HORIZONTAL MOTION

the respective closet lights, and also measure the intensity of the closet lights. Knowing the intensity, the PIC microchip will be able to determine, rather all three LEDS on the closet light are fully functional. The acrylic plate will then turn off the lights on the row and another reading will be taken by the phototransistors to ensure all of the lights are off. Then the pushing arm will continue to the next row.

The second moving part in our prototype is to move the whole testing arm horizontally so that the whole testing process can continue to the next row of the egg tray. This movement is governed by a stepper motor to ensure accurate stepping. Another pinion and rack system will be implemented to make the horizontal motion (Horizontal motion). This stepping motor will only be activated when the current row is finished checking and the quality of the closet lights are determined.

7-4 WHOLE TESTING ARM INTEGRATED IN MACHINE

By integrating all three mechanical parts together, the robot will be able to first turn on the lights with the DC motor and then check one row of the egg tray and determine the position of the closet lights as well as if the lights are in good quality using the light sensors and LEDS. Afterwards, the robot will turn the lights off using the DC motor again with similar motion as turning the lights on. Next, the light sensors will be activated again to check if the lights are all turned off, in the process failing the lights that are still on. Finally the step

motor will be activated so that the testing arm will continue to the next row. (7-5).

7-5 X-RAY VIEW OF TESTING ARM INTEGRATED IN THE MACHINE

7.3 SUGGESTIONS FOR IMPROVEMENT (ELECTROMECHANICAL PART)

There are still many parts of the design that could be improved, however without properly testing these ideas, it would be difficult to conclude that these ideas would be compatible. First of all, a small full extension track (used for drawers) can be applied to the vertical motion[fig 1-7]. If the vertical motion rack is attached onto this track, there be little to no chance that the gear will still slide when the rack is powered to press the closet lights.

7-6 VERTICAL RACK AND PINION SYSTEM, RACK IS MOUNTED USING A SLIDE

7-7 FULL EXTENSION DRAWER SLIDE, USED TO RESIST FORCE IN ALL DIRECTIONS [13]

Also, the gears are mounted onto the shaft by punching a hole inside the shaft and placing a metal rod in there, then creating a slot and fixing the gear into place (7-8). This mechanism is unreliable since creating a slot on the original gear is very damaging to the gear. An alternative to this would be permanently attaching another smaller gear onto the original one and punching a hole in the smaller gear. In addition to this, we also place glue gun glue immediately beside the gear to help ensure that gear would not move out of place. However the main reason behind using glue gun is that it dries quickly and allows immediate testing. The glue gun was never intended to be a permanent solution to fixing the gear's position. A more reliable solution should be the Epoxy glue.

7-8 GEAR MOUNTED TO THE SHAFT, WILL BE FIXED USING GLUE GUN

Another weakness of our design is the idea that plastic gears are used instead of metal gears. In the end phase one of the key weakness that was observed was the gears breaking off the shaft. Due to the overwhelming amount of torque applied onto the gear during the repeated trials, the gears broke in half. One method to fix this problem was to use metal gears and rack system so that the gears won't break in long term use.

The next component that can require improvement would be the motors and gear ratios. Near the end of the integration process, we found out that the power output of the motor is high than predicted. When the power output of the DC motor is too high there is a good chance that the gears and rack will get severely damaged due to the high torque output. Since we did not have enough time to change the gear ratios of the DC motor, we decided to use a 100 spin/min DC motor instead of the original 50 spin/min, also we were forced to add a 12 ohm resistor in front of the motor to further reduce the power. This is inefficient since a portion of the power is being wasted. An alternative solution to this problem would be reducing the gear ratio allowing the testing arm to move down faster. Doing this would allow a faster downward motion at same torque as our current design.

7-9 GEAR RATION OF THE VERTICAL MOTOR, DC TO SHAFT TO RACK

8 DATA CHARTS

Refer to appendix for information about the DC and stepper motor

9 SUPPORTING CALCULATIONS

Refer to appendix from power estimations of both stepper motor and DC motors. The calculations for torque to current ratio for both $100~\rm rpm$ and $50~\rm rpm$ DC motor will also be provided.

9.1 CURRENT TO TORQUE RATIOS OF DC MOTORS

By measurements, we determine Is, R and frequencies as follows for the 100rpm motor used.

10 CIRCUIT SUBSYSTEM

10.1 ASSESSMENT OF THE PROBLEM

The circuit is the interface between the controller and the mechanical system. On one hand, it must convert signal given by the microcontroller to appropriate voltages that can drive the mechanical system and the sensors. On the other hand, it must collect sensory information from the sensors and feed it back to the PIC. In addition, the circuit system also includes the sensors themselves.

Therefore, there are really two main parts to the circuit system.

- 1) Interfacing between microcontroller and the rest of the machine
 - a) Interface for stepper motor
 - b) Interface for D.C. motor
 - c) Interface for light position sensor
 - d) Interface for light functionality sensor
 - e) Interface for position feedback sensor
- 2) Sensor Design
 - a) Reliable position sensor
 - b) Reliable functionality sensor

Parts a) and b) of the first problem basically involves converting a 5V signal from the controller to a (possibly different) voltage that can supply a substantial amount of current (\sim 0.1-1A). Parts c) d) and e) of problem 1 involves reliably feeding the signals to the microcontroller. Interference could be an issue here.

The second part involves reliable sensor designs.

Reliability is the key to both part 1 and part 2. The goal is to design and develop simple, reliable, flexible, and maintainable circuit system that get the job done. Modular design was in mind since the very beginning that every circuit component should be detachable from the machine without much effort so they can be repaired and tested separately. Every specialized circuit should be implemented on its own board and mutual dependencies should be minimized.

10.1.1 ASSESSMENT OF SENSOR DESIGN

The following decision tree nicely summarizes our decision (in green) vs. the alternatives (in white). The decision making process is discussed after the diagram.

FIGURE 10-1, THE DECISION MAKING TREE FOR SENSORS

10.1.1.1 NUMBER OF DETECTORS

- A) 1 Single detector
- B) A row of 4 detectors

- C) A row of 5 detectors
- D) Two rows of 5 detectors
- E) A grid of 20 detectors

More detectors imply a potentially shorter operating time but also more complicated circuits and high budget. Very serious consideration were given to the 20 detector arrangement but the budget would get above \$150. It is decided that C (a single row of 5) works the best. In comparison to D and E, the circuits are much easier for C so that a pin-to-pin connection to the PIC is possible. In comparison to B, C involves one more sensor and improved operating time and operating time is fairly important according to major objectives.

10.1.1.2 DESIGN CONSIDERATIONS OF FUNCTIONALITY DETECTOR

- A) Complicated system that can determine the number of lights that lit up
 - a. Rotating sensor
 - b. Sensor grid
- B) An enhanced detector that more reliably determines the status of the closet light
 - a. Lenses
 - b. Fixing the relative position of the light and the sensors by a grip
- C) A simple threshold-calibrated detector

Given that the product should cost below \$150 complicated detection system is not feasible. A single threshold-calibrated detector will not work all the time because two bright LEDs are more intense than 3 dim LEDs (according to experiments). However, such situations should not occur often since the intensity between 2 and 3 LEDs are distinguishable most of the time and closets with exactly 2 LEDs on should only be a rare case. So in the spirit of keeping it simple and low cost, it is decided to use the simple threshold calibrated detector.

10.1.1.3 DESIGN CONSIDERATIONS OF POSITION DETECTORS

- A) Position detection from the bottom of the egg-tray
- B) Position detection by touch sensors
- C) Position detection by light sensors

A relatively large force needs to be applied to turn the lights on. In addition, light needs to be transmitted from the closet light to the sensors above. So in order for choice B to work, the sensors should not obstruct any movements and it should not affect the transmission of light. A design satisfying those conditions may easily involve other tradeoffs.

Position detection by touch from the bottom would involve additional moving parts. Or at the very least, this method involves additional sensors.

Alternative C involves shining a light to the egg tray and measure the reflection (egg tray and the silvered closet light have very different reflections). It is the best alternative in our opinion. Light sensor is required to determine the functionality of closets and it can be used for position detection as well without major modification. According to experiments, this is quite reliable and only a few fairly cheap additional light sources (about \$0.6 each) are needed. Moreover, when the machine inspects row-by-row, position detection by light opens the possibility of not

pressing a row when that row is empty whereas each row must be pressed in the case of touch detector.

10.1.1.4 ILLUMINATION DEVICE FOR POSITION DETECTION

- A) Single light source
- B) LED grids
- C) Infrared

This is a consideration unique to our position sensor since it is decided to use light sensors for position detection. There are several alternatives. A single light source for all position detectors is possibly cheaper but the relative position of each sensor with respect to the light would be different and therefore the same reading would mean different things at each sensor.

To keep things simple, a dedicated LED light source for each detector is better since there are only 5 detectors and LEDs are cheap.

The other consideration is the type of light to use. Visible light is easier to see and therefore easier to debug than infrared but infrared source has a larger signal-to-noise ratio. In addition, the acrylic glass that is used is very transparent to infrared. Experiments comparing two combinations: CdS photoresistor and white LED vs. phototransistor and infrared LED showed that the phototransistor and infrared LED combination works more reliably and consistently.

10.1.1.5 TYPE OF PHOTOSENSORS FOR POSITION AND FUNCTIONALITY DETECTORS

- A) Photoresistor
- B) Photodiode
- C) Phototransistor

Phototransistor is most commonly used for photoelectric sensors while photoresistor is used when higher sensitivity for visible light is required. Photodiodes give faster response time and is quite linear over several orders of magnitudes [1]. Photoresistors are not sensitive to infrared light while phototransistors are sensitive over large wavelength ranges that include both visible and infrared light. Phototransistors often cost the same as photoresistors while photodiodes are much more expensive. According to experiments and as mentioned in the illumination device section there are several advantages for using infrared light for position sensors. In addition, because of a built-in focusing lens on the transistor, it is more directionally sensitive and thus less sensitive to ambient light. In consideration of all of the above, phototransistors was chosen.

10.1.1.6 SENSOR FIXATION

- A) Design a mechanism to fix the relative position of a sensor with respect to the light in order to get a consistent reading.
- B) Rely on the similarity of the egg tray (±1 cm)

Light intensity measurements are highly dependent on the relative position of the sensor with respect to the light. So this is an important consideration.

Alternative A involves gripping the closet light; this would likely involve additional moving parts. The positive positions of lights are fairly close to each other on the egg tray so that the gripping mechanism for one position would likely interfere with another light.

On the other hand, the egg trays can easily be stacked together so that they are fairly similar to each other and according to experiments a reliable and consistent readings still exists for the egg tray uncertainty of ± 1 cm.

10.1.1.7 SENSOR ISOLATION

It is decided to isolate the sensors since it is very effective in improving the reliability of sensory readings at very little cost.

10.1.2 ASSESSMENT OF STEPPER MOTOR DRIVER

The stepper motor driver needs to convert 5V PIC signals to 12V signals that can deliver current of up to 12V/300hm = 0.4A. Within this framework there are several ways of doing it.

- A) Use 2 PIC pins, so that one can indicate direction and the other one provides a clock.
- B) Use 4 PIC pins, so that the signal directly corresponds to the motion of stepper motor.

Alternative A involves complicated circuit (a shift register) while saving pins is not an issue based on the sensor design. Alternative B gives PIC a lot of flexibility and takes advantage of its power and has the advantage of simple circuits.

In terms of implementation,

- A) Build 4 switches using transistors
- B) Use one of the stepper driver ICs

4 transistors (4x\$1.6) that can handle current on the order of 0.5A typically cost more than the stepper driver ICs (54). The stepper driver ICs are also likely to be more reliable. Two types of ICs are available

- A) TTL
- B) CMOS

After some experimentation, the CMOS chip burns when a pin floats and the TTL chip is a lot more durable so a TTL chip L293 is chosen for this purpose.

10.1.3 ASSESSMENT OF DC MOTOR DRIVER

The goal here is still converting 5V signals to 12V that is capable of bi-directional drive with current of up to 1A. Because of this current requirement as well as a course requirement that forces the implementation, using transistors, of at least one actuator driver. The typical H bridge is chosen for this purpose.

10.2.1 GENERAL

FIGURE 10-2, THE CENTRALIZED POWER HUB, ACTUAL PICTURE ON THE LEFT AND SCHEMATICS ON THE LEFT

Ample space is left on this power hub to make the system upgradable. The top plug connects to the power supply. The rest connects to different component as shown in the schematics.

FIGURE 10-3, RIBBON CABLE AND CONNECTORS

It is the original intention to make the circuit as organized as possible. So ribbon cables and connectors are used extensively in the solution. They paid off in the debugging phase.

FIGURE 10-4, THE ENTIRE CIRCUIT AND CONTROL SYSTEM

This is one of the simplest and most maintainable circuits. Shown above are all the circuit boards! The actual sensors are not included in this picture but there is no complicated circuit element in the sensor board. The components are designed to minimize mutual dependence and allow for individual testing and maintenance.

Lines are colour coded, red represent high, mostly 12V, 5V for the PIC board, yellow represent 5V, and black represent 0V (or ground, this is unfortunately different from the computer power supply convention where 5V is the standard and is in red). Lines in other colours are reserved for signals. One possible exception is the D.C. motor driver where the yellow lines can be either 0 or 12V depending on the state of the D.C. motor.

10.2.2 SOLUTION FOR SENSOR

10.2.2.1 POSITION SENSOR

Infrared on

Closet light placed on egg-tray off

FIGURE 10-5, INFRARED LED AND TUBE FOR ISOLATION

The entire sensor system is placed inside a hollow cylinder. The angle of reflection will be much smaller than shown in the schematics (The infrared LED will be placed very close to the infrared sensitive phototransistor).

10.2.2.2 FUNCTIONALITY SENSOR

FIGURE 10-6, FUNCTIONALITY SENSOR

For the functionality sensor, a simple threshold would be set for the intensity of three lights so that the light passes its first test whenever 3 LEDs lights up. However, 2 LEDs occasionally can be as bright so 100% accuracy will not be guaranteed.

The design in the proposal were as follows,

FIGURE 10-7, PROPOSED SENSOR DESIGN

Shown above is the circuit design for the functionality/position sensor LEDs. PT481 phototransistor was used. Its datasheet is attached in appendix C2. It was found that this setup with R=1 K ohm gives far superior sensitivity in the required range than any other configuration experimented with (in comparison to photoresistor and phototransistor with higher values). Key results were as follows:

With room light: Vout = $4.1V \approx 4.3V$ = Vhigh – Vsat = 5V - 0.7V = 4.3 V

With closet light shining directly on the transistor: Vout = 0.7 to 1.3V

With infrared LED reflecting off the egg tray: V out = 3.5 to 4 V

With infrared LED reflecting off the closet light: Vout = 0.8 to 1.1 V

The readings were highly stable and repeatable. Infrared reflection off egg tray and infrared reflection off closet light is very different and it thus enables reliable position detection. Also,

the reading with closet light on is very different from the background light and this enables reliable functionality detection. This is reliable because the upper bound for positive results (1.3V) is much smaller than the lower bound of negative results (3.5V) so that setting the threshold in the middle has a Factor of Safety of more than 1.5.

However, it was later decided to use 0.5K Ohm instead of 1K Ohm for even more sensitivity in the given range. And the arrangement become slightly different

FIGURE 10-8, SENSOR DESIGN

The phototransistor is still the highly directionally sensitive PT481. The signal is feed directly into the PIC for position detection and for functionality detection of the closet lights.

The change from proposal is rather minor and is done just for convenience. Again, the readings are quite stable and repeatable.

For position sensing (thus with infrared on and light off), the results are as follows after feeding through the PIC's analog to digital.

	PIC High	PIC Low	Voltage Low	Voltage High
With Light	120	38	2.65	4.25
No Light	24	0	4.53	5.00

Here the PIC reading relates to (5V-voltage)/5x255. Therefore the PIC would display 0 if voltage is 5V and 255 if the voltage fed to it is 0V. The difference between 24 and 38 is not too significant, but due the high repeatability, position sensing was very reliable. In fact, after the orientations of the sensors were adjusted properly, position sensors never give any incorrect results provided that the threshold is set at 28 even after hundreds of readings were taken. The actual signal strength depends on the cleanness of the surface as well as the orientation of the light but the dependency is small enough so that there exist a clear threshold.

For functionality sensing, the results are as follows.

		PIC reading		
	PIC reading High	Low	Voltage Low	Voltage High
3 Bright				
LEDs	204	85	1.00	3.00
2 Bright				
LED	204	70	1.00	3.22
1 Bright				
LED	170	45	1.67	4.12
No LED	0	0	5.00	5.00

Here, there is a clear overlap between 2 bright LEDs and 3 bright LEDs. Although in general, two bright LEDs still give a smaller reading than 3 LEDs, the reading actually depends more on the orientation of the light. Although a signal collection mechanism is designed for this purpose the lens on the phototransistor makes the sensor highly directional sensitive. As a result, there is no clear threshold. The threshold of 80 was chosen so that all light with 3 LEDs will pass but this threshold is highly flexible and can be adjusted just by changing one number in the code. This number is chosen since there should be very few light with 2 or 1 LEDs and the priority would be passing all lights with 3 LEDs. As a result, there is some chance to pass 2 or even 1 bright LEDs as well.

The reading is always 0 when there is no light. On the other hand, due to the intrinsic voltage drop across the transistor (0.6V), the reading is never 255. In fact, (255-204) \times 5V / 255 = 1V is the reading at saturation.

10.2.2.3 INFRARED ILLUMINATION SYSTEM DESIGN

FIGURE 10-9, INFRARED ILLUMINATION SYSTEM

5 Infrared Light Emitting Diodes are connected in series. They are connected in series because the amount of light LEDs emit depends on the current going through them. LEDs connected in parallel have a huge inconsistence in intensity (~50%, Creatron Inc.).

The particular infrared LED is LTE5208. The device cost \$0.65 and it emits very bright infrared light. The datasheet for this device is in the appendix C1. The value of R would be adjusted so the current going through the system is smaller than but about the same as that specified by the LED.

For example, the datasheet of LTE5208 states that I=100mA and V_{diode}=1.2V. Then if V=12V,

$$R = V/I = (12V-5x1.2V)/100mA=6V/0.1A=60 Ohm$$

 $P = 12V \times 100 \text{ mA} = 1.2 \text{ Watt: this is feasible. Note that powering 1 LED costs just as much power as powering 6 in series with a 12V power supply.$

The switch is controlled by the PIC and is implemented using a TIP142 Darlington transistor.

Using infrared LEDs could pose significant difficulties in aligning and debugging since they are invisible, the severity of this problem can be reduced by using near infrared viewers and infrared fluorescent cards. In reality though, sensors can be calibrated quite well just by twisting it while reading down the values. On the other hand, a cell phone camera conveniently picks up infrared due to its lack of infrared filter.

Each infrared LED is in reality isolated from each other and would feed into only one sensor. This is accomplished through plastic tubes installed for this purpose.

This system is exactly the same as proposed except a fuse was not installed since there was no risk for burning the LEDs (the current is actually 80mA and the LEDs would not burn even with 200mA going through it).

The sensor driver is the interface between sensors and PICs. It is responsible for powering up infrared LEDs as well as the sensors. It is also responsible for sending the sensor signals back to the PIC.

FIGURE 10-10, SENSOR DRIVER SCHEMATICS

FIGURE 10-11, THE IMPLEMENTATION OF THE SENSOR DRIVER

FIGURE 10-12, SCHEMATICS FOR MOTOR DRIVER (APPENDIX C3, L293D MOTOR DRIVER)

Pins 2, 15, 7 and 10 are the signal pins that are connected to the PIC with a 1K resistor in between. Two ends of L1 and L2 are the signal pins of the stepper motor.

FIGURE 10-13, OUR IMPLEMENTATION

4 15V Zener diodes are used instead of 8 standard diodes for the same protection effect. The circuit is connected to the stepper motor on the left end through a 7-pins connector with 1 pin unused and is connected to the control board by a ribbon cable.

Power stepping provides about 1.4 times the torque but uses twice as much power.

FIGURE 10-14, STEPPING SEQUENCES

Power stepping sequence was used in the final design.

10.2.4 SOLUTION FOR D.C. MOTOR DRIVER

Bipolar H-Bridge 6-15V 5.6K R₃ 1K TIP 147 TIP 147 TIP 147 A signal must not be applied here when a signal is being applied to the forward lead.

FIGURE 10-15 SCHEMATIC DC MOTOR DRIVER

FIGURE 10-16, OUR SOLUTION TO DC MOTOR DRIVER

The top two Darlington transistors are TIP142 and the bottom ones are TIP147. This device should be able to handle current of up to 4A.

The motor turned out to be too powerful for the transmission so that a resistor of 12 Ohm was connected in series with the D.C. motor. See circuit appendix for sample measurements and calculations. Motor limited (as in the motor has just enough power to turn on the lights) is advantageous since it eliminates a feedback sensor and it protects gears. It also offers more flexibility to the machine in the case of a height change.

10.2.5 PIC PROTO64 BOARD SOLUTION

Refer to Appendix

10.2.6 FEEDBACK SENSORS

FIGURE 10-17, FEEDBACK SENSOR

- Stranded wires: it is fine to use single-core wires on the boards but stranded wire should be used for inter-board connections. Single-core wires were initially used and they eventually broke apart after dozens of plugging/unplugging. By the time of the demo, almost all inter-board wires are replaced by stranded wires but the few that did not break are still single core wires. It would be better if stranded wires were used since the beginning.
- Instead of PT481, with its sensitivity dropping to 70% at a 10 degrees angle. A similar phototransistor with slightly less angle dependence would serve us well. Although the collection tube is fairly long it still cannot eliminate this angle dependence. We initially thought that this high angle dependence is to our advantage since it automatically filters out noise but it turned out to be more of a hindrance.

FIGURE 10-18, ANGULAR SENSITIVITY

- The L293d chip was soldered onto the board directly in the absence of a socket. Although it did not pose any problem, it should not be directly soldered to the board.
- More consistent colour coding. The colour coding in this design was generally good but it had some inconsistencies with the computer power supply convention. Some of the earlier boards were made based on availability of colours rather than a rigid convention. Wires of all colours should be obtained and a rigorous colour convention should be applied.
- It is better practice to add protection diodes on the D.C. motor driver as well. In this case, the maximum current is around 4A and only 0.5A is needed, so it was not necessary.

Overall, the circuit system is rather simple, reliable and maintainable. It did not pose any major problem ever since it was made. No circuit parts were replaced ever since it was installed to the backboard. As a result, not much need to be suggested for improvements of the circuit system.

11 MICROCONTROLLER SUBSYSTEM

11.1 OVERVIEW

Microcontroller subsystem was broken into X smaller divisions: machine interface, user interface, logic, timing, and log. Some general information such as stack usage, RAM usage... are also discussed in the following texts.

11.1.1 PROGRAM FLOW

FIGURE 11-1 PIC PROGRAM FLOW CHART

The flow chart is almost same as that in the proposal, with the exception of "Sleep/Power Saving" feature, which is not implemented in the final design. Power saving feature of PIC program become less important because the main source of energy consumption of PIC board batteries is the LCD backlight, not the PIC.

The program has 7 phase of operation, defined in Table 11-1.

Label Name	Phase	Description
PHASE_HDINIT	0	Hardware Initialization/Reset
PHASE_RTCINIT	1	Real Time Clock Initialization/Reset
PHASE_REALTIME	2	Real Time Display
PHASE_NOREPORT	3	Report Review : No Report
PHASE_REPORT	4	Report Review
PHASE_RUN	5	Inspection Running
PHASE_FINISH	6	Inspection Finish

TABLE 11-1 PIC PHASE OF OPERATION

Some functions (Display, keypad Responds) behave differently in different phase. Refer to 11.3 User Interface for more detail.

11.2 MACHINE INTERFACE

11.2.1 PROBLEM DEFINITION

PIC program interact with the mechanical part of the machine by sending and receiving logic/analog signals from the controlling circuits. Following tables are the specification for microcontroller-circuit communication.

11.2.1.1 POSITION SENSOR

PIC Output/Machine Input	PIC Input/Machine Output	
LEDs	-	Machine Description
L		all infrared LEDs power OFF
Н		all infrared LEDs power ON

TABLE 11-2 MACHINE INTERFACE: POSITION SENSOR

11.2.1.2 LIGHT SENSOR

PIC Output/ Machine Input	Р		out/M Outpu		е	
	Α	Α	Α	Α	Α	
	N	N	Ν	N	Ν	
-	0 1 2 3 4					Machine Description
						analog signal should be sent to this 5 pins AT ALL TIME
	$A^1 A A A A A$					5V: Lowest Intensity; 0V: Highest Intensity

TABLE 11-3 MACHINE INTERFACE: LIGHT SENSOR

Simplex Final Report

¹ A=Analog

PIC will receive analog signal from the sensor. The program need to convert the signal to digital for logic part of the program.

11.2.1.3 VERTICAL DC MOTOR

PIC Output/Machine Input		PIC Input/Machine Output	
V.MOTO	V.MOTO		
R CO	R C1	-	Machine Description
L	L		vertical DC motor power OFF
Н	L		vertical DC motor power ON - moving UP
L	Н		vertical DC motor power ON - moving DOWN
Н	Н	NEVER OCCUR (motor will burn)	

TABLE 11-4 MACHINE INTERFACE: VERTICAL DC MOTOR

11.2.1.4 VERTICAL FEEDBACK

PIC Output/Machine	PIC Inp	out/Machine	
Input	(Output	
	TOP		
-	FB	BOTTOM FB	Machine Description
			both switches closed - IMPOSSIBLE, but PIC will turn OFF
	L	L	V.MOTOR
	Н	L	TOP switch OPEN, BOTTOM switch CLOSED
	L	Н	TOP switch CLOSED, BOTTOM switch OPEN
	Н	Н	BOTH switches OPEN

TABLE 11-5 MACHINE INTERFACE: VERTICAL FEEDBACK

11.2.1.5 STEPPER MOTOR

PIC Output/Machine Input					PIC Input/Machine Output	
EN	S0	S1	S2	S 3	-	Machine Description
L	Χ	Χ	Χ	Χ		stepper motor power OFF
Н	L	L	Н	Н		
Н	L	Н	Н	L		
Н	Н	Н	L	L		stepper motor power ON - moving FROM ROW 1 TO
Н	Н	L	L	Н		ROW 4
Н	Н	Н	L	L		
Н	L	Н	Н	L		
Н	L	L	Н	Н		stepper motor power ON - moving FROM ROW 4 TO
Н	Н	L	L	Н		ROW 1

TABLE 11-6 MACHINE INTERFACE: STEPPER MOTOR

Stepper motor is controlled by signal pattern. The pattern repeats itself every 4 steps. The pattern listed here is the power stepping sequence. Refer to Figure 10-14 for reference.

11.2.1.6 HORIZONTAL FEEDBACK

PIC Output/Machine	PIC Input/Machine	
Input	Output	
-	ROW1 FB	Machine Description
	L	switch CLOSED
	Н	switch OPEN

TABLE 11-7 MACHINE INTERFACE: HORIZONTAL FEEDBACK

11.2.2 SOLUTIONS/ALGORITHMS

Generally (position sensor, DC motor, feedbacks), actuators are easy to communicate: just set/clear the corresponding pin when write, and test the pin when read. In the following sections, pin assignment is first introduced in general, and then stepper motor control is highlighted, initialization and analog to digital converting mechanism are introduced in the end.

11.2.2.1 PIC PIN ASSIGNMENT

	RA	RB		RC		RD		RE		
0	AN0	l ²	RV		V. MOTOR CO	0	S. MOTOR SO	0	S. MOTOR S2	0
1	L AN1 I		KEYPAD DA ³	I	V. MOTOR C1	0	S. MOTOR S1	0	S. MOTOR S3	0
2	AN2	I	RV		LEDs	0	LCD RS	0	S. MOTOR EN	0
3	AN3	I	RV	0	RV	RV O		0	-	-
4	RV	0	KEYPAD D0	I	RV	0	LCD DATA4	0	-	-
5	AN4	I	KEYPAD D1	I	TOP FB	I	LCD DATA5	0	-	-
6	-	KEYPAD D2		I	RV	0	LCD DATA6	0	-	-
7	KEYPAD D3 I		ROW1 FB	I	LCD DATA7	0	-	-		

TABLE 11-8 PIC PIN ASSIGNMENT

PIC and the actuators achieved a one-to-one assignment without using multiplexer because this design only relies on a small number of actuators. For some actuator, like the stepper motor, a multiple-to-one pin assignment is used so that no additional interface circuit is needed to fully control the motor. After all, there are still 7 pins unused and can be used for future expansion in machine functions.

11.2.2.2 STEPPER MOTOR

² I = Input Pin, O = Output Pin, all relative to PIC.

³ DA = Data Available

(A)* = "Horizontal Feedback Low(Pressed)?"

Figure 11-2 shows the basic algorithms of stepper motor control to advance the testing arm to next row. The program remembers which direction the testing arm should go: after reset the testing arm will be at row 1 so direction will be forward; after each inspection, the direction flips. As a result, the testing arm will move from row1 to row4 after reset, and then move from row4 back to row1 in the second run, and so on. This feature saves running time because the testing arm does not need to go back to row1 after every run.

Parameter Y decides the distance testing arm travels each time (one row), and X decides the speed the arm moves. From Appendix, stepper motor need to go 112 steps every time. So parameter SMOTOR_STEPS=Y = $\frac{112}{4}$ = 28. Through repeated testing, X=30ms achieves a balance between speed and testing arm stability (too fast will cause the machine to shank).

11.2.3 INITIALIZATION

Initialization function consists of 4 parts (functions): PIC, hardware, software (variables), and real time clock.

PIC initialization function first disables the global interrupt, and then sets Timer 0 Control bits, port states, and ADC Control one by one.

Hardware initialization reset the machine from whatever position it was left to the default position (acrylic plate at top position and testing arm at row1). The acrylic plate need to be lifted first so it does not hit the closet light while moving horizontally. Horizontal reset is done by call advance row function 4 times. The exact calling to move arm testing more than 3 rows to ensure it will travel back to initial position, where it will be stopped by the feedback.

Software initialization initialize important variables like report #, line #.

Real time clock initialization prompts the user to enter current date. The real time clock will start as soon as real time clock initialization function finish.

11.2.4 A/D CONVERTOR

PIC16F877 has an on-chip 10-bit Analog-to-Digital Convertor (ADC). It has up to 8 analog input pins and has resolution of 10 bits. According to the Mid-Range MCU Family Reference Manual, the absolute error is below 1 LSb (Least Significant bit) – only $\frac{1}{2^{10}} \times 5V \approx 0.005V$. In this design, the sensors are expected to distinguish value difference at 0.1V – far above error; therefore, PIC's built-in ADC is enough to serve the purpose of the project.

This design uses the sum of 4 consecutive A/D readings to reduce fluctuation in reading. Also for simplicity of one byte arithmetic, only the 6 most significant bit $(\frac{1}{2^6} \times 5V \approx 0.08V < 0.1V)$ of the complement of digital result are used in calculation. The complement is used so that 0 corresponding to lowest intensity is more intuitive because the signal feed in has it reversed.

11.3 USER INTERFACE

11.3.1 PROBLEM DEFINITION

The PIC interacts with the user through LCD and keypad. LCD basically holds a multiline text that contains all information for a particular run. From keypad, the user can scroll up/down the multiline text to view the entire report. He/she can also go over logs for past runs and switch between real time and report.

11.3.2 SOLUTIONS/ALGORITHMS

11.3.2.1 LCD INTERFACE

Interfacing with LCD is a standard procedure, and there are numerous codes available online. This design used the sample code "Keypad_LCD", which came with the "PICusb" program loading application. The design modified the delay functions (now it send an instruction every $50\mu s$ instead of $200\mu s$) in the sample code according to the responds time in TS1620-1 datasheet (Appendix) so it works faster.

11.3.2.2 KEYPAD

Keypad layout is defined in Table 11-9. From top left to bottom right, each key corresponds to a hexadecimal number. Pressing a particular key will pull up the Keypad_DA⁴ pin and the corresponding key index will be send to Kyepad_D0~D3 pins.

0h 0000	Real Time Clock	1h 0001	Latest Report	2h 0010	(unused)	3h 0011	(unused)
4h 0100	(unused)	5h 0101	(unused)	6h 0110	(unused)		(unused)
8h 1000	Scroll Up	9h 1001	Last Log	Ah 1010	(unused)	Bh 1011	Stop
Ch 1100	Scroll Down	Dh 1101	Next Log	Eh 1110	(unused)	Fh 11101	Start

TABLE 11-9 KEYPAD LAYOUT, TEXT VERSION

ιΓ

⁴ Data Available

FIGURE 11-3 KEYPAD POLLING ALGORITHMS

Interfacing keypad used a polling algorithm shown in Figure 11-3. The program poll keypad_DA for low after action to prevent the action being executes multiple times if it runs too fast and the user did not release the key after it is done.

11.3.2.3 DISPLAY

Display function first makes up the content to be displayed in RAM, and then send it to LCD. The content to be displayed depends on the phase and line number and is shown in Figure 11-4.

Phase #	Phase	Line #							LC	D D	ispl	ay						
Pilase #	Filase	Lille #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	Hardware Init	0	-	Ν	_	Т	ı	Α	L	-	Z	Α	Т	ı	0	Ν		
U		1																
1	Real Time Clock Init	-																
2	Poal Timo Display	0	Υ	Υ	Υ	Υ	ı	Μ	Μ	-	D	D						
	Real Time Display	1	h	h	••	m	m	:	S	S								
3	Papart Paviaw : No Papart	0	Ν	0		R	Ε	Р	0	R	Т							
5	Report Review : No Report	1																
		0	L	0	G		Ε	Z	Н	R	Υ	:		8	8	/	8	8
		1	S	Т	Α	R	Т	:			h	h	:	m	m	:	s	S
		2	F	1	Z	-	S	Ι	••		h	h	• •	m	m	:	S	S
		3	R	U	Z	Т	Ι	Μ	Е	:					8	8	8	S
		4	Т	0	Т	Α	L	:		8								
4	Report Review	5	Р	Α	S	S	:		8		F	Α	-	L	:		8	
		6	L	Α	Υ	0	כ	Т	••									
		7										Χ	Χ	Χ	Р	Χ		
		8										Χ	F	Х	Х	Х		
		9										Х	Х	Х	Х	Р		
		10										Р	Х	Р	Х	Χ		
5	Inspection Running	-																
6	Inspection Finish	0	Ι	Ν	S	Р	Ε	С	Т	Ι	0	Ν		F	Ι	Ν		
U	inspection rinish	1																

FIGURE 11-4 DISPLAY LAYOUT

Real time clock phase and inspection running phase do not use general display function since they have their own message to display.

11.4 LOGIC

11.4.1 PROBLEM DEFINITION

The machine must be able to decide which position has closet light and whether it is functional based on the sensor readings it collect.

11.4.2 SOLUTIONS/ALGORITHMS

Machine collect 4 groups of sensor readings for each row: background, reading after IR LED is on, reading after 1^{st} press, reading after 2^{nd} press. 3 meaningful tests can be done to the data:

Symbol	Expression	Comment		

C0	Reading after IR LED is on >= THD_IRLED	True=there is closet light
C1	Reading after 1 st press >= THD_3LED	True=the closet light has 3 LEDs
C2	Reading after 2 nd press >= background +THD_BG	True=the closet light does not turn off after 2 nd press

TABLE 11-10 LOGIC CONDITIONS OF SENSOR READINGS

Input			Output				
IRLED test (>=THD)	CL 3LED test (>=THD)	Off-BG test (>=THD)	Error 0=normal 1=error	Functionality 0=fail 1=pass	Existence 0=no 1=yes	Display	Note
C0	C1	C2	R2	R1	R0		
0	0	0	0	0	0	Х	Nominal Response
0	0	1	1	0	1	F	Error (very unlikely: position sensing broken & first activation failed)
0	1	0	1	1	1	Р	Error (position sensing system is likely broken)
0	1	1	1	0	1	F	Error (position sensing system is likely broken)
1	0	0	0	0	1	F	Nominal Response
1	0	1	1	1	1	P	Error (Mechanical Problem – First Activation Failed, Possible only two LEDs)
1	1	0	0	1	1	Р	Nominal Response
1	1	1	0	0	1	F	Nominal Response (possible deactivation fail but light pass)

TABLE 11-11 POSITION/FUNCTIONALITY DETERMINATION

Table 11-11 listed all possible outcomes of logic test result and their corresponding displayed information. Decision making on error cases is based on the assumption that:

- There are far more functional closet light (3LEDs) than broken (2LEDs or less) ones
- Mechanical failure occur more often than a closet light cannot be turned off (because it then should be on at all time)

11.5.1 PROBLEM DEFINITION

One requirement in the RFP was that the machine must be able to know its running time, to the precision that less than 5% error. In addition to that, because this design implemented a "Log System", it was required that the machine should keep a real time clock and write the real time to every entry in the log so the operator could know when did every inspection in the log happened. Many functions in the program also require delay sequence. Their specifications should follow:

Running time (Requirement)

Less than 5% error

Real time clock (Bonus Points)

- Proper incrimination in minute, hour, day
- Can be calibrated
- Run without external power
- Less than 5% error

Being able to properly increment, run without external power, and be calibrated are the basics for any clock. The clock error should be less than 5% so running time calculation can use the clock.

11.5.2 SOLUTIONS/ALGORITHMS

11.5.2.1 RUNNING TIME

It is nature to use the real time clock to calculate running time. The program records the starting time when the user press "Start" and then records the end time when operation finished.

Minute difference = ((end minute - start minute) + 60) MOD 60

"+ 60) MOD 60" is to solve the hour-borrowing problem when end minute < start minute, so the minute difference will always between 0 and 59. This assumption is justified because RFP require the machine never run more than 3 minute.

Running time = (end second - start second) + minute difference * 60

Borrowing minute to calculate second is already included in minute difference.

11.5.2.2 REAL TIME CLOCK

11.5.2.2.1 POSSIBLE SOLUTIONS, ANALYSIS & DECISION MAKING

There are two possible solutions:

- 1. Use external real-time-clock chip DS1307
- 2. Use PIC internal clock and interrupt service to count second

A comparison was draw between these options:

Criteria	External Chip	Internal Clock
Proper incrimination in time	(+++) the chip take care of it	(+) doable, but need to write own functions
Can be calibrated	(+) easy to do (write some values to the chip)	(++) easy to do (change some values in RAM)
Run without external power	(+++) a external button battery will supply the power	(+) it can hold the value as long as PIC has power (powered by battery sets)
Less than 5% error	(+++) precision depends on the crystal, but generally very precise: frequency tolerance 20ppm [14]	(+) precision depends on the PIC crystal and interrupt frequency: 64ppm is the theoretical low limit for 10MHz, practically error is even bigger
Low cost	() additional \$5 is required for the chip, more if a customize PIC board is made	(+++) no additional cost
Little material need to learn	(-) I ² C module	(-) interrupt service, Timer0 module

TABLE 11-12 COMPARISON BETWEEN EXTERNAL CHIP AND INTERNAL CLOCK FOR REAL TIME CLOCK

Both solution can achieve all criteria/requirement set in previous section, so the decision making dominated by the budget. Internal Clock solution is eventually chosen for its low (no) cost (thus more flexible for other part of this design).

11.5.2.2.2 SOLUTION: USE PIC INTERNAL CLOCK AND INTERRUPT SERVICE TO COUNT SECOND

Program run, # of cycles +1

Timer0: certain # of cycles (X) reached?

yes

Interrupt # of interrupt |

yes

Verached?

yes

Verached?

yes

Verached?

yes

Verached?

yes

Verached?

yes

Verached?

Basic idea is shown in Figure 11-5.

FIGURE 11-5 REAL TIME CLOCK ALGORITHMS

To decide X and Y, first need to determine number of cycles in one second:

$$1s = \frac{1,000,000 \mu s}{0.4 \mu s/cycle} = 2,500,000 \text{ cycles} = 26 25 \text{ A0 h cycles}$$

PIC Timer0 Module interrupts every $X=2^n\times 100h$ cycles by design, where "100h" is the max value TMR0 register can hold and " 2^{n} " depends on the prescaler (a shift register) setting, n has value between 0 and 8.

To be most accurate (n=0):

$$Y = \frac{2625A0h}{100h} \approx 2626h = 100110\ 00100110\ b$$

To simplify the program, so that no 2-byte addition and conditional testing happens:

$$100110\ 00100110\ b \approx 10011000\ 100000\ b = 98h \times 40h$$

So 1:40h = 1:64 = 1:26 prescaler rate should be used (X=4000h) and Y=98h.

Accuracy is

$$98h \times 40h \times 100h \times 0.4\mu s = 260000h \times 0.4\mu s = 996,147.2\mu s \rightarrow -0.4\%$$
 error $\rightarrow -1s/260s \rightarrow -13.8s/h$

The clock will run 0.4% faster than real time, far below the 5% tolerance. Running fast is not bad because sometimes other interrupts may cause PIC to omit some Timer0 interrupts.

FIGURE 11-6 REAL TIME CLOCK INCREMENT ALGORITHM

The algorithm for proper increment is straight forward and shown in Figure 11-6. This program treats all month as 30 days for simplicity. This is justified because the batteries for the PIC cannot last for one month.

Calibration is simple: every time when PIC initialize, the program will prompt user to enter current date and time in "yymmdd" and "hhmmss" format, and store the number directly into memory. No further adjustment can be made other than restart the PIC for simplicity.

11.6 LOG

11.6.1 PROBLEM DEFINITION

The machine should hold as many entries as possible (Bonus Points).

Each entry must contain all information needed for a report.

11.6.2 SOLUTION/ALGORITHMS

A report contains following information:

- Log entry #
- Starting time
- End time
- Running time
- Total # of light
- # of light passed
- # of light failed
- Closet light layout

Among them, log entry # is related to the position in RAM of the log; end time can be calculated using start time + running time; Total # of light, # of light passed, and # of light failed can be calculated as long as closet light layout is known. As a result, only the following information needs to be stored:

- Starting time
- Running time
- Closet light layout

A log entry design is shown in Table 11-13.

Addr	+0	+1	+2	+3	+4	+5
bit	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0
+000	runtime:8	year:4 month:4	day:5	hour:5	min:6	sec:6
Addr	+6	+7	+8	+9	+A	+B
bit	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0
+000	layout0 layout1	layout2 layout3	layout4 layout5	layout6 layout7	layout8 layout9	layout10 layout11
Addr	+C	+D	+E	+F		
bit	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0		
+000	layout12 layout13	layout14 layout15	layout16 layout17	layout18 layout19		

TABLE 11-13 LOG ENTRY DESIGN

The log entry is not compressed due to programming difficulty. The log can hold 255s for runtime (enough, since it never greater than 3min=180s), and up to year 2015, enough for the RFP.

Each entry occupies 16 Byte RAM. The log uses all bytes in Bank2 and 3, which gives $\frac{96 \text{ Byte/bank} \times 2 \text{ bank}}{16 \text{ Byte/entry}} = 12 \text{entries}.$

11.7 MISCELLANEOUS

11.7.1 PROGRAM ORIGINATIONS

This program code use multi-file program, comments, constants, and MACROs extensively to increase the readability of the code and thus reduce program error.

11.7.2 RAM LAYOUT

Refer to Appendix for a complete table. 300 Bytes out of 368 Bytes RAM are used in real time, corresponds to 82%.

11.7.3 TEST PROGRAM

A testing program is written for debugging the machine. It take sensor reading every 0.5s (faster than this will make the numbers changing too often to read) and display it onto the LCD. Keypad layout is shown in . Each button directly calls the corresponding machine interface functions.

Testing arm forward (Stepper)	Testing arm backward (Stepper)	
Testing arm down (DC)	Testing arm up (DC)	
Turn on IR LED	Turn off IR LED	

TABLE 11-14KEYPAD LAYOUT FOR TEST PROGRAM

11.8 OVERALL SUBSYSTEM IMPROVEMENT

11.8.1 SAVE CALIBRATION CONSTANTS IN EEPROM

One problem with the calibration of this design is that every time some calibration constants changes (i.e. sensor threshold, stepper speed), it is necessary to modify the code and reload the program. Since the PIC board circuit do not have a programmer module, this task is even more annoying.

To solve this program is to write all the constants in EEPROM, and every time the program initialize, it reads these constants from EEPROM. To expand this idea further, it is also make

the calibration process convenient if a function that prompt user to enter new constant and write them into EEPROM exists.

It is also convenient to have a key designated to switch between the "real" program and the test program.

11.8.2 PROGRAM SHOULD BE WRITTEN IN C

Although writing the entire program in assembly language is a good learning experience for the programmer for better understanding of the microcontroller, there are limitations of using assembly:

- one has to keep track on every aspects of the PIC like stack and memory paging, which consumes a lot of time and easy to make mistakes
- one has to write his/her own helper functions as simple as one byte multiplication
- one has to learn all the instructions for the assembler

Using a C compiler can solve all the above problems. Although the compiled program written in C might be less efficient and larger than that in assembly, it is not so much a problem because this design uses only ¼ of the programming memory and efficiency is not a primary concern.

12 INTEGRATION

After all of the key components of the robots are complete, the integration process begins. For this particular project the integration process took approximately half of the time in our project timeline. In the integration process all the components of the robot is put together, and there will be no clear line drawn between the duties of the three members anymore. A lot of incompatibility was observed in this process. Thus most of the time was spent on debugging.

12.1 HORIZONTAL/ VERTICAL MOVING ARM

Since the horizontal and vertical arm is seen as the most complicated component of the robot, it was the first thing that was integrated onto the frame. The good thing is that by design the horizontal and vertical moving arm was built in one piece thus, there is no need to integrate these two components together any further. Half of the track was placed onto the frame while the other half was placed onto the moving arm. Fitting these two tracks together and the moving arm was successfully integrated onto the frame. Advantage to this integration process was that the moving arm can always be easily taken out of the frame for repairs. However, the track we used was not designed to withstand vertical force so a L was placed in the end of the track to keep the moving arm from lifting up when it's pressing the lights.

12-1 PIECE OF METAL WAS USED TO KEEP THE MACHINE FROM MOVING UP DURING THE LIGHT PRESSING PROCESS

12.2 PIC BOARD AND CIRCUIT BOARD

The PIC and circuit board was fitted perfectly onto the back of the moving arm, we did this cause the majority of the wires that need to be connected are from the circuit board to the

motors and light sensors. Thus by doing so, the amount of wires floating around inside the machine is greatly reduced. However, this also made the moving arm much more complicated. When the gears or the motors require fixing, it is often necessary to take the circuit board off the moving arm. This caused a lot of trouble during the debugging process.

12.3 POWER SUPPLY

Unfortunately there was insufficient space inside the machine for another power supply, as a result we decided to place the power supply outside the robot which extended the size of the robot by quite a bit. Wires are connected from the power supply to the circuit board through a hole in the frame, and some portion of the wires was left floating.

12-2 POWER SUPPLY LOCATED OUTSIDE THE ROBOT

(Refer to Appendix for larger version)

12.4 DRAWER

The drawer was initially just simply placed into the frame without any locking/sliding mechanism. However due to the fact that the drawer was wobbling a lot which caused the position of the lights to vary, a decision was made to use a slide for the drawer as well. When the slide was placed onto the drawer, it has caused the drawer to become a lot tighter, and seemed to work quite well for locking the drawer in place.

12-3 DRAWER PUSHED INTO THE TESTING MACHINE

12.5 ADDITIONAL ITEMS FOR AESTHETIC PURPOSES

This is obviously the last thing that was added onto the machine. First, in order to keep the machine looking professional, we decided to cover the outside of the machine with a black cardboard. The top of the frame was locked into place with two hinges so that it still can be opened for debugging purposes. Then handles were added onto the drawer and the base of the frame, so that it is user friendly and easy to carry around.

12-4 HANDLES MOUNTED ONTO THE MACHINE

13 ACCOMPLISHED SCHEDULE

FIGURE 13-1 ACCOMPLISHED SCHEDULE

In order to finish the project (deliver the prototype) on time, this design used advanced project management software – Microsoft Project 2007. A Gantt chart generated by the software is shown in Figure 13-1. The green bar is the actual progress while the black is what is planned. The subsystem is generally consisting with the plan, while integration part varies a lot due to the inaccurateness in the planning. Some entry initially planned are discard later and new tasks are added in.

We used "divide and conquer" method to consecutively divide the project to smaller pieces until many simplest indivisible tasks. The project is first divided into five main categories (level 2. Level 1 is the project itself):

Category	Definition
Project Management	Including all administrative tasks, such as team formation,
	meetings and reviews.
Microcontroller System	First half of the course. Each member is designated to his
Circuit System	corresponding subsystem.
Electromechanical	
System	
System Integration	Second half of the course. After all subsystems completed, the
	integrated machine will be

TABLE 13-2 SCHEDULE OVERVIEW

13.1 DIVISION OF WORK:

According to the RFP, the Project implementation can be broken into 3 subsystems: microcontroller system, circuit system, and electromechanical system, each accomplishment by one member of the team. This proposal honours the RFP subsystem division but unite all three members in system integration. The work of each member is defined as following:

13.1.1 MICROCONTROLLER MEMBER (XI CHEN)

Microcontroller member shall finish microcontroller programming on his own in the first half of the course. (The course can be divided into 2 parts: first half Week 4 – 8, second half Week 9 – 13) He is also responsible for providing Analog to Digital Converter (ADC) subroutine to circuit member for test. (As described in previous section, this design uses on-PIC ADC for light sensors. After microcontroller member finished the ADC subroutine and circuit member finish circuit prototype, they will join together to do test and debug.) In second half of the course, he is responsible for building power supply for PIC Board, amending and calibrating the Light Sensors, per required by the RFP to help circuit member.

13.1.2 CIRCUIT MEMBER (SIDA WANG)

Circuit member is responsible for construct all sensors and actuators and their corresponding machine interface. Motor drivers and feedback circuits are expected to be finish before reading

week for electromechanical member testing his motors. In the second half of the course, microcontroller member will take over the work to calibrate and repair PIC Board Power and Light Sensors, the rest is still the responsibility of circuit member.

13.1.3 ELECTROMECHANICAL MEMBER (TIANLE DAI)

Electromechanical member is responsible for constructing the structure and assigning locations for sensors and circuits, as well as building driving and transmission system, in the first half of the course. In the second half, he is responsible for assembling sensors to the frame and repair/rebuild any structural parts damaged in the integration stage.

13.2 REVIEW MECHANISM

Module	Definition
Team Formation	Finding members and form the team. Already done.
Statement of Work	Each member chooses subsystem. Already done.
Proposal Write up	The time designated to finish the writing part of this proposal.
Weekly Group Meetings	A weekly group meeting on every Tuesday Afternoon. The team suppose to update the progress, prepare for the coming lab and review the task assignment for following two weeks.
Weekly Update with TA	During the lab session on every Wednesday, the team will meet with TA, update progress, ask questions encountered and discuss any changes in plan. It also includes a milestone to confirm the schedule for the second half of the course.

TABLE 13-3 SCHEDULE REVIEW

We are aware of the precision limitation (further the time away from now, less likely we are going to plan the tasks precisely) of our project plan, due to less experience and conflicts with other subjects; therefore, the schedule must be constantly under review. According to [2], we decide our planning limitation would be around 2 weeks. As a result, every week we can going to have a group meeting (Tuesday) first and then meet TA (Wednesday) to update progress and review the plans for the following two weeks. For the same reason, predicting the specific tasks (level 4) of system integration stage would be unrealistic. A milestone for detailing out the specific tasks is set 2 weeks before system integration starts.

13.3 TASK ASSIGNMENT

13.3.1 MICROCONTROLLER SYSTEM CATEGORY:

Module	Definition
Conceptual Design	Learning the language, Flowchart, Module Division, and General
	Pseudo Code.
Machine Interface	The communication between PIC and circuit, such as sensor

	readings, control signals and feedbacks.
User Interface	The communication between PIC and operator, through
	Keypad and LCD.
Data Processing	The subroutines for storing sensor readings and use them to
	determine closet light functionalities. RAM structure is also
	part of this module.
Analog to Digital	The subroutines to convert analog sensor input to digital
	values.
Timing System	Real time clock and timing mechanism.
Auxiliary Functions	Any helper functions required for major tasks, such as
	multiplication and division functions.
Log System	The subroutines for storing and retrieving data, including data
	compression formatting.
Subsystem Integration	Writing initialization and "main" program, then putting all
	subroutines together and debug.

TABLE 13-4 SCHEDULE PIC

For every module (Level 3), such as Machine Interface, we follow the Waterfall Design Model (Very commonly used in software engineering): Definition – Design – Implementation – Test. The following diagram is an example:

ID		Task Name	Duration
	0		
40		Machine Interface	18 days
41	/	Pin Assignment	0.5 days
42	<u> </u>	Device Addressing	0.5 days
43		Pseudo Code	1 day
44		Implementation	3.25 days
51		Debug	1.5 days

TABLE 13-5PIC SCHEDULE CYCLE

Similar development ideas also apply to circuit system and electromechanical system.

13.3.2 CIRCUIT SYSTEM CATEGORY:

Module	Definition
Experiments and	Sensitivity and reliability test for sensors, tradeoffs analysis,
Preliminary Decision	choosing sensors, and conceptual design for circuits.
Making	
LED Illumination Circuit	The circuit (on prototype board) that translate digital control
	to the on/off of the Infrared LED.
Photo Sensor Circuit	The circuit that regulate light sensor output voltage (which
	feed into PIC).
Motor Control Circuit	The circuit that control stepped motor, as well as DC Vertical
	Motor and its feedback.
Other Foreseeable Tasks	Other circuit that does not fall into above modules, such as
	power regulation and protection mechanism.

|--|

TABLE 13-6 SCHEDULE CIRCUIT

13.3.3 ELECTROMECHANICALLY SYSTEM CATEGORY:

Module	Definition
Conceptual Design	Equipment/Requirement Learning, machine Shop Tutorial, choosing motors and pressing mechanism, preliminary
	drawings.
Frame	Machine Structure, including drawers.
Horizontal Motion	The driving and transmission system that moves sensors row
System	by row.
Vertical Motion System	The driving and transmission system that activates/deactivates
	closet light by moving up and down.
Subsystem Integration	Assembling motion systems onto the structure and testing.

TABLE 13-7 SCHEDULE ELECTROMECHANICAL

13.3.4 SYSTEM INTEGRATION CATEGORY:

Module	Definition
Physical Integration	Assembling all three subsystems together.
Testing & Debug & Repair	Test the machine as a whole for functionality, make any
	adjustment and repair ware-out components.

TABLE 13-8 SCHEDULE INTEGRATION

No breaking further to level 4 tasks because of the plan limitations described previously. A milestone is set on week 6 to guarantee level 4 tasks to be reviewed with TA.

13.4 MILESTONES (LEVEL2)

12 level 2 milestones are set to keep track of the progress: Weekly milestones for TA to check the progress, including all major marking events. Week 7 is missing because it is the reading week.

Milestones	Definition
Submission of Teams	Already done.
Submission of Design	This proposal.
Proposal	
Week 4 Milestone	User interface (microcontroller) and frame element
	(electromechanical) are expected to be finished by the end of
	the lab.
Individual Evaluation 1	As specified in course notes: microcontroller: user interface, all
(Week 5)	pseudo code; circuit: sensor circuits, detailed voltage and
	current analysis; electromechanical: frame, one actuation
	mechanism.
Interim Notebook	Microcontroller: machine interface, analog to digital module;
Evaluation & Week 6	circuit: all circuits on prototype board with power regulation
Milestone	and protection mechanism; electromechanical: vertical motion

	system.
Individual Evaluation 2	All subsystems are expected to be finished at this point.
(Week 8)	
Week 9 Milestone	System is expected to be physically integrated.
Team Evaluation 1 (Week	System is expected to be "more or less" functional.
10)	
Week 11 Milestone	System is expected to be functional, except some further
	calibration.
Team Evaluation 2 (Week	System is expected to be fully functional.
12)	
Week 13 Milestone	All supporting materials like documents are expected to be
	ready for demonstration.
Public Demonstration	Show the machine to the public.
(Week 14)	

TABLE 13-9 SCHEDULE MILESTONES

13.5 CRITICAL PATH ANALYSIS (PERT)

A PERT chart (Network Diagram in Microsoft Project) is included in the appendix. Due to the fact that the project has so many tasks, the PERT chart is too large to print on one single page and the font is too small to see. The following diagram has only the critical indicated and it should serve our purpose equally well as a PERT chart:

FIGURE 13-2 CRITICAL PATH GANTT CHART

From the critical path Gantt chart, analog-to-digital module appears to be the most critical task of the project. It can be understood that because both microcontroller member and circuit member need to cooperate to finish the task. After ADC module, circuit soldering is the critical path. Be aware of the 14 day duration estimation since it may indicate some prediction limitation as discussed previously. As a result, these critical tasks need to be monitored closely during reviews; moreover, taking as counter measurement, the "division of work" do state that after reading week, the circuit member have some extra time to finish the soldering and microcontroller member takes care of the ADC module, as part of physical integration.

14.1 TEST PROCEDURE

Plug external power source if previously not plugged
Open the drawer
Load egg tray on the fixture on the drawer
Make sure all closet lights are more or less facing up
Close the drawer slowly
Press "Start" button
Wait for the machine to finish test
Press page up/down to retrieve test results after test is complete

14.2 CHANGE PIC BOARD BATTERY

Unplug external power source
Turn off internal battery
Replace the used batteries by 6 new AA batteries
Plug external power source
Turn on internal battery
Wait for hardware to reset
Input current time
Turn off external power source if needed

14-1, INTERFACE

15 SYSTEM IMPROVEMENT SUGGESTIONS

15.1 ISSUES WITH THE CURRENT DESIGN

The wood that was used to build the frame of the robot is very thin and will buckle at very low compression force. Throughout the testing process, it was observed that there are a lot of vibrations that causes the robot to be unstable. A possible to the original frame is to use a heavier and thicker wood. This will provide more support to the moving arm and damp the vibrations cause from it. However if we were to change the frame to thicker wood, this would mean more money spent on the wood and also more weight will be added onto the robot.

In our design both the horizontal and vertical motion is being put together into one moving arm. This is later on found to be very complex and difficult to debug. A possible alternative to this would be allocating the horizontal movement on to the frame. So instead of the arm moving, we will have the egg tray moving into the machine. This will also reduce the complexity of the moving arm, and allow the debugging process to go more smoothly. However, the idea that the egg tray will move into the robot automatically also means that the egg tray needs to be moved out automatically. Thus this will cause the overall run time to increase by 10 seconds.

Currently in our design, the circuit board is being attached onto the back of the moving arm, and this has caused some problems when the moving arm is being repaired. Also in our design, the complexity of the moving arm is far greater than the complexity of the frame and all other parts of the machine. In order to offset this imbalance, it might be a good idea to put the circuit board on the frame instead. However this will cause more wires to be floating around inside the machine connecting the circuit board to the motors which can be hazardous.

In the current design during the testing process, it was found that our machine still has trouble determining the difference between lights with 1 LED on and lights with 3 LED on. This shows that the calibration on the threshold of the light sensors is insufficient. The machine might be too sensitive to the change in environment and requires more calibration.

Another possible design that was considered was to have 20 light sensors to press all the lights at once. This idea will significantly simplify the electromechanical portion of the project in exchange for the circuit portion. Also the run time of the checking process will also be reduced significantly, since the machine will only be required to press up and down. However the downside of doing this would be the complexity of the circuit part. Considering how there will be 20 light sensors that will require calibration, there is a good chance that something will go wrong in the circuits. Also, this would cause the reliability of the machine to decrease significantly.

15.2 IMPROVEMENT SUGGESTIONS

Many things could be improved, the following is identified.

- 1. The huge base could have been eliminated if we used thicker boards
- 2. Power supply could be hidden
- 3. Metal gear should be used for heavily loaded transmissions
- 4. Stranded wires should be used for ALL inter-board components
- 5. Very consistent and uniform colour coding should be applied
- 6. Sensors can be calibrated to a more optimized fashion

- 7. The wood used to build the frame was too thin, should be replaced by more durable wood.
- 8. Areas of improvement of the PIC

Please refer to the respective sections of subsystems for more detail since system improvements is mostly dependent on its subsystems.

16 CONCLUSION

Simplex is a robotic prototype that was designed and built over the past 4 months to solve the closet light inspection problem. The closet light inspection problem calls for a machine that can quickly and reliably determine and display the functionality and position of closet lights placed on an egg tray.

Simplex takes a tray of closet lights. It inspects the tray row-by-row. It turns the lights on and off using an arm that cover all possible positions. Both functionality and position sensors are implemented using the same 5 phototransistors. It takes about 20 seconds to load the tray and it has a user-friendly interface. The microcontroller (PIC16F877), the circuits, the sensors and two motors are all placed on a testing arm that moves row-by-row. The horizontal motion of the testing arm is powered by a stepper motor for accuracy and the vertical motion of the testing arm is powered by a DC motor for power.

Simplex has the following distinctive features,

- Simple circuit system, no logic elements used, no op-amps used
- Customized PIC proto64 board
- Single phototransistor for both position by infrared reflection and functionality detection by intensity threshold
- Continuous operation despite row-by-row design (i.e. the starting position of the testing arm for the second run is the end position of the first run)
- Hold up to 12 logs with date and time accurate to seconds
- PIC is powered by 6 x 1.5V battery
- Isolated testing environment, black box. Operates under any external lighting condition
- Intuitive display of results in the form of a matrix,

XXXXP XXXXX XXFXX XXXPX

where P stands for pass, X for empty, F for fail.

The finished machine performed fairly well during the demo. The machine correctly determined the positions of 5 out of 5 lights and correctly determined the functionalities of 4 out of 5 lights in each of the two trials in 40 seconds and 30 seconds. The machine is fairly reliable since it went through about 15 successful full runs and over 100 test runs before the demo.

However, Simplex is not perfect; it often passes lights that have only one or two bright LED(s). This is due the value of sensor threshold, a balance between the risk of failing closet lights with 3 LEDs and the risk of passing lights with less than 3 LED(s) need to be carefully studied in order to improve the results. Important ways by which the machine can be improved was discussed in suggestions for improvement sections.

Simplex expresses our vision of creating a simple machine that solves a complex problem. However, even though we went for the simplest solution we can conceive, various complications still arise in the design process and that's why we chose a complicated font for it.

All in all, Simplex is quite a success in our opinion despite the many ups and downs we went through with it and the learning experience should benefit our future careers in engineering.

17 REFERENCE

- [1] M.R. Emami, Engineering Design. Toronto: University of Toronto
- [2] P. E. Harris, Planning and Scheduling Using Microsoft Office Project 2007: Including Microsoft Project 2000 to 2003. Eastwood Harris Pty Ltd, 2007.
- [3] M.R. Emami, PIC DevBugger Manual. 2007
- [4] Microchip Technology Inc, PIC16F87X Data Sheet. 2001
- [5] Microchip Technology Inc, PICmicro™ Mid-Range MCU Family Reference Manual. 1997
- [6] Wikipedia, The Free Encyclopedia, "Quality Control" [online document], 27 January 2008, http://en.wikipedia.org/w/index.php?title=Special:Cite&page=Quality_control&id=1874 15113
- [7] Wikipedia, The Free Encyclopedia, "Waterfall model" [online document], 27 January 2008, http://en.wikipedia.org/wiki/Waterfall model
- [8] Wikipedia, The Free Encyclopedia, "Intel Core 2" [online document], 27 January 2008, http://en.wikipedia.org/wiki/Core 2 duo
- [9] "Lifemax Limited About Us" [online document] http://www.lifemaxuk.co.uk/cgibin/showpage.pl
- [10]Some types of Gear" [online document], 13 April 2008, http://www.fi.edu/time/Journey/Time/Escapements/geartypes.html
- [11] "MECHANICAL MOVEMENTS POWERS AND DEVICES" [online document], 13 April 2008, http://knowledgepublications.com/history/mechanical_movements_detail.htm
- [12] "Press screw assembly ACME screw shafts in sizes 1" 1 1/8" 1 1/4"" [online document], 13 April 2008, http://www.applejournal.com/correll/const.htm
- [13] "Hardware online" [online document], 13 April 2008, http://elraco.com.au/
- [14]APPLICATION NOTE 58: Crystal Considerations with Dallas Real-Time Clocks (RTCs) [online document], 13 April 2008,

http://www.maxim-ic.com/appnotes.cfm/an_pk/58

18 TABLE OF FIGURES AND TABLES

18.1 TABLE OF FIGURES

Figure 2-1, machine overview	3
Figure 2-2, with the top lid open	
Figure 2-3, top view with the lid open	
Figure 2-4 side view	
Figure 2-5 back view	
Figure 2-6 bottom view	8
Figure 2-7 top view	8
Figure 2-8 front view	9
Figure 2-9, testing arm in the machine	9
Figure 2-10, circuit and control system	10
Figure 2-11, Stepper gear system for horizontal motion	
Figure 2-12 DC motor for vertical motion	11
Figure 2-13 adjustable vertical motion pinion and rack viewed from top	11
Figure 2-14, Control panel instruction	
Figure 2-15, control panel	12
4-1 Rack and pinion system	15
4-2 Acme screw[12]	16
4-3 Rack and pinion applied to vertical motion[11]	16
7-1 Drawer used to mount the egg tray	
7-2 Light sensors and infra red LEDS	25
7-3 Top view of testing arm, horizontal motion	
7-4 Whole testing arm integrated in machine	26
7-5 X-ray view of testing arm integrated in the machine	27
7-6 Vertical rack and pinion system, rack is mounted using a slide	27
7-7 Full extension drawer slide, used to resist force in all directions [13]	28
7-8 Gear mounted to the shaft, will be fixed using glue gun	28
7-9 gear ration of the vertical motor, DC to shaft to rack	29
Figure 10-1, The decision making tree for sensors	32
Figure 10-2, the centralized power hub, actual picture on the left and schematics on the	ne left
	36
Figure 10-3, Ribbon cable and connectors	36
Figure 10-4, The entire circuit and control system	37
Figure 10-6, Functionality sensor	38
Figure 10-5, infrared led and tube for isolation	38
Figure 10-7, proposed sensor design	39
Figure 10-8, sensor design	40
Figure 10-9, infrared illumination system	42
Figure 10-10, sensor driver schematics	
Figure 10-11, The implementation of the sensor driver	
Figure 10-12, schematics for motor driver (Appendix c3, L293D motor driver)	44
Figure 10-13, Our implementation	44
Figure 10-14, stepping sequences	45

Figure 10-15 schematic DC motor driver	
Figure 10-16, Our solution to DC motor driver	46
Figure 10-17, feedback sensor	46
Figure 10-18, angular sensitivity	47
Figure 11-1 PIC Program Flow Chart	50
Figure 11-2 Stepper Motor "advance row" Algorithms	55
Figure 11-3 Keypad polling algorithms	57
Figure 11-4 DISPLAY LAYOUT	58
Figure 11-5 Real Time Clock Algorithms	62
Figure 11-6 Real Time Clock Increment Algorithm	64
12-1 Piece of metal was used to keep the machine from moving up during the light	pressing
process	68
12-2 Power supply located outside the robot	69
12-3 Drawer pushed into the testing machine	70
12-4 Handles mounted onto the machine	70
Figure 13-1 ACCOMPLISHED SCHEDULE	
Figure 13-2 Critical path Gantt chart	
14-1, Interface	78
10.2 TABLE OF TABLES	
18.2 TABLE OF TABLES	
Table 6-1 Budget	22
Table 11-1 PIC phase of operation	
Table 11-2 Machine Interface: Position Sensor	
Table 11-3 Machine Interface: Light Sensor	
Table 11-4 Machine Interface: Vertical DC Motor	
Table 11-5 Machine Interface: Vertical Feedback	
Table 11-6 Machine Interface: Stepper Motor	
Table 11-7 Machine Interface: Horizontal Feedback	
Table 11-8 PIC Pin Assignment	
Table 11-9 Keypad layout, text version	
Table 11-10 logic conditions of sensor readings	
Table 11-11 Position/functionality determination	
Table 11-12 Comparison between External chip and internal clock for Real Time Cl	
Table 11-13 Log entry design	
Table 11-14keypad layout for test program	
Table 13-2 schedule overview	
Table 13-1 Gantt Chart Schedule, Outline Level 3	
Table 13-3 schedule review	
Table 13-4 schedule PIC	
Table 13-5PIC schedule cycle	
Table 13-6 schedule circuit	
Table 13-7 schedule electromechanical	
Table 13-8 schedule integration	
Table 13-9 schedule milestones	

APPENDIX CONTENTS

ELECTTROMECH APPENDIX

- 1, Zheng DC Gearhead Motor
- 2, PM55L-048 Stepper Motor
- 3, Determining Torque to Current Ratio
- 4, Power Estimation
- 5, Drawings

CIRCUIT APPENDIX

- 1, LTE5208 Infrared emitter
- 2, PT481 Phototransistor
- 3, L293d quad H-bridge driver
- 4, TIP142
- 5, TIP147
- 6, IPS-1806 180W Power Supply
- 7, Determining Resistor Value

PIC APPENDIX

- 1, RAM Layout
- 2, Stepper Motor Driving Calculations
- 3, PIC16F877 (A/D Section)
- 4, MM74C922N Keypad Decoder
- 5, PIC proto64 Board
- 6, KA7805 Power Regulator
- 7, Keypad
- 8, TS1620-1 LCD
- 9, DS 1307 Realtime Clock Chip
- 10, Code

ZHENG D.C MOTOR SPECIFICATIONS

Shaft Speed		50 RPM		
Rated Voltage		12.0 V		
Operating Voltage Range		4.5 – 18 V		
Operating Current	No load	70 mA		
	Full load	1380 mA		
Stall Torque		28 kg/inch		
Average Power Draw		8 W		

Minebea Motor Manufacturing Corporation eMINEBEA.COM

Reference Characteristics

Motor Size	PM55L-048			
Number of Steps per Rotation	48(7.5°/Step)			
Drive Method	2-2 PHASE			
Drive Circuit	UNIPOLAR CONST. VOLT.	BIPOLAR CHOPPER		
Drive Voltage	24[V]	24[V]		
Current/Phase	-0.00000	800[mA]		
Coll Resistance/Phase	30[Ω]	5.5[Ω]		
Drive IC	2SC3346	UDN2916B-V		
Magnet Material	Ferrite plastic magnet (MSPL) Polar anisotropy ferrite sintered magnet (MS70) Nd-Fe-B bonded magnet (MS70)			
Insulation Resistance	100M[Ω] MIN			
Dielectric Strength	AC 500[V] 1[min]			
Class of Insulation	CLASS E			
Operating Temp.	-10[°C] ~ 50[°C]			
Storage Temp.	-30[°C] ~ 80[°C]			
Operating Hum.	20[%] RH ~ 90[%] RH			

Applications

OA Equipment: Printers / Scanners

Industrial equipment : Flow control valves

Toys: Slot machines

Home automation appliances : Sewing machines

Torque Characteristics

PM55L-048 UNI-CONST. V (at 24[V],30[Ω])

PM55L-048 BI-CHOPPER (at $24[V], 5.5[\Omega], 800[mA]$)

These torque values are reference only. Heat radiation conditions and temperature rise effect by duty are different on each equipment, therefore please select motors after considering the heat conditions in the actual equipment.

Dimensions

If you would like to know this Dimensions(D,S,W,O), Please see Standard Dimensions in our Home Page.

By measurements, we determine Is, R and frequencies as follows for the 100rpm motor used.

$$| I| := 0.07; I2 := 0.30; \quad \omega 1 := \frac{2 \cdot \pi \cdot 100}{60}; \quad \omega 2 := \frac{2 \cdot \pi \cdot 25}{19}; V := 11.25; R := 6;$$

$$| I| := 0.07$$

$$R := 18$$

$$= \frac{solve(II \cdot V = II^2 \cdot R + \tau 1 \cdot \omega 1,)}{II};$$

$$= \frac{Ratio1 := 2.089462487}{Ratio2 := \frac{solve(I2 \cdot V = I2^2 \cdot R + \tau 2 \cdot \omega 2, \tau 2)}{I2};$$

$$= \frac{Ratio2 := 2.205778584}{Ratio2 := 2.205778584}$$
(4)

> Ratio2 :=
$$\frac{solve(12 \cdot V = I2^2 \cdot R + \tau 2 \cdot \omega 2, \tau 2)}{I2};$$

$$Ratio2 := 2.205778584$$
 (6)

$$P = \frac{V^{2}}{R}; \ Pmax = \frac{V^{2}}{Rmax};$$

$$P = \frac{V^{2}}{R}$$

$$Pmax = \frac{V^{2}}{Rmax}$$
(1)
$$StepperPower := \frac{2 \cdot 11.25^{2}}{30};$$

$$StepperPower := 8.437500000$$
(2)
$$DCPower := \frac{11.25^{2}}{(6+12)};$$

$$DCPower := 7.031250000$$
(3)
$$SensorPower := 1.125$$
(4)
$$SensorPower := 1.125$$
(5)
$$TotalPower := StepperPower + DCPower + SensorPower;$$

$$TotalPower := 16.59375000$$
(5)
$$TotalCurrent := \frac{11.25}{30} + \frac{11.25}{6+12} + 0.1;$$

$$TotalCurrent := 1.100000000$$
(6)

Note that this is much smaller than the 180W limit of the power supply. The peak current drawn is about 1A, this should be considered safe.

CIRCUIT APPENDIX

- 1, LTE5208 Infrared emitter
- 2, PT481 Phototransistor
- 3, L293d quad H-bridge driver
- 4, TIP142
- 5, TIP147
- 6, IPS-1806 180W Power Supply
- 7, Determining Resistor Value

LITEON ELECTRONICS, INC.

Property of Lite-On Only

FEATURES

- * SELECTED TO SPECIFIC ON-LINE INTENSITY AND RADIANT INTENSITY RANGES
- * LOW COST MINIATURE PLASTIC END LOOKING PACKAGE
- * MECHANICALLY AND SPECTRALLY MATCHED TO THE LTR-3208 SERIES OF **PHOTOTRANSISTOR**
- * CLEAR TRANSPARENT COLOR PACKAGE

PACKAGE DIMENSIONS

NOTES:

- 1. All dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25mm(.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.5mm(.059") max.
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice.

Part No.: LTE-5208A DATA SHEET 3 Page: of

LITEON ELECTRONICS, INC.

Property of Lite-On Only

ABSOLUTE MAXIMUM RATINGS AT TA=25°C

PARAMETER	MAXIMUM RATING	UNIT	
Power Dissipation	150	mW	
Peak Forward Current (300pps, 10 μ s pulse)	2 A		
Continuous Forward Current	100 mA		
Reverse Voltage	5	V	
Operating Temperature Range	-40°C to +85°C		
Storage Temperature Range	-55°C to + 100°C		
Lead Soldering Temperature [1.6mm(.063") From Body]	260°C for 5 Seconds		

ELECTRICAL OPTICAL CHARACTERISTICS AT TA=25°C

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION	BIN NO.
Aperture Radiant Incidence	Ee	0.44		0.96	mW/cm²	$I_F = 20 \text{mA}$	BIN A
		0.64		1.20			BIN B
		0.80		1.68			BIN C
		1.12					BIN D
Radiant Intensity	$I_{\rm E}$	3.31		7.22	mW/sr	I _F = 20mA	BIN A
		4.81		9.02			BIN B
		6.02		12.63			BIN C
		8.42					BIN D
Peak Emission Wavelength	$\lambda_{_{Peak}}$		940		nm	$I_F = 20 \text{mA}$	
Spectral Line Half-Width	Δλ		50		nm	$I_F = 20 \text{mA}$	
Forward Voltage	$V_{\scriptscriptstyle F}$		1.2	1.6	V	$I_F = 20mA$	
Reverse Current	I_R			100	μ A	$V_R = 5V$	
Viewing Angle (See FIG.6)	$2 heta_{_{1/2}}$		40		deg.		

2 of 3 Part No.: LTE-5208A DATA SHEET Page:

TYPICAL ELECTRICAL / OPTICAL CHARACTERISTICS CURVES

(25°C Ambient Temperature Unless Otherwise Noted)

FIG.1 SPECTRAL DISTRIBUTION

FIG.3 FORWARD CURRENT VS. FORWARD VOLTAGE

FIG.5 RELATIVE RADIANT INTENSITY VS. FORWARD CURRENT

FIG.2 FORWARD CURRENT VS. AMBIENT TEMPERATURE

FIG.4 RELATIVE RADIANT INTENSITY VS. AMBIENT TEMPERATURE

FIG.6 RADIATION DIAGRAM

Part No.: LTE-5208A DATA SHEET Page: 3 of 3

PT481/PT481F/ PT483F1

■ Features

1. Epoxy resin package

2. Narrow acceptance ($\Delta\theta$: Typ. \pm 13°)

3. High sensitivity

(I_C : MIN. 1.5mA at E $_e$ = 0.1mW/cm 2) :

PT481/PT483F1

(I_C : MIN. 0.9mA at E $_e$ = 0.1mW/cm 2):

PT481F

4. Visible light cut-off type : PT481F/PT483F1

5. Long lead pin type: PT483F1

■ Applications

- 1. VCRs, cassette tape recorders
- 2. Floppy disk drives
- 3. Optoelectronic switches
- 4. Automatic stroboscopes

■ Absolute Maximum Ratings $(Ta = 25^{\circ}C)$

Parameter	Symbol	Rating	Unit
Collector-emitter voltage	V CEO	35	V
Emitter-collector voltage	V ECO	6	V
Collector current	Ic	50	mA
Collector power dissipation	P _C	75	mW
Operating temperature	T opr	- 25 to +85	°C
Storage temperature	T stg	- 40 to +85	°C
*1Soldering temperature	T sol	260	°C

^{*1} For 3 seconds at the position of 1.4mm from the bottom face of resin package

Narrow Acceptance High Sensitivity Phototransistor

■ Outline Dimensions

(Unit:mm)

■ Electro-optical Characteristics

 $(Ta = 25^{\circ}C)$

Paramet	Parameter		Conditions	MIN.	TYP.	MAX.	Unit
*2.0.11	PT481			1.5	10	25	mA
*2 Collector current	PT481F	I_{C}	$V_{CE} = 2V$ $E_e = 0.1 \text{ mW/cm}^2$	0.9	-	27	mA
Current	PT483F1		Le - 0.1 m w/cm	1.5	-	4.0	mA
Collector dark current	Collector dark current		$V_{CE} = 10V, E_e = 0$	-	-	10-6	A
*2 Collector-emitter satura	*2 Collector-emitter saturation voltage		$I_c = 2.5 \text{mA}$ $E_e = 1 \text{mW/cm}^2$	-	0.7	1.0	V
Peak emission	Peak emission PT481 wavelength PT481F/PT483F1			-	800	-	nm
wavelength			-	-	860	-	nm
D	Rise time	tr	$V_{CE} = 2V, I_{C} = 10mA$	-	80	-	μs
Response time	Fall time	t_{f}	$R_L = 100\Omega$	-	70	-	μs

^{*2} E $_{\rm e}\,$: Irradiance by CIE standard light source A $\,$ (tungsten lamp)

Fig. 1 Collector Power Dissipation vs.
Ambient Temperature

Fig. 3 Relative Collector Current vs.
Ambient Temperature

Fig. 2 Collector Dark Current vs. Ambient Temperature

Fig.4-a Collector Current vs. Irradiance

Fig.4-b Collector Current vs. Irradiance (PT481F/PT483F1)

Fig. 7 Response Time vs. Load Resistance

Fig.5-a Collector Current vs.
Collector-emitter Voltage

Fig. 6 Spectral Sensitivity

Test Circuit for Response Time

Fig. 8 Sensitivity Diagram

Angular displacement θ

Fig.9-b Collector-emitter Saturation

• Please refer to the chapter "Precautions for Use."

Fig.9-a Collector-emitter Saturation

Fig.10 Relative Output vs. Distance

- Featuring Unitrode L293 and L293D
 Products Now From Texas Instruments
- Wide Supply-Voltage Range: 4.5 V to 36 V
- Separate Input-Logic Supply
- Internal ESD Protection
- Thermal Shutdown
- High-Noise-Immunity Inputs
- Functional Replacements for SGS L293 and SGS L293D
- Output Current 1 A Per Channel (600 mA for L293D)
- Peak Output Current 2 A Per Channel (1.2 A for L293D)
- Output Clamp Diodes for Inductive Transient Suppression (L293D)

description

The L293 and L293D are quadruple high-current half-H drivers. The L293 is designed to provide bidirectional drive currents of up to 1 A at voltages from 4.5 V to 36 V. The L293D is designed to provide bidirectional drive currents of up to 600-mA at voltages from 4.5 V to 36 V. Both devices are designed to drive inductive loads such as relays, solenoids, dc and bipolar stepping motors, as well as other high-current/high-voltage loads in positive-supply applications.

All inputs are TTL compatible. Each output is a complete totem-pole drive circuit, with a Darlington transistor sink and a pseudo-Darlington source. Drivers are enabled in pairs, with drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN. When an enable input is high, the associated drivers are enabled and their outputs are active and in phase with their inputs. When the enable input is low, those drivers are disabled and their outputs are off and in the high-impedance state. With the proper data inputs, each pair of drivers forms a full-H (or bridge) reversible drive suitable for solenoid or motor applications.

On the L293, external high-speed output clamp diodes should be used for inductive transient suppression.

A V_{CC1} terminal, separate from V_{CC2}, is provided for the logic inputs to minimize device power dissipation.

The L293and L293D are characterized for operation from 0°C to 70°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

block diagram

NOTE: Output diodes are internal in L293D.

TEXAS INSTRUMENTS AVAILABLE OPTIONS

	PACKAGE
TA	PLASTIC DIP (NE)
0°C to 70°C	L293NE L293DNE

Unitrode Products from Texas Instruments AVAILABLE OPTIONS

	PACKAGED DEVICES				
TA	SMALL OUTLINE (DWP)	PLASTIC DIP (N)			
0°C to 70°C	L293DWP L293DDWP	L293N L293DN			

The DWP package is available taped and reeled. Add the suffix TR to device type (e.g., L293DWPTR).

FUNCTION TABLE (each driver)

INP	итѕ†	OUTPUT
Α	EN	Y
Н	Н	Н
L	Н	L
X	L	Z

H = high level, L = low level, X = irrelevant, Z = high impedance (off)

logic diagram

schematics of inputs and outputs (L293)

[†] In the thermal shutdown mode, the output is in the high-impedance state, regardless of the input levels.

schematics of inputs and outputs (L293D)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, V _{CC1} (see Note 1)	36 V
Output supply voltage, V _{CC2}	
Input voltage, V _I	7 V
Output voltage range, V _O	$-3 \text{ V to V}_{CC2} + 3 \text{ V}$
Peak output current, I _O (nonrepetitive, t ≤ 5 ms): L293	±2 A
Peak output current, I _O (nonrepetitive, t ≤ 100 μs): L293D	±1.2 A
Continuous output current, IO: L293	±1 A
Continuous output current, IO: L293D	±600 mA
Continuous total dissipation at (or below) 25°C free-air temperature (see Notes 2 and 3)	2075 mW
Continuous total dissipation at 80°C case temperature (see Note 3)	5000 mW
Maximum junction temperature, T _J	150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to the network ground terminal.
 - 2. For operation above 25°C free-air temperature, derate linearly at the rate of 16.6 mW/°C.
 - 3. For operation above 25°C case temperature, derate linearly at the rate of 71.4 mW/°C. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

			MIN	MAX	UNIT
	Supply voltage V _C	CC1	4.5	7	V
	V _C	CC2	V _{CC1}	36	٧
VIH	High level input voltage	CC1 ≤ 7 V	2.3	V _{CC1}	V
	High-level input voltage	CC1 ≥ 7 V	2.3	7	V
V _{IL} Low-level output voltage					V
TA	Operating free-air temperature		0	70	°C

[†] The algebraic convention, in which the least positive (most negative) designated minimum, is used in this data sheet for logic voltage levels.

electrical characteristics, V_{CC1} = 5 V, V_{CC2} = 24 V, T_A = 25°C

	PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
VOH	OH High-level output voltage			= -1 A = -0.6 A	V _{CC2} -1.8	V _{CC2} -1.4		V
VOL	OL Low-level output voltage		L293: I _{OL} = 1 A L293D: I _{OL} = 0.6 A			1.2	1.8	V
Vокн	High-level output clamp vo	oltage	L293D: I _{OK} :	=-0.6 A		V _{CC2} + 1.3		V
VOKL	Low-level output clamp vo	ltage	L293D: I _{OK} :	L293D: I _{OK} = 0.6 A		1.3		V
I	High lovel input current	Α	V. 7V			0.2	100	
l 'IH	I _{IH} High-level input current EN		V _I = 7 V			0.2	10	μΑ
I	Low lovel input ourrent	А	\/. O			-3	-10	^
¹ <u> </u>	Low-level input current	EN	V _I = 0			-2	-100	μΑ
				All outputs at high level		13	22	
ICC1	Logic supply current		IO = 0	All outputs at low level		35	60	mA
		All outputs a	All outputs at high impedance		8	24		
				All outputs at high level		14	24	
ICC2	ICC2 Output supply current		IO = 0	All outputs at low level		2	6	mA
				All outputs at high impedance		2	4	

switching characteristics, V_{CC1} = 5 V, V_{CC2} = 24 V, T_A = 25°C

	PARAMETER	TEST CONDITIONS	L293N	E, L293	DNE	UNIT
	PARAMETER	TEST CONDITIONS	MIN TYP MAX			UNII
^t PLH	Propagation delay time, low-to-high-level output from A input			800		ns
tPHL	Propagation delay time, high-to-low-level output from A input	Cr = 20 pE Soo Figure 1		400		ns
[†] TLH	Transition time, low-to-high-level output	C _L = 30 pF, See Figure 1		300		ns
tTHL	Transition time, high-to-low-level output			300		ns

switching characteristics, V_{CC1} = 5 V, V_{CC2} = 24 V, T_A = 25°C

	PARAMETER	TEST CONDITIONS	L293DWP, L293N L293DDWP, L293DN			UNIT
			MIN	TYP	MAX	
tPLH	Propagation delay time, low-to-high-level output from A input			750		ns
^t PHL	Propagation delay time, high-to-low-level output from A input	C _I = 30 pF, See Figure 1		200		ns
^t TLH	Transition time, low-to-high-level output	CL = 30 pr, See rigule i		100		ns
^t THL	Transition time, high-to-low-level output			350		ns

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: $t_r \le 10$ ns, $t_f \le 10$ ns, $t_W = 10$ μ s, PRR = 5 kHz, $Z_O = 50$ Ω .

Figure 1. Test Circuit and Voltage Waveforms

Figure 2. Two-Phase Motor Driver (L293)

Figure 3. Two-Phase Motor Driver (L293D)

EN	3A	M1	4A	M2
Н	Н	Fast motor stop	Н	Run
Н	L	Run	L	Fast motor stop
L	Х	Free-running motor stop	Х	Free-running motor stop

L = low, H = high, X = don't care

Figure 4. DC Motor Controls (connections to ground and to supply voltage)

Figure 5. Bidirectional DC Motor Control

EN	1A	2A	FUNCTION
Н	┙	Н	Turn right
Н	Η	L	Turn left
Н	Ы	L	Fast motor stop
Н	Н	Н	Fast motor stop
L	Х	Х	Fast motor stop

L = low, H = high, X = don't care

D1-D8 = SES5001

Figure 6. Bipolar Stepping-Motor Control

mounting instructions

The Rthj-amp of the L293 can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board or to an external heatsink.

Figure 9 shows the maximum package power P_{TOT} and the θ_{JA} as a function of the side ℓ of two equal square copper areas having a thickness of 35 μ m (see Figure 7). In addition, an external heat sink can be used (see Figure 8).

During soldering, the pin temperature must not exceed 260°C, and the soldering time must not be longer than 12 seconds.

The external heatsink or printed circuit copper area must be connected to electrical ground.

Figure 7. Example of Printed Circuit Board Copper Area (used as heat sink)

Figure 8. External Heat Sink Mounting Example ($\theta_{JA} = 25^{\circ}\text{C/W}$)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

TIP140/141/142

Monolithic Construction With Built In Base-Emitter Shunt Resistors

- High DC Current Gain : h_{FE} = 1000 @ V_{CE} = 4V, I_{C} = 5A (Min.)
- Industrial Use
- Complement to TIP145/146/147

1.Base 2.Collector 3.Emitter

NPN Epitaxial Silicon Darlington Transistor

Absolute Maximum Ratings T_C =25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage : TIP140	60	V
	: TIP141	80	V
	: TIP142	100	V
V _{CEO}	Collector-Emitter Voltage : TIP140	60	V
	: TIP141	80	V
	: TIP142	100	V
V _{EBO}	Emitter-Base Voltage	5	V
I _C	Collector Current (DC)	10	Α
I _{CP}	Collector Current (Pulse)	15	Α
I _B	Base Current (DC)	0.5	Α
P _C	Collector Dissipation (T _C =25°C)	125	W
T _J	Junction Temperature	150	°C
T _{STG}	Storage Temperature	- 65 ~ 150	°C

Electrical Characteristics T_C=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V _{CEO} (sus)	Collector-Emitter Sustaining Voltage : TIP140 : TIP141 : TIP142	I _C = 30mA, I _B = 0	60 80 100			V V V
I _{CEO}	Collector Cut-off Current : TIP140 : TIP141 : TIP142	$V_{CE} = 30V, I_{B} = 0$ $V_{CE} = 40V, I_{B} = 0$ $V_{CE} = 50V, I_{B} = 0$			2 2 2	mA mA mA
I _{CBO}	Collector Cut-off Current : TIP140 : TIP141 : TIP142	V _{CB} = 60V, I _E = 0 V _{CB} = 80V, I _E = 0 V _{CB} = 100V, I _E = 0			1 1 1	mA mA mA
I _{EBO}	Emitter Cut-off Current	V _{BE} = 5V, I _C = 0			2	mA
h _{FE}	DC Current Gain	V _{CE} = 4V, I _C = 5A V _{CE} = 4V, I _C = 10A	1000 500			
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C = 5A, I _B = 10mA I _C = 10A, I _B = 40mA			2 3	V V
V _{BE} (sat)	Base-Emitter Saturation Voltage	I _C = 10A, I _B = 40mA			3.5	V
V _{BE} (on)	Base-Emitter ON Voltage	V _{CE} = 4V, I _C = 10A			3	V
t _D	Delay Time	V _{CC} = 30V, I _C = 5A		0.15		μS
t _R	Rise Time	$I_{B1} = 20 \text{mA}, I_{B2} = -20 \text{mA}$		0.55		μs
t _{STG}	Storage Time	$R_L = 6\Omega$		2.5		μs
t _F	Fall Time			2.5		μs

Typical Characteristics

Figure 1. Static Characteristic

Figure 2. DC current Gain

Figure 3. Base-Emitter Saturation Voltage Collector-Emitter Saturation Voltage

Figure 4. Collector Output Capacitance

Figure 5. Safe Operating Area

Figure 6. Power Derating

©2000 Fairchild Semiconductor International Rev. A, February 2000

Package Demensions

TO-3P

Dimensions in Millimeters

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FACT™ QFET™ FACT Quiet Series™ QS™

FAST[®] Quiet Series[™] FASTr[™] SuperSOT[™]-3 GTO[™] SuperSOT[™]-6

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR INTERNATIONAL.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2000 Fairchild Semiconductor International Rev. E

PNP EPITAXIAL TIP145/146/147 SILICON DARLINGTON TRANSISTOR

HIGH DC CURRENT GAIN MIN h_{FE} = 1000 @ V_{CE} = -4V, IC = -5A MONOLITHIC CONSTRUCTION WITH BUILT IN BASE-EMITTER SHUNT RESISTORS INDUSTRIAL USE

• Complement to TIP140/141/142

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit
Collector-Base Voltage : TIP145	V_{CBO}	- 60	V
: TIP146		- 80	V
: TIP147		- 100	V
Collector Emitter Voltage			
: TIP145	V_{CEO}	- 60	V
: TIP146		- 80	V
: TIP147		- 100	V
Emitter-Base Voltage	V_{EBO}	- 5	V
Collector Current (DC)	lc	- 10	Α
Collector Current (Pulse)	lc	- 15	Α
Base Current (DC)	I_B	- 0.5	Α
Collector Dissipation (T _C =25°C)	Pc	125	W
Junction Temperature	T_J	150	°C
Storage Temperature	T_{STG}	- 65 ~ 150	°C

ELECTRICAL CHARACTERISTICS (T_C =25°C)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit
Collector Emitter Sustaining Voltage	V _{CEO} (sus)					
: TIP145		$I_{\rm C} = -30 {\rm mA}, \ I_{\rm B} = 0$	- 60			V
: TIP146			- 80			V
: TIP147			- 100			V
Collector Cutoff Current : TIP145	I _{CEO}	$V_{CE} = -30V$, $I_{B} = 0$			- 2	mA
: TIP146		$V_{CE} = -40V$, $I_{B} = 0$			- 2	mA
: TIP147		$V_{CE} = -50V$, $I_{B} = 0$			- 2	mA
Collector Cutoff Current : TIP145	I _{CBO}	$V_{CB} = -60V, I_{E} = 0$			- 1	mA
: TIP146		$V_{CB} = -80V, I_{E} = 0$			- 1	mA
: TIP147		V _{CB} = - 100V, I _E = 0			- 1	mA
Emitter Cutoff Current	I _{EBO}	$V_{BE} = -5V, I_{C} = 0$			- 2	mA
DC Current Gain	h _{FE}	$V_{CE} = -4V, I_{C} = -5A$	1000			
		V _{CE} = - 4V, I _C = - 10A	500			
Collector Emitter Saturation Voltage	V _{CE} (sat)	$I_C = -5A$, $I_B = -10mA$			- 2	V
		I _C = - 10A, I _B = - 40mA			- 3	V
Base Emitter Saturation Voltage	V _{BE} (sat)	I _C = - 10A, I _B = - 40mA			- 3.5	V
Base Emitter On Voltage	V _{BE} (on)	V _{CE} = - 4V, I _C = - 10A			- 3	V
Delay Time	t_D	$V_{CC} = -30V$, $I_{C} = -5A$		0.15		μS
Rise Time	t _R	$I_B = -20 \text{mA}, I_{B1} = -I_{B2}$		0.55		μS
Storage Time	t _{STG}			2.5		μS
Fall Time	t _F			2.5		μS

NPN EPITAXIAL

TIP145/146/147 DARLINGTON TRANSISTOR

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $\begin{array}{lll} \mathsf{ACEx^{\mathsf{TM}}} & \mathsf{ISOPLANAR^{\mathsf{TM}}} \\ \mathsf{CoolFET^{\mathsf{TM}}} & \mathsf{MICROWIRE^{\mathsf{TM}}} \\ \end{array}$

CROSSVOLTTM POPTM

E²CMOS[™] PowerTrench[™]

FACTTM QSTM

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

 A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

POWER SUPPLY SPECIFICATIONS

• Wattage:	180 Watt
• Fan:	80 mm
• +3.3V:	17 A
• +5V:	18 A
• +12V 1:	10 A

• -12V: 0.3A

• -5V: 0.2 A

• +5VSB: 1.5 A

Connectors

+ DOMESTICATION OF THE PARTY OF	OO H	The state of the s	0000	過過過	
20+4 pin	P4 MB	SATA	Peripheral	FDD	PCI-E
x 1	x 1	x 0	x 4	x 2	x 0

(1)

(5)

By conservation of energy, energy supplied = energy lost = heat + work

$$A \cdot V = A^2 \cdot R + \tau \cdot \omega$$

$$A V = A^2 R + \tau \omega$$
(2)

By measurement, for the original D.C motor.

> R := 18; A := 0.15; V := 11.25;

$$R := 18$$
 $A := 0.15$
 $V := 11.25$ (4)

$$\tau := solve(A \cdot V = A^2 \cdot R + \tau \cdot \omega, \tau);$$

$$\tau := 0.3878208076$$
(5)

> *StallCurrent* := 0.32;

$$StallCurrent := 0.32$$
 (6)

> StallTorque := $\frac{\tau}{A}$ · StallCurrent

$$StallTorque := 0.8273510563$$
 (8)

> Stallcurrent2 := $\frac{StallTorque}{1.16}$;

$$Stallcurrent2 := 0.7132336692$$
 (9)

To choose an approperiate resistor for the new motor, to get the same effects

So the resistor choosen should be bigger than 10, we decided to choose 12. In this case, the stall torque would be (in Nm)

PIC APPENDIX

- 1, RAM Layout
- 2, Stepper Motor Driving Calculations
- 3, PIC16F877 (A/D Section)
- 4, MM74C922N Keypad Decoder
- 5, PIC proto64 Board
- 6, KA7805 Power Regulator
- 7, Keypad
- 8, TS1620-1 LCD
- 9, DS 1307 Realtime Clock Chip
- 10, Code

PIC APPENDIX

- 1, RAM Layout
- 2, Stepper Motor Driving Calculations
- 3, PIC16F877 (A/D Section)
- 4, MM74C922N Keypad Decoder
- 5, PIC proto64 Board
- 6, KA7805 Power Regulator
- 7, Keypad
- 8, TS1620-1 LCD
- 9, DS 1307 Realtime Clock Chip

RAM Layout

	BANK0		BANK1		BANK2		BANK3
00	INDF	80	INDF	100	INDF	180	INDF
01	TMR0	81	OPTION_REG	101	TMR0	181	OPTION_REG
02	PCL	82	PCL	102	PCL	182	PCL
03	STATUS	83	STATUS	103	STATUS	183	STATUS
04	FSR	84	FSR	104	FSR	184	FSR
05	PORTA	85	TRISA	105		185	
06	PORTB	86	TRISB	106	PORTB	186	TRISB
07	PORTC	87	TRISC	107		187	
08	PORTD	88	TRISD	108		188	
09	PORTE	89	TRISE	109		189	
0A	PCLATH	A8	PCLATH	10A	PCLATH	18A	PCLATH
0B	INCTON	8B	INTCON	10B	INTCON	18B	INTCON
0C	PIR1	8C	PIE1	10C	EEDATA	18C	EECON1
0D	PIR2	8D	PIE2	10D	EEADR	18D	EECON2
0E	TMR1L	8E	PCON	10E	EEDATH	18E	RV
0F	TMR1H	8F		10F	EEADRH	18F	RV
10	TICON	90		110		190	
11	TMR2	91	SSPCON2	111		191	
12	T2CON	92	PR2	112		192	
13	SSPBUF	93	SSPADD	113		193	
14	SSPCON	94	SSPSTAT	114		194	
15	CCPR1L	95		115		195	
16	CCPR1H	96		116		196	
17	CCP1CON	97		117		197	
18	RCSTA	98	TXSTA	118		198	
19	TXREG	99	SPBRG	119		199	
1A	RCREG	9A		11A		19A	
1B	CCPR2L	9B		11B		19B	
1 C	CCPR2H	9C		110		19C	
1D	CCP2CON	9D		11D		19D	
1E	ADRESH	9E	ADRESL	11E		19E	
1F	ADCON2	9F	ADCON1	11F	Log Entry 0	19F	Log Entry 6
20	phase	Α0	delaytemp	120		1A0	
21	report_num	A1	delaycount	121		1A1	
22	line_num	A2	delaytemp2	122		1A2	
23	LCDline(0)	А3	delaycount2	123		1A3	
24	LCDline(1)	Α4	delaytemp3	124		1A4	
25	LCDline(2)	A5	delaycount3	125		1A5	
26	LCDline(3)	A6		126	Log Entry 1	1A6	Log Entry 7

27	LCDline(4)	Α7		127		1A7	
28	LCDline(5)	A8		128		1A8	
29	LCDline(6)	Α9		129		1A9	
2A	LCDline(7)	AA		12A		1AA	
2B	LCDline(8)	AB		12B		1AB	
2C	LCDline(9)	AC		12C		1AC	
2D	LCDline(A)	AD		12D		1AD	
2E	LCDline(B)	AE		12E		1AE	
2F	LCDline(C)	AF		12F		1AF	
30	LCDline(D)	В0	light_bg(0)	130		1B0	
31	LCDline(E)	В1	light_bg(1)	131		1B1	
32	LCDline(F)	В2	light_bg(2)	132		1B2	
33	LCDline(Null)	В3	light_bg(3)	133		1B3	
34	temp	В4	light_bg(4)	134		1B4	
35	temp2	B5	light_pos(0)	135		1B5	
36	temp3	В6	light_pos(1)	136		1B6	
37	temp4	В7	light_pos(2)	137		1B7	
38	temp5	В8	light_pos(3)	138		1B8	
39	temp6	В9	light_pos(4)	139		1B9	
3A	temp7	ВА	light_cl(0)	13A		1BA	
3B	arg	ВВ	light_cl(1)	13B		1BB	
3C	arg2	ВС	light_cl(2)	13C		1BC	
3D	literal_addr	BD	light_cl(3)	13D		1BD	
3E	rowleft	BE	light_cl(4)	13E		1BE	
3F	result_addr	BF	light_off(0)	13F	Log Entry 2	1BF	Log Entry 8
40	rt_year	C0	light_off(1)	140		1C0	
41	rt_month	C1	light_off(2)	141		1C1	
42	rt_day	C2	light_off(3)	142		1C2	
43	rt_hour	С3	light_off(4)	143		1C3	
44	rt_min	C4		144		1C4	
45	rt_sec	C5		145		1C5	
46	st_year	C6		146		1C6	
47	st_month	C7		147		1C7	
48	st_day	C8		148		1C8	
49	st_hour	C9		149		1C9	
4A	st_min	CA		14A		1CA	
4B	st_sec	СВ		14B		1CB	
4C	end_hour	CC		14C		1CC	
4D	end_min	CD		14D		1CD	
4E	end_sec	CE		14E		1CE	
4F	runtime	CF		14F	Log Entry 3	1CF	Log Entry 9

50	cl_total	DØ		150		1D0	
51	cl_pass	D1		151		1D1	
52	cl_fail	D2		152		1D2	
53	layout(0,0)	D3		153		1D3	
54	layout(0,1)	D4		154		1D4	
55	layout(0,2)	D5		155		1D5	
56	layout(0,3)	D6		156		1D6	
57	layout(0,4)	D7		157		1D7	
58	layout(1,0)	D8		158		1D8	
59	layout(1,1)	D9		159		1D9	
5A	layout(1,2)	DA		15A		1DA	
5B	layout(1,3)	DB		15B		1DB	
5C	layout(1,4)	DC		15C		1DC	
5D	layout(2,0)	DD		15D		1DD	
5E	layout(2,1)	DE		15E		1DE	
5F	layout(2,2)	DF		15F	Log Entry 4	1DF	Log Entry 10
60	layout(2,3)	E0		160		1E0	
61	layout(2,4)	E1		161		1E1	
62	layout(3,0)	E2		162		1E2	
63	layout(3,1)	E3		163		1E3	
64	layout(3,2)	E4		164		1E4	
65	layout(3,3)	E5		165		1E5	
66	layout(3,4)	E6		166		1E6	
67	smotor_dir	E7		167		1E7	
68	log_total	E8		168		1E8	
69	log_next	E9		169		1E9	
6A	arith_temp	EA		16A		1EA	
6B	arith_temp2	EB		16B		1EB	
6C	newsec	EC		16C		1EC	
6D		ED		16D		1ED	
6E		EE		16E		1EE	
6F		EF		16F	Log Entry 5	1EF	Log Entry 11
70	lcd_tmp	F0	lcd_tmp	170	lcd_tmp	1F0	lcd_tmp
71	w_temp	F1	w_temp	171	w_temp	1F1	w_temp
72	status_temp	F2	status_temp	172	status_temp	1F2	status_temp
73	FSR_temp	F3	FSR_temp	173	FSR_temp	1F3	FSR_temp
74	rt_counter	F4	rt_counter	174	rt_counter	1F4	rt_counter
75		F5		175		1F5	
76		F6		176		1F6	
77		F7		177		1F7	
78		F8		178		1F8	

79	F9	179	1F9	
7A	FA	17A	1FA	
7B	FB	17B	1FB	
7C	FC	17C	1FC	
7D	FD	17D	1FD	
7E	FE	17E	1FE	
7F	FF	17F	1FF	

Measurement Facts:

Stepper Motor: 48 steps/rotation(r)

T30: 30 steps (teeth) T50: 50 steps (teeth) T10: 10 steps (teeth)

Rack: $\frac{83.5 \text{mm}}{25 \text{steps}} = 3.34 \text{mm/step}$

row on egg tray: max 14.25cm 3rows; min 13.60cm 3rows

Gear ratio:

48 step S. Motor = 1r S. Motor = 1r T30 = 30steps T30 = 30steps T50 =
$$\frac{30}{50}$$
r T50 = 0.6r T10 = 6steps T10 = 6steps rack \rightarrow 8 S. Motor: 1 rack

Row distance:

$$\frac{14.25\text{cm} + 13.6\text{cm}}{2} \times \frac{1}{3} = 46.4\text{mm/row}$$

S.Motor steps for each row:

$$\frac{46.4 \text{mm/row}}{3.34 \text{mm/step rack}} \times \frac{8 \text{ step S. Motor}}{1 \text{ step rack}} = 111.1 \text{ step/row} = 112 \text{ step/row}$$

The round up is due to the fact than PIC program can only run stepper motor in multiple of 4steps.

Actual distance testing arm travels:

112 step S. Motor/row =
$$46.8$$
mm/row = 14.0 cm 3rows

Error between the travelling distance and max/min row distance are -0.25cm and +0.4cm, respectively. The error is the max accumulated error caused by stepper motor and inconsistency of egg-tray row-separation (testing arm moves exactly 3 row separation in each run), it is in the ±1cm design tolerance.

11.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) Converter module has five inputs for the 28-pin devices and eight for the other devices.

The analog input charges a sample and hold capacitor. The output of the sample and hold capacitor is the input into the converter. The converter then generates a digital result of this analog level via successive approximation. The A/D conversion of the analog input signal results in a corresponding 10-bit digital number. The A/D module has high and low voltage reference input that is software selectable to some combination of VDD, Vss, RA2, or RA3.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D clock must be derived from the A/D's internal RC oscillator.

The A/D module has four registers. These registers are:

- A/D Result High Register (ADRESH)
- · A/D Result Low Register (ADRESL)
- A/D Control Register0 (ADCON0)
- A/D Control Register1 (ADCON1)

The ADCON0 register, shown in Register 11-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 11-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be the voltage reference), or as digital I/O.

Additional information on using the A/D module can be found in the PICmicro™ Mid-Range MCU Family Reference Manual (DS33023).

REGISTER 11-1: ADCON0 REGISTER (ADDRESS: 1Fh)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON
bit 7							bit 0

bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits

00 = Fosc/2

01 = Fosc/8

10 = Fosc/32

11 = FRC (clock derived from the internal A/D module RC oscillator)

bit 5-3 CHS2:CHS0: Analog Channel Select bits

000 = channel 0, (RA0/AN0)

001 = channel 1, (RA1/AN1)

010 = channel 2, (RA2/AN2)

011 = channel 3, (RA3/AN3)

100 = channel 4, (RA5/AN4)

101 = channel 5, $(RE0/AN5)^{(1)}$ 110 = channel 6, $(RE1/AN6)^{(1)}$

 $111 = \text{channel 7, } (\text{RE}2/\text{AN7})^{(1)}$

bit 2 GO/DONE: A/D Conversion Status bit

<u>If ADON = 1:</u>

- 1 = A/D conversion in progress (setting this bit starts the A/D conversion)
- 0 = A/D conversion not in progress (this bit is automatically cleared by hardware when the A/D conversion is complete)
- bit 1 Unimplemented: Read as '0'
- bit 0 ADON: A/D On bit
 - 1 = A/D converter module is operating
 - 0 = A/D converter module is shut-off and consumes no operating current

Note 1: These channels are not available on PIC16F873/876 devices.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7

REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
ADFM	_	_	_	PCFG3	PCFG2	PCFG1	PCFG0
bit 7							hit 0

ADFM: A/D Result Format Select bit

1 = Right justified. 6 Most Significant bits of ADRESH are read as '0'. 0 = Left justified. 6 Least Significant bits of ADRESL are read as '0'.

bit 6-4 Unimplemented: Read as '0'

bit 3-0 **PCFG3:PCFG0**: A/D Port Configuration Control bits:

PCFG3: PCFG0	AN7 ⁽¹⁾ RE2	AN6 ⁽¹⁾ RE1	AN5 ⁽¹⁾ RE0	AN4 RA5	AN3 RA3	AN2 RA2	AN1 RA1	AN0 RA0	VREF+	VREF-	CHAN/ Refs ⁽²⁾
0000	Α	Α	Α	Α	Α	Α	Α	Α	Vdd	Vss	8/0
0001	Α	Α	Α	Α	VREF+	Α	Α	Α	RA3	Vss	7/1
0010	D	D	D	Α	Α	Α	Α	Α	VDD	Vss	5/0
0011	D	D	D	Α	VREF+	Α	Α	Α	RA3	Vss	4/1
0100	D	D	D	D	Α	D	Α	Α	Vdd	Vss	3/0
0101	D	D	D	D	VREF+	D	Α	Α	RA3	Vss	2/1
011x	D	D	D	D	D	D	D	D	VDD	Vss	0/0
1000	Α	Α	Α	Α	VREF+	VREF-	Α	Α	RA3	RA2	6/2
1001	D	D	Α	Α	Α	Α	Α	Α	VDD	Vss	6/0
1010	D	D	Α	Α	VREF+	Α	Α	Α	RA3	Vss	5/1
1011	D	D	Α	Α	VREF+	VREF-	Α	Α	RA3	RA2	4/2
1100	D	D	D	Α	VREF+	VREF-	Α	Α	RA3	RA2	3/2
1101	D	D	D	D	VREF+	VREF-	Α	Α	RA3	RA2	2/2
1110	D	D	D	D	D	D	D	Α	Vdd	Vss	1/0
1111	D	D	D	D	VREF+	VREF-	D	Α	RA3	RA2	1/2

A = Analog input D = Digital I/O

Note 1: These channels are not available on PIC16F873/876 devices.

2: This column indicates the number of analog channels available as A/D inputs and the number of analog channels used as voltage reference inputs.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

The ADRESH:ADRESL registers contain the 10-bit result of the A/D conversion. When the A/D conversion is complete, the result is loaded into this A/D result register pair, the GO/DONE bit (ADCON0<2>) is cleared and the A/D interrupt flag bit ADIF is set. The block diagram of the A/D module is shown in Figure 11-1.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs.

To determine sample time, see Section 11.1. After this acquisition time has elapsed, the A/D conversion can be started.

These steps should be followed for doing an A/D Conversion:

- 1. Configure the A/D module:
 - · Configure analog pins/voltage reference and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - · Clear ADIF bit
 - · Set ADIE bit
 - · Set PEIE bit
 - · Set GIE bit

- 3. Wait the required acquisition time.
- Start conversion:
- Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared (with interrupts enabled); OR
 - · Waiting for the A/D interrupt
- A/D 6. Read result register pair (ADRESH:ADRESL), clear bit ADIF if required.
- 7. For the next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before the next acquisition starts.

FIGURE 11-1: A/D BLOCK DIAGRAM

11.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 11-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 11-2. The maximum recommended impedance for analog sources is 10 kΩ. As the impedance is decreased, the acquisition time may be decreased.

After the analog input channel is selected (changed), this acquisition must be done before the conversion can be started.

To calculate the minimum acquisition time, Equation 11-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified resolution.

To calculate the minimum acquisition time, TACQ, see the PICmicro™ Mid-Range Reference Manual (DS33023).

EQUATION 11-1: ACQUISITION TIME

Tacq = Amplifier Settling Time +
 Hold Capacitor Charging Time +
 Temperature Coefficient

= TAMP + TC + TCOFF

= $2\mu s$ + TC + [(Temperature -25°C)(0.05 μs /°C)]

TC = CHOLD (RIC + Rss + Rs) In(1/2047)

= -120pF ($1k\Omega + 7k\Omega + 10k\Omega$) In(0.0004885)

= $16.47\mu s$ Tacq = $2\mu s + 16.47\mu s + [(50°C -25°C)(0.05\mu s$ /°C)

= $19.72\mu s$

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.

- 2: The charge holding capacitor (CHOLD) is not discharged after each conversion.
- 3: The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.
- **4:** After a conversion has completed, a 2.0TAD delay must complete before acquisition can begin again. During this time, the holding capacitor is not connected to the selected A/D input channel.

FIGURE 11-2: ANALOG INPUT MODEL

11.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires a minimum 12TAD per 10-bit conversion. The source of the A/D conversion clock is software selected. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal A/D module RC oscillator (2-6 μs)

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 μ s.

Table 11-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

TABLE 11-1: TAD vs. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))

AD Clock	AD Clock Source (TAD)						
Operation	ADCS1:ADCS0	Max.					
2Tosc	0.0	1.25 MHz					
8Tosc	01	5 MHz					
32Tosc	10	20 MHz					
RC ^(1, 2, 3)	11	(Note 1)					

- Note 1: The RC source has a typical TAD time of 4 μs, but can vary between 2-6 μs.
 - 2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recommended for SLEEP operation.
 - 3: For extended voltage devices (LC), please refer to the Electrical Characteristics (Sections 15.1 and 15.2).

11.3 Configuring Analog Port Pins

The ADCON1 and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, any pin configured as an analog input channel will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin that is defined as a digital input (including the AN7:AN0 pins), may cause the input buffer to consume current that is out of the device specifications.

11.4 A/D Conversions

Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D result register pair will NOT be updated with the partially completed A/D conversion sample. That is, the ADRESH:ADRESL registers will continue to contain the value of the last completed conversion (or the last value written to the ADRESH:ADRESL registers). After the A/D conversion is aborted, a 2TAD wait is required before the next

acquisition is started. After this 2TAD wait, acquisition on the selected channel is automatically started. The GO/DONE bit can then be set to start the conversion.

In Figure 11-3, after the GO bit is set, the first time segment has a minimum of TCY and a maximum of TAD.

Note: The GO/DONE bit should NOT be set in the same instruction that turns on the A/D.

FIGURE 11-3: A/D CONVERSION TAD CYCLES

11.4.1 A/D RESULT REGISTERS

The ADRESH:ADRESL register pair is the location where the 10-bit A/D result is loaded at the completion of the A/D conversion. This register pair is 16-bits wide. The A/D module gives the flexibility to left or right justify the 10-bit result in the 16-bit result register. The A/D

Format Select bit (ADFM) controls this justification. Figure 11-4 shows the operation of the A/D result justification. The extra bits are loaded with '0's'. When an A/D result will not overwrite these locations (A/D disable), these registers may be used as two general purpose 8-bit registers.

FIGURE 11-4: A/D RESULT JUSTIFICATION

11.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = 11). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/ \overline{DONE} bit will be cleared and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the A/D module will then be turned off, although the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To allow the conversion to occur during SLEEP, ensure the SLEEP instruction immediately follows the

instruction that sets the GO/DONE bit.

11.6 Effects of a RESET

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off, and any conversion is aborted. All A/D input pins are configured as analog inputs.

The value that is in the ADRESH:ADRESL registers is not modified for a Power-on Reset. The ADRESH:ADRESL registers will contain unknown data after a Power-on Reset.

TABLE 11-2: REGISTERS/BITS ASSOCIATED WITH A/D

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	V <u>alue o</u> n MCLR, WDT
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
1Eh	ADRESH	A/D Resul	t Register	High By	te					xxxx xxxx	uuuu uuuu
9Eh	ADRESL	A/D Resul	t Register	Low Byt	е					xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	ADFM	_	_	_	PCFG3	PCFG2	PCFG1	PCFG0	0- 0000	0- 0000
85h	TRISA	_	_	PORTA	Data Directio	n Register				11 1111	11 1111
05h	PORTA	_	_	PORTA	Data Latch w	0x 0000	0u 0000				
89h ⁽¹⁾	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	ta Direction	n bits	0000 -111	0000 -111
09h ⁽¹⁾	PORTE	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: These registers/bits are not available on the 28-pin devices.

October 1987 Revised January 1999

MM74C922 • MM74C923 16-Key Encoder • 20-Key Encoder

General Description

The MM74C922 and MM74C923 CMOS key encoders provide all the necessary logic to fully encode an array of SPST switches. The keyboard scan can be implemented by either an external clock or external capacitor. These encoders also have on-chip pull-up devices which permit switches with up to 50 $k\Omega$ on resistance to be used. No diodes in the switch array are needed to eliminate ghost switches. The internal debounce circuit needs only a single external capacitor and can be defeated by omitting the capacitor. A Data Available output goes to a high level when a valid keyboard entry has been made. The Data Available output returns to a low level when the entered key is released, even if another key is depressed. The Data Available will return high to indicate acceptance of the new key after a normal debounce period; this two-key roll-over is provided between any two switches.

An internal register remembers the last key pressed even after the key is released. The 3-STATE outputs provide for easy expansion and bus operation and are LPTTL compatible.

Features

- 50 kΩ maximum switch on resistance
- On or off chip clock
- On-chip row pull-up devices
- 2 key roll-over
- Keybounce elimination with single capacitor
- Last key register at outputs
- 3-STATE output LPTTL compatible
- Wide supply range: 3V to 15V
- Low power consumption

Ordering Code:

Order Number	Package Number	Package Description
MM74C922N	N18A	18-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74C922WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74C923WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
MM74C923N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP) JEDEC MS-001_0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagrams

Connection Diagrams (Continued)

Truth Tables

(Pins 0 through 11)

	Switch	0	1	2	3	4	5	6	7	8	9	10	11
Р	Position		Y1,X2	Y1,X3	Y1,X4	Y2,X1	Y2,X2	Y2,X3	Y2,X4	Y3,X1	Y3,X2	Y3,X3	Y3,X4
D													
Α	Α	0	1	0	1	0	1	0	1	0	1	0	1
Т	В	0	0	1	1	0	0	1	1	0	0	1	1
Α	С	0	0	0	0	1	1	1	1	0	0	0	0
0	D	0	0	0	0	0	0	0	0	1	1	1	1
U	E (Note 1)	0	0	0	0	0	0	0	0	0	0	0	0
Т													

(Pins 12 through 19)

		Switch	12	13	14	15	16	17	18	19
	Position		Y4,X1	Y4,X2	Y4,X3	Y4,X4	Y5(Note 1), X1	Y5 (Note 1), X2	Y5 (Note 1), X3	Y5 (Note 1), X4
1	D									
,	Α	Α	0	1	0	1	0	1	0	1
-	Т	В	0	0	1	1	0	0	1	1
,	Α	С	1	1	1	1	0	0	0	0
(0	D	1	1	1	1	0	0	0	0
ι	U	E (Note 1)	0	0	0	0	1	1	1	1
-	Т									

Note 1: Omit for MM74C922

Absolute Maximum Ratings(Note 2)

Voltage at Any Pin $\label{eq:VCC} V_{CC} - 0.3 V \text{ to V}_{CC} + 0.3 V$

Operating Temperature Range

 $\begin{array}{ccc} \text{MM74C922, MM74C923} & -40^{\circ}\text{C to +85}^{\circ}\text{C} \\ \text{Storage Temperature Range} & -65^{\circ}\text{C to +150}^{\circ}\text{C} \end{array}$

Power Dissipation (P _D)

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature

(Soldering, 10 seconds) 260°C

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

DC Electrical Characteristics

Min/Max limits apply across temperature range unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CMOS TO	CMOS		l l		I	
V _{T+}	Positive-Going Threshold Voltage	$V_{CC} = 5V$, $I_{IN} \ge 0.7$ mA	3.0	3.6	4.3	V
	at Osc and KBM Inputs	$V_{CC} = 10V, I_{IN} \ge 1.4 \text{ mA}$	6.0	6.8	8.6	V
		$V_{CC} = 15V, I_{IN} \ge 2.1 \text{ mA}$	9.0	10	12.9	V
V _{T-}	Negative-Going Threshold Voltage	$V_{CC} = 5V, I_{IN} \ge 0.7 \text{ mA}$	0.7	1.4	2.0	V
•	at Osc and KBM Inputs	$V_{CC} = 10V, I_{IN} \ge 1.4 \text{ mA}$	1.4	3.2	4.0	V
	·	$V_{CC} = 15V, I_{IN} \ge 2.1 \text{ mA}$	2.1	5	6.0	V
V _{IN(1)}	Logical "1" Input Voltage,	V _{CC} = 5V	3.5	4.5		V
(.)	Except Osc and KBM Inputs	V _{CC} = 10V	8.0	9		V
		V _{CC} = 15V	12.5	13.5		V
V _{IN(0)}	Logical "0" Input Voltage,	V _{CC} = 5V		0.5	1.5	V
114(0)	Except Osc and KBM Inputs	V _{CC} = 10V		1	2	V
		V _{CC} = 15V		1.5	2.5	V
I _{rp}	Row Pull-Up Current at Y1, Y2,	$V_{CC} = 5V, V_{IN} = 0.1 V_{CC}$		-2	-5	μА
·P	Y3, Y4 and Y5 Inputs	V _{CC} = 10V		-10	-20	μA
		V _{CC} = 15V		-22	-45	μA
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5V, I_{O} = -10 \mu A$	4.5			V
001(1)		$V_{CC} = 10V, I_{C} = -10 \mu A$	9			V
		$V_{CC} = 15V, I_{O} = -10 \mu A$	13.5			V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5V, I_{C} = 10 \mu A$			0.5	V
001(0)		$V_{CC} = 10V, I_{C} = 10 \mu A$			1	V
		$V_{CC} = 15V, I_{O} = 10 \mu A$			1.5	V
R _{on}	Column "ON" Resistance at	$V_{CC} = 5V, V_{C} = 0.5V$		500	1400	Ω
OII	X1, X2, X3 and X4 Outputs	$V_{CC} = 10V, V_{CC} = 1V$		300	700	Ω
		$V_{CC} = 15V, V_{C} = 1.5V$		200	500	Ω
I _{CC}	Supply Current	V _{CC} = 5V		0.55	1.1	mA
CC	Osc at 0V, (one Y low)	V _{CC} = 10V		1.1	1.9	mA
	,	V _{CC} = 15V		1.7	2.6	mA
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15V, V _{IN} = 15V		0.005	1.0	μА
114(1)	at Output Enable	CC - 7 IIV				
I _{IN(0)}	Logical "0" Input Current	$V_{CC} = 15V, V_{IN} = 0V$	-1.0	-0.005		μА
114(0)	at Output Enable	CC - 7 IIV -				
CMOS/LPT	TL INTERFACE		Į.			
V _{IN(1)}	Except Osc and KBM Inputs	V _{CC} = 4.75V	V _{CC} - 1.5			V
V _{IN(0)}	Except Osc and KBM Inputs	V _{CC} = 4.75V	- 55		0.8	V
V _{OUT(1)}	Logical "1" Output Voltage	I _O = -360 μA				
501(1)		V _{CC} = 4.75V	2.4			V
		I _O = -360 μA				
V _{OUT(0)}	Logical "0" Output Voltage	I _O = -360 μA				
- 001(0)		$V_{CC} = 4.75V$			0.4	V
		$I_{O} = -360 \mu\text{A}$				'

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Units								
OUTPUT D	DUTPUT DRIVE (See Family Characteristics Data Sheet) (Short Circuit Current)													
I _{SOURCE}	Output Source Current	$V_{CC} = 5V$, $V_{OUT} = 0V$,	-1.75	-3.3		mA								
	(P-Channel)	T _A = 25°C												
I _{SOURCE}	Output Source Current	$V_{CC} = 10V$, $V_{OUT} = 0V$,	-8	-15		mA								
	(P-Channel)	T _A = 25°C												
I _{SINK}	Output Sink Current	$V_{CC} = 5V$, $V_{OUT} = V_{CC}$,	1.75	3.6		mA								
	(N-Channel)	T _A = 25°C												
I _{SINK}	Output Sink Current	$V_{CC} = 10V$, $V_{OUT} = V_{CC}$,	8	16		mA								
	(N-Channel)	$T_A = 25^{\circ}C$												

AC Electrical Characteristics (Note 3) $T_A = 25^{\circ}C$, $C_L = 50$ pF, unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd0} , t _{pd1}	Propagation Delay Time to	C _L = 50 pF (Figure 1)				
	Logical "0" or Logical "1"	$V_{CC} = 5V$		60	150	ns
	from D.A.	V _{CC} = 10V		35	80	ns
		V _{CC} = 15V		25	60	ns
t _{0H} , t _{1H}	Propagation Delay Time from	R _L = 10k, C _L = 10 pF (Figure 2)				
	Logical "0" or Logical "1"	$V_{CC} = 5V, R_{L} = 10k$		80	200	ns
	into High Impedance State	$V_{CC} = 10V, C_L = 10 pF$		65	150	ns
		V _{CC} = 15V		50	110	ns
t _{H0} , t _{H1}	Propagation Delay Time from	R _L = 10k, C _L = 50 pF (Figure 2)				
	High Impedance State to a	$V_{CC} = 5V$, $R_L = 10k$		100	250	ns
	Logical "0" or Logical "1"	$V_{CC} = 10V, C_L = 50 pF$		55	125	ns
		V _{CC} = 15V		40	90	ns
C _{IN}	Input Capacitance	Any Input (Note 4)		5	7.5	pF
C _{OUT}	3-STATE Output Capacitance	Any Output (Note 4)		10		pF

Note 3: AC Parameters are guaranteed by DC correlated testing.

Note 4: Capacitance is guaranteed by periodic testing.

Typical Performance Characteristics

Typical I_{rp} vs V_{IN} at Any Y Input

Typical Ron vs VOUT at Any X Output

Typical F_{SCAN} vs C_{OSC}

Typical Debounce Period vs C_{KBM}

Typical Applications

Synchronous Handshake (MM74C922)

The keyboard may be synchronously scanned by omitting the capacitor at osc. and driving osc. directly if the system clock rate is lower than 10 kHz

Synchronous Data Entry Onto Bus (MM74C922)

Outputs are enabled when valid entry is made and go into 3-STATE when key is released.

The keyboard may be synchronously scanned by omitting the capacitor at osc. and driving osc. directly if the system clock rate is lower than 10 kHz

Asynchronous Data Entry Onto Bus (MM74C922) MM74C922 X4 KBM Х3 X2 Х1 TO DATA BUS Υ1 C Y2 DATA AVAILABLE Υ3 γ4 osc 0E 1/6 74004

Outputs are in 3-STATE until key is pressed, then data is placed on bus. When key is released, outputs return to 3-STATE.

Expansion to 32 Key Encoder (MM74C922)

Theory of Operation

The MM74C922/MM74C923 Keyboard Encoders implement all the logic necessary to interface a 16 or 20 SPST key switch matrix to a digital system. The encoder will convert a key switch closer to a 4(MM74C922) or 5(MM74C923) bit nibble. The designer can control both the keyboard scan rate and the key debounce period by altering the oscillator capacitor, $C_{\rm OSE}$, and the key bounce mask capacitor, $C_{\rm MSK}$. Thus, the MM74C922/MM74C923's performance can be optimized for many keyboards.

The keyboard encoders connect to a switch matrix that is 4 rows by 4 columns (MM74C922) or 5 rows by 4 columns (MM74C923). When no keys are depressed, the row inputs are pulled high by internal pull-ups and the column outputs sequentially output a logic "0". These outputs are open drain and are therefore low for 25% of the time and otherwise off. The column scan rate is controlled by the oscillator input, which consists of a Schmitt trigger oscillator, a 2-bit counter, and a 2-4-bit decoder.

When a key is depressed, key 0, for example, nothing will happen when the X1 input is off, since Y1 will remain high. When the X1 column is scanned, X1 goes low and Y1 will go low. This disables the counter and keeps X1 low. Y1

going low also initiates the key bounce circuit timing and locks out the other Y inputs. The key code to be output is a combination of the frozen counter value and the decoded Y inputs. Once the key bounce circuit times out, the data is latched, and the Data Available (DAV) output goes high.

If, during the key closure the switch bounces, Y1 input will go high again, restarting the scan and resetting the key bounce circuitry. The key may bounce several times, but as soon as the switch stays low for a debounce period, the closure is assumed valid and the data is latched.

A key may also bounce when it is released. To ensure that the encoder does not recognize this bounce as another key closure, the debounce circuit must time out before another closure is recognized.

The two-key roll-over feature can be illustrated by assuming a key is depressed, and then a second key is depressed. Since all scanning has stopped, and all other Y inputs are disabled, the second key is not recognized until the first key is lifted and the key bounce circuitry has reset.

The output latches feed 3-STATE, which is enabled when the Output Enable (\overline{OE}) input is taken low.

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

PICPROTO™64 Prototyping Board

Copyright ©2006 microEngineering Labs, Inc.

\$1695

- High quality double-sided board
- Solder mask both sides
- More than 700 platedthrough holes
- 4 mounting holes
- Overall dimensions 3" X 4"

U1 - 40-pin PIC® microcontroller

Y1 - crystal or ceramic resonator

C1, 2 - crystal capacitors

C3 - bypass capacitor

C4 - input capacitor

REG1 - 5 volt regulator

LED1 - LED

R1 - RC oscillator resistor

R2 - Master Clear resistor

R3 - LED series resistor

J1 - PIC I/O connector

J2 - DB9, 15, or 25

PARTS PLACEMENT:

TO-220 Regulator REG1 = 7805T C3 = .01 - .1uf C4 = .1 - 10uf

TO-92 Regulator REG1 = 78L05 C3 = .01 - .1uf C4 = .1 - 10uf

Crystal or Ceramic Resonator Y1 = DC - 20MHZ C1, 2 = 5 - 22pf

RC Oscillator $5k \le R \le 100K$ C1 $\ge 20pf$ C2 = none

ASSEMBLY NOTES:

Pin 1 of U1 is marked with a square pad. Note polarity of Vin, REG1, LED1 and any polarized capacitors. Don't forget to pull-up Master Clear to Vdd.
All unused inputs should be tied to +5V or ground.

SCHEMATIC:

SOURCES:

PIC® documentation is available from:

Microchip Technology Inc. 2355 West Chandler Blvd. Chandler AZ 85224-6199 (480) 792-7200 (480) 792-7277 fax

micro Engineering Rabs, Onc.

Box 60039 Colorado Springs CO 80960 (719) 520-5323 (719) 520-1867 fax

http://www.melabs.com email: support@melabs.com

KA78XX/KA78XXA

3-Terminal 1A Positive Voltage Regulator

Features

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection

Description

The KA78XX/KA78XXA series of three-terminal positive regulator are available in the TO-220/D-PAK package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut down and safe operating area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Internal Block Digram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage (for V _O = 5V to 18V) (for V _O = 24V)	V _I V _I	35 40	V V
Thermal Resistance Junction-Cases (TO-220)	R ₀ JC	5	°C/W
Thermal Resistance Junction-Air (TO-220)	RθJA	65	°C/W
Operating Temperature Range (KA78XX/A/R)	TOPR	0 ~ +125	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Electrical Characteristics (KA7805/KA7805R)

(Refer to test circuit $,0^{\circ}C < T_{J} < 125^{\circ}C, I_{O} = 500 \text{mA}, V_{I} = 10 \text{V}, C_{I} = 0.33 \mu\text{F}, C_{O} = 0.1 \mu\text{F}, unless otherwise specified)$

Doromotor	Cumbal	Conditions		ŀ	KA780	5	Unit
Parameter	Symbol		onaitions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		4.8	5.0	5.2	
Output Voltage	Vo	$5.0 \text{mA} \le \text{lo} \le 1$ V _I = 7V to 20V	$1.0A, PO \leq 15W$	4.75	5.0	5.25	V
Line Regulation (Note1)	Poglino	T _{J=+25} °C	Vo = 7V to 25V	-	4.0	100	mV
Line Regulation (Note1)	Regline	1J=+25 C	VI = 8V to 12V	-	1.6	50	IIIV
Load Regulation (Note1)	Regload	T _{J=+25} °C	IO = 5.0mA to1.5A	-	9	100	mV
Load Regulation (Note 1)	Regioad	1J=+25 °C	I _O =250mA to 750mA	-	4	50	IIIV
Quiescent Current	IQ	T _J =+25 °C		-	5.0	8.0	mA
Quiacant Current Change	ΔlQ	$I_0 = 5mA \text{ to } 1.0$	A	-	0.03	0.5	mA
Quiescent Current Change		V _I = 7V to 25V		-	0.3	1.3	111/4
Output Voltage Drift	ΔV0/ΔΤ	IO= 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100H	KHz, T _A =+25 °C	-	42	-	μ٧/٧ο
Ripple Rejection	RR	f = 120Hz Vo = 8V to 18V		62	73	-	dB
Dropout Voltage	VDrop	IO = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	rO	f = 1KHz		-	15	-	mΩ
Short Circuit Current	Isc	VI = 35V, TA =+	25 °C	-	230	-	mA
Peak Current	IPK	T _J =+25 °C		-	2.2	-	Α

Load and line regulation are specified at constant junction temperature. Changes in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA7806/KA7806R)

(Refer to test circuit ,0 $^{\circ}$ C < T_J < 125 $^{\circ}$ C, I_O = 500mA, V_I =11V, C_I= 0.33 μ F, C_O=0.1 μ F, unless otherwise specified)

Parameter	Cumbal	Co	onditions		KA780	6	Unit
Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		5.75	6.0	6.25	
Output Voltage	Vo	$5.0\text{mA} \le I_O \le 1.0\text{A}, P_O \le 15\text{W}$ VI = 8.0V to 21V		5.7	6.0	6.3	V
Line Regulation (Note1)	Poglino	TJ =+25 °C	V _I = 8V to 25V	-	5	120	mV
Line Regulation (Note I)	Regline	1J=+25 C	VI = 9V to 13V	-	1.5	60	IIIV
Load Bogulation (Note1)	Doglood	TJ =+25 °C	I _O =5mA to 1.5A	-	9	120	mV
Load Regulation (Note1)	Regload	1J=+25 C	IO =250mA to750mA	-	3	60	IIIV
Quiescent Current	IQ	T _J =+25 °C		-	5.0	8.0	mA
Quioccont Current Change	Alo	I _O = 5mA to 1A	I _O = 5mA to 1A		-	0.5	mA
Quiescent Current Change	ΔlQ	V _I = 8V to 25V		-	-	1.3	IIIA
Output Voltage Drift	ΔV _O /ΔΤ	I _O = 5mA		-	-0.8	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 100KI	Hz, T _A =+25 °C	-	45	-	μV/Vo
Ripple Rejection	RR	f = 120Hz V _I = 9V to 19V			75	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	ro	f = 1KHz		-	19	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =+2	5 °C	-	250	-	mA
Peak Current	IPK	T _J =+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA7808/KA7808R)

(Refer to test circuit 0° C < T_J < 125° C, I_O = 500mA, V_I =14V, C_I= 0.33μ F, C_O= 0.1μ F, unless otherwise specified)

Parameter	Cumbal	Ca	enditions		KA7808	3	Unit
Parameter	Symbol		onations	Min.	Тур.	Max.	Unit
		TJ =+25 °C		7.7	8.0	8.3	
Output Voltage	Vo		1.0A, $P_0 \le 15W$				V
		$V_{I} = 10.5V \text{ to } 2$	23V	7.6	8.0	8.4	-
Line Regulation (Note1)	Regline	TJ =+25 °C	$V_I = 10.5V \text{ to } 25V$	-	5.0	160	mV
Line Regulation (Note I)	rteginie	11 = +25 C	V _I = 11.5V to 17V	-	2.0	80	IIIV
			I _O = 5.0mA to 1.5A	-	10	160	
Load Regulation (Note1)	Regload	TJ =+25 °C	IO= 250mA to 750mA	-	5.0	80	mV
Quiescent Current	IQ	TJ =+25 °C	TJ =+25 °C		5.0	8.0	mA
Quiacant Current Change	41-	I _O = 5mA to 1.	0A	-	0.05	0.5	m ^
Quiescent Current Change	ΔlQ	VI = 10.5A to 25V		-	0.5	1.0	mA
Output Voltage Drift	ΔV _O /ΔT	I _O = 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100l	KHz, T _A =+25 °C	-	52	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, V _I =	11.5V to 21.5V	56	73	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	ro	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =-	+25 °C	-	230	-	mA
Peak Current	IPK	TJ =+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA7809/KA7809R)

(Refer to test circuit 0° C < T_J < 125° C, I_O = 500mA, V_I =15V, C_I= 0.33μ F, C_O= 0.1μ F, unless otherwise specified)

Doromotor	Cumbal	Conditions			KA780	9	Unit
Parameter	Symbol			Min.	Тур.	Max.	Unit
		T _J =+25 °C		8.65	9	9.35	
Output Voltage	Vo	5.0mA≤ I _O ≤1.0A V _I = 11.5V to 24V	5.0mA≤ I _O ≤1.0A, P _O ≤15W V _I = 11.5V to 24V		9	9.4	V
Line Regulation (Note1)	Doglino	TJ=+25 °C	V _I = 11.5V to 25V	-	6	180	m\/
Line Regulation (Note1)	Regline	1J=+25 C	V _I = 12V to 17V	-	2	90	mV
Load Regulation (Note1)	Dogland	TJ=+25 °C	I _O = 5mA to 1.5A	-	12	180	m\/
Load Regulation (Note1)	Regload	lo:	IO = 250mA to 750mA	-	4	90	mV
Quiescent Current	IQ	T _{J=+25} °C		-	5.0	8.0	mA
Ouissant Current Change	Alo	IO = 5mA to 1.0A		-	-	0.5	m ^
Quiescent Current Change	ΔlQ	V _I = 11.5V to 26V		-	-	1.3	- mA
Output Voltage Drift	ΔV0/ΔΤ	Io = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KH	z, TA =+25 °C	-	58	-	μV/Vo
Ripple Rejection	RR	f = 120Hz V _I = 13V to 23V		56	71	-	dB
Dropout Voltage	V _{Drop}	Io = 1A, TJ=+25	I _O = 1A, T _J =+25 °C		2	-	V
Output Resistance	rO	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =+25 °C		-	250	-	mA
Peak Current	IPK	TJ= +25 °C		-	2.2	-	Α

Note

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA7810)

(Refer to test circuit 0° C < T_J < 125° C, I_O = 500mA, V_I =16V, C_I= 0.33μ F, C_O= 0.1μ F, unless otherwise specified)

Parameter	Cymbal	Co	Conditions)	Unit
Parameter	Symbol		onditions	Min.	Тур.	Max.	Onit
		TJ =+25 °C		9.6	10	10.4	
Output Voltage	Vo	5.0mA ≤ I _O ≤ 1.0 V _I = 12.5V to 25 ^V		9.5	10	10.5	V
Line Degulation (Note1)	Dogling	TJ =+25 °C	V _I = 12.5V to 25V	-	10	200	mV
Line Regulation (Note1)	Regline	1J =+25 C	VI = 13V to 25V	-	3	100	IIIV
Load Regulation (Note1)	Dogland	TJ =+25 °C	I _O = 5mA to 1.5A	-	12	200	mV
Load Regulation (Note1)	Regload	1J =+25 C	IO = 250mA to 750mA	-	4	400	IIIV
Quiescent Current	IQ	T _J =+25 °C		-	5.1	8.0	mA
Quicecent Current Change	Alo	ΔIQ IO = 5mA to 1.0A		-	-	0.5	mΛ
Quiescent Current Change	ΔIQ	V _I = 12.5V to 29	V	-	-	1.0	mA
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KH	lz, T _A =+25 °C	-	58	-	μV/Vo
Ripple Rejection	RR	f = 120Hz V _I = 13V to 23V		56	71	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	ro	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =+2	5°C	1	250	-	mA
Peak Current	IPK	TJ =+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA7812/KA7812R)

(Refer to test circuit 0° C < T_J < 125° C, I_O = 500mA, V_I =19V, C_I= 0.33μ F, C_O= 0.1μ F, unless otherwise specified)

Davamatar	Cumbal		an diti a na	KA78	312/KA	7812R	Unit
Parameter	Symbol		Conditions		Тур.	Max.	Unit
		TJ =+25 °C		11.5	12	12.5	
Output Voltage	Vo	5.0mA ≤ I _O ≤1.0A, P _O ≤15W VI = 14.5V to 27V		11.4	12	12.6	V
Line Regulation (Note1)	Dogling	T _J =+25 °C	V _I = 14.5V to 30V	-	10	240	m\/
Line Regulation (Note1)	Regline	1J=+25 C	V _I = 16V to 22V	-	3.0	120	mV
Load Regulation (Note1)	Doglood	T _J =+25 °C	I _O = 5mA to 1.5A	-	11	240	>/
Load Regulation (Note1)	Regload	1J=+25 C	IO = 250mA to 750mA	-	5.0	120	mV
Quiescent Current	IQ	T _J =+25 °C		-	5.1	8.0	mA
Ouisseent Current Change	ΔlQ	I _O = 5mA to 1.0A		-	0.1	0.5	mA
Quiescent Current Change		V _I = 14.5V to 30V		-	0.5	1.0	I IIIA
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KHz	z, T _A =+25 °C	-	76	-	μV/Vo
Ripple Rejection	RR	f = 120Hz V _I = 15V to 25V		55	71	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	rO	f = 1KHz		-	18	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =+25	5 °C	-	230	-	mA
Peak Current	IPK	TJ = +25 °C		-	2.2	-	А

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA7815)

(Refer to test circuit 0° C < T_J < 125° C, I_O = 500mA, V_I =23V, C_I= 0.33μ F, C_O= 0.1μ F, unless otherwise specified)

Parameter	Cymbol	Ca	onditions	k	(A781	5	Unit
Parameter	Symbol		Diditions	Min.	Тур.	Max.	Oilit
		TJ =+25 °C		14.4	15	15.6	
Output Voltage	Vo	_	$5.0\text{mA} \le I_0 \le 1.0\text{A}, P_0 \le 15\text{W}$ V _I = 17.5V to 30V		15	15.75	V
Line Regulation (Note1)	Poglino	TJ =+25 °C	V _I = 17.5V to 30V	-	11	300	mV
Line Regulation (Note1)	Regline	1J=+25 C	VI = 20V to 26V	-	3	150	IIIV
Load Regulation (Note1)	Pagland	TJ =+25 °C	I _O = 5mA to 1.5A	-	12	300	mV
Load Regulation (Note1)	Regload	1J=+25 C	IO = 250mA to 750mA	-	4	150	IIIV
Quiescent Current	lQ	T _J =+25 °C		-	5.2	8.0	mA
Quiescent Current Change	Alo	ΔIQ IO = 5mA to 1.0A		-	-	0.5	mA
Quiescent Current Change	ΔIQ	$V_{I} = 17.5 \text{V to } 30 \text{V}$	/	-	-	1.0	IIIA
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KH	z, TA =+25 °C	-	90	-	μV/Vo
Ripple Rejection	RR	f = 120Hz V _I = 18.5V to 28.	5V	54	70	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	ro	f = 1KHz		-	19	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =+2	5°C	-	250	-	mA
Peak Current	IPK	TJ =+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA7818)

(Refer to test circuit 0° C < T_J < 125° C, I_O = 500mA, V_I =27V, C_I= 0.33μ F, C_O= 0.1μ F, unless otherwise specified)

Doromotor	Symbol Conditions		ŀ	(A781	В	Unit	
Parameter	Symbol		Conditions		Тур.	Max.	Unit
		TJ =+25 °C	T _J =+25 °C		18	18.7	
Output Voltage	Vo	5.0mA ≤ I _O ≤1.0A V _I = 21V to 33V			18	18.9	V
Line Deculation (Noted)	Dogling	TJ =+25 °C	V _I = 21V to 33V	-	15	360	\/
Line Regulation (Note1)	Regline	1J=+25°C	VI = 24V to 30V	-	5	180	mV
Load Decidation (Note1)	Dogland	T 25 00	I _O = 5mA to 1.5A	-	15	360	\/
Load Regulation (Note1)	Regload	TJ =+25 °C	IO = 250mA to 750mA	-	5.0	180	- mV
Quiescent Current	lQ	T _J =+25 °C		-	5.2	8.0	mA
Quincont Current Change	ΔlQ	IO = 5mA to 1.0A		-	-	0.5	mA
Quiescent Current Change		V _I = 21V to 33V		-	-	1] ""^
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KH	z, TA =+25 °C	-	110	_	μV/Vo
Ripple Rejection	RR	f = 120Hz V _I = 22V to 32V		53	69	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	ro	f = 1KHz		-	22	_	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =+25	5°C	-	250	-	mA
Peak Current	IPK	TJ =+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA7824)

(Refer to test circuit 0° C < T_J < 125° C, I_O = 500mA, V_I = 33V, C_I= 0.33μ F, C_O= 0.1μ F, unless otherwise specified)

Donometer	Symbol	mbol Conditions		KA7824			Unit
Parameter	Conditions		Min.	Тур.	Max.	Unit	
		TJ =+25 °C		23	24	25	
Output Voltage	Vo	$5.0 \text{mA} \le I_0 \le 1.0 \text{A}$ VI = 27V to 38V			24	25.25	V
Line Regulation (Note1)	Poglino	TJ =+25 °C	V _I = 27V to 38V	-	17	480	mV
Line Regulation (Note1)	Regline	TJ =+25 C	VI = 30V to 36V	-	6	240	IIIV
Load Regulation (Note1)	Regload	TJ =+25 °C	I _O = 5mA to 1.5A	-	15	480	mV
Load Regulation (Note I)	Regioau	TJ =+25 C	IO = 250mA to 750mA	-	5.0	240	IIIV
Quiescent Current	lQ	TJ =+25 °C		-	5.2	8.0	mA
Quiescent Current Change	ΔlQ	I _O = 5mA to 1.0A	I _O = 5mA to 1.0A		0.1	0.5	mA
Quiescent Current Change	ΔiQ	$V_{I} = 27V \text{ to } 38V$		-	0.5	1	IIIA
Output Voltage Drift	ΔV0/ΔΤ	IO = 5mA		-	-1.5	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 100KHz	z, T _A =+25 °C	-	60	-	μV/Vo
Ripple Rejection	RR	f = 120Hz VI = 28V to 38V			67	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	ro	f = 1KHz		-	28	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =+25	V _I = 35V, T _A =+25 °C		230	-	mA
Peak Current	IPK	T _J =+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA7805A)

(Refer to the test circuits. 0° C < T_J < +125 $^{\circ}$ C, I_O =1A, V I = 10V, C I=0.33 μ F, C O=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		4.9	5	5.1	
Output Voltage	Vo	I _O = 5mA to 1 V _I = 7.5V to 2	, -	4.8	5	5.2	V
		V _I = 7.5V to 2 I _O = 500mA	5V	-	5	50	
Line Regulation (Note1)	Regline	V _I = 8V to 12\	/	-	3	50	mV
		TJ =+25 °C	V _I = 7.3V to 20V	-	5	50	
		1J=+25 °C	V _I = 8V to 12V	-	1.5	25	
Load Regulation (Note1)		T _J =+25 °C I _O = 5mA to 1	T _J =+25 °C I _O = 5mA to 1.5A		9	100	.,
	Regload	IO = 5mA to 1A		-	9	100	mV
		Io = 250mA to	I _O = 250mA to 750mA		4	50	
Quiescent Current	IQ	TJ =+25 °C		-	5.0	6.0	mA
0: 10 1		I _O = 5mA to 1	-	-	0.5		
Quiescent Current Change	ΔlQ	VI = 8 V to 25V, IO = 500mA		-	-	0.8	mA
Change		$V_I = 7.5V \text{ to } 2$	-	-	0.8		
Output Voltage Drift	ΔV/ΔΤ	lo = 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 10 TA =+25 °C	00KHz	-	10	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, I _O V _I = 8V to 18\	-	68	-	dB	
Dropout Voltage	V _{Drop}	Io = 1A, T _J =-	-	2	-	V	
Output Resistance	rO	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =	:+25 °C	-	250	-	mA
Peak Current	IPK	TJ= +25 °C		-	2.2	-	А

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA7806A)

(Refer to the test circuits. 0° C < T_J < +125 $^{\circ}$ C, I_O =1A, V I = 11V, C I=0.33 μ F, C O=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		5.58	6	6.12	
Output Voltage	Vo	IO = 5mA to 1 VI = 8.6V to 2	, -	5.76	6	6.24	V
Line Regulation (Note1)		V _I = 8.6V to 29 IO = 500mA	5V	-	5	60	
	Regline	V _I = 9V to 13V	1	-	3	60	mV
		TJ =+25 °C	V _I = 8.3V to 21V	-	5	60	
		1J=+25 °C	V _I = 9V to 13V	-	1.5	30	
Load Regulation (Note1)		T _J =+25 °C I _O = 5mA to 1	.5A	-	9	100	
	Regload	IO = 5mA to 1	A	-	4	100	mV
		I _O = 250mA to 750mA		-	5.0	50	
Quiescent Current	IQ	TJ =+25 °C		-	4.3	6.0	mA
		I _O = 5mA to 1	A	-	-	0.5	
Quiescent Current Change	ΔlQ	VI = 9V to 25	V, IO = 500mA	-	-	0.8	mA
		V _I = 8.5V to 21V, T _J =+25 °C		-	-	0.8	1
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KHz TA =+25 °C		-	10	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, I _O = 500mA V _I = 9V to 19V		-	65	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	rO	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =	=+25 °C	-	250	-	mA
Peak Current	IPK	TJ=+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA7808A)

(Refer to the test circuits. 0° C < T_J < +125 $^{\circ}$ C, I_O =1A, V _I = 14V, C _I=0.33 μ F, C _O=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		7.84	8	8.16	
Output Voltage	Vo	I _O = 5mA to 1 V _I = 10.6V to	, -	7.7	8	8.3	V
Line Demokratica (Mared)		V _I = 10.6V to 2 IO = 500mA	25V	-	6	80	
Line Regulation (Note1)	Regline	V _I = 11V to 17	V	-	3	80	mV
		TJ =+25 °C	V _I = 10.4V to 23V	-	6	80	
		1J =+25 °C	V _I = 11V to 17V	-	2	40	
Load Regulation (Note1)		T _J =+25 °C I _O = 5mA to 1.5A		-	12	100	mV
	Regload	IO = 5mA to 1A		-	12	100	
		I _O = 250mA to 750mA		-	5	50	
Quiescent Current	IQ	T _J =+25 °C		-	5.0	6.0	mA
		IO = 5mA to 1A		-	-	0.5	
Quiescent Current Change	ΔlQ	VI = 11V to 25	5V, IO = 500mA	-	-	0.8	mA
		V _I = 10.6V to 23V, T _J =+25 °C		-	-	0.8	
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KHz TA =+25 °C		-	10	-	μV/Vο
Ripple Rejection	RR	f = 120Hz, I _O = 500mA V _I = 11.5V to 21.5V		-	62	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2	-	V
Output Resistance	rO	f = 1KHz		-	18	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =	-+25 °C	-	250	-	mA
Peak Current	IPK	TJ=+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA7809A)

(Refer to the test circuits. 0° C < T_J < +125 $^{\circ}$ C, I₀ =1A, V _I = 15V, C _I=0.33 μ F, C _O=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		TJ =+25°C		8.82	9.0	9.18	
Output Voltage	Vo	I _O = 5mA to 1 V _I = 11.2V to	, -	8.65	9.0	9.35	V
		V _I = 11.7V to 2 I _O = 500mA	25V	-	6	90	
Line Regulation (Note1)	Regline	V _I = 12.5V to	19V	-	4	45	mV
		TJ =+25°C	V _I = 11.5V to 24V	-	6	90	
		1J =+25 C	V _I = 12.5V to 19V	-	2	45	
Load Regulation (Note1)		T _J =+25°C I _O = 5mA to 1	.0A	-	12	100	.,
	Regload	IO = 5mA to 1	.0A	-	12	100	mV
		I _O = 250mA to 750mA		-	5	50	
Quiescent Current	IQ	T _J =+25 °C		-	5.0	6.0	mA
		V _I = 11.7V to	25V, TJ=+25 °C	-	-	0.8	
Quiescent Current Change	Δ lQ	VI = 12V to 25	5V, IO = 500mA	-	-	0.8	mA
		I _O = 5mA to 1	.0A	-	-	0.5	
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		-	-1.0	-	mV/ °C
Output Noise Voltage	VN	f = 10Hz to 100KHz TA =+25 °C		-	10	-	μV/Vο
Ripple Rejection	RR	f = 120Hz, I _O = 500mA V _I = 12V to 22V		-	62	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2.0	-	V
Output Resistance	ro	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =	=+25 °C	-	250	-	mA
Peak Current	IPK	TJ=+25°C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA7810A)

(Refer to the test circuits. 0° C < T_J < +125 $^{\circ}$ C, I_O =1A, V I = 16V, C I=0.33 μ F, C O=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		TJ =+25°C		9.8	10	10.2	Wnit V mV mA mA mV/°C μV/Vo dB
Output Voltage	Vo	IO = 5mA to 7 VI =12.8V to	1A, P _O ≤ 15W 25V	9.6	10	10.4	V
		V _I = 12.8V to IO = 500mA	26V	-	8	100	
Line Regulation (Note1)	Regline	V _I = 13V to 20)V	-	4	50	mV
		TJ =+25 °C	V _I = 12.5V to 25V	-	8	100	
		1J =+25 C	V _I = 13V to 20V	-	3		
Load Regulation (Note1)		$T_J = +25 ^{\circ}C$ $I_O = 5 mA to ^{\circ}$	T _J =+25 °C I _O = 5mA to 1.5A		12	100	
3 (,	Regload	IO = 5mA to 1	1.0A	-	12	100	m۷
		I _O = 250mA to 750mA		-	5	50	
Quiescent Current	IQ	TJ =+25 °C		-	5.0	6.0	mA
		V _I = 13V to 2	6V, TJ=+25 °C	-	-	0.5	
Quiescent Current Change	ΔlQ	V _I = 12.8V to	25V, IO = 500mA	-	-	0.8	mA
		I _O = 5mA to 1.0A		-	-	0.5	
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		-	-1.0	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KHz T _A =+25 °C		-	10	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, I _O = 500mA V _I = 14V to 24V		-	62	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25°C		-	2.0	-	V
Output Resistance	ro	f = 1KHz		-	17	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =	=+25 °C	-	250	-	mA
Peak Current	IPK	TJ=+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA7812A)

(Refer to the test circuits. 0° C < T_J < +125 $^{\circ}$ C, I_O =1A, V _I = 19V, C _I=0.33 μ F, C _O=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		11.75	12	12.25	
Output Voltage	Vo	IO = 5mA to 7 VI = 14.8V to	, -	11.5	12	12.5	V
		V _I = 14.8V to IO = 500mA	30V	-	10	120	
Line Regulation (Note1)	Regline	V _I = 16V to 22	2V	-	4	120	mV
		TJ =+25 °C	V _I = 14.5V to 27V	-	10	120	
		1J=+25 C	V _I = 16V to 22V	-	3	60	
Load Regulation (Note1)	5	T _J =+25 °C I _O = 5mA to 1.5A		-	12	100	mV
	Regioad	egload IO = 5mA to 1.0A - IO = 250mA to 750mA -	-	12	100		
		I _O = 250mA to 750mA		-	5	50	
Quiescent Current	IQ	TJ =+25°C		-	5.1	6.0	mA
		$V_I = 15V$ to 30V, $T_J=+25$ $^{\circ}C$		-		0.8	
Quiescent Current Change	ΔlQ	V _I = 14V to 2	7V, IO = 500mA	-		0.8	mA
		I _O = 5mA to 1.0A		-		0.5	
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		-	-1.0	ı	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KHz TA =+25°C		-	10	-	μV/Vο
Ripple Rejection	RR	f = 120Hz, I _O = 500mA V _I = 14V to 24V		-	60	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25°C		-	2.0	-	V
Output Resistance	ro	f = 1KHz		-	18	•	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A :	=+25 °C	-	250	-	mA
Peak Current	IPK	TJ=+25 °C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA7815A)

(Refer to the test circuits. 0° C < T_J < +125 $^{\circ}$ C, I₀ =1A, V I =23V, C I=0.33 μ F, C O=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		14.7	15	15.3	
Output Voltage	Vo	$I_0 = 5mA \text{ to } 2$ V _I = 17.7V to		14.4	15	15.6	V
		V _I = 17.9V to I _O = 500mA	30V	-	10	150	
Line Regulation (Note1)	Regline	V _I = 20V to 26	V	-	5	150	mV
		TJ =+25°C	V _I = 17.5V to 30V	-	11	150	
		1J=+25 C	V _I = 20V to 26V	-	3	150 150	
Load Regulation (Note1)		$T_J = +25 ^{\circ}C$ $I_O = 5mA to ^{\circ}$	1.5A	-	- 12 100		.,
	Regload	IO = 5mA to 1	1.0A	-	12	50	mV
		I _O = 250mA to 750mA		-	5	50	
Quiescent Current	IQ	TJ =+25 °C		-	5.2	6.0	mA
		V _I = 17.5V to	30V, T _J =+25 °C	-	-	0.8	
Quiescent Current Change	ΔlQ	V _I = 17.5V to	30V, IO = 500mA	-	-	0.8	mA
		I _O = 5mA to 1.0A		-	-	0.5	
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		-	-1.0	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KHz T _A =+25 °C		-	10	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, I _O = 500mA V _I = 18.5V to 28.5V		-	58	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25 °C		-	2.0	-	V
Output Resistance	rO	f = 1KHz		-	19	-	mΩ
Short Circuit Current	Isc	VI= 35V, TA =	=+25 °C	-	250	-	mA
Peak Current	IPK	TJ=+25°C		-	2.2	-	Α

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA7818A)

(Refer to the test circuits. 0° C < T_J < +125 $^{\circ}$ C, I_O =1A, V _I = 27V, C _I=0.33 μ F, C _O=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Co	nditions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		17.64	18	18.36	
Output Voltage	Vo	IO = 5mA to 1 VI = 21V to 3		17.3	18	18.7	V
		V _I = 21V to 33 IO = 500mA	3V	-	15	180	V mV mA mA mV/°C μV/Vo dB
Line Regulation (Note1)	Regline	V _I = 21V to 33	3V	-	5	180	mV
		TJ =+25 °C	V _I = 20.6V to 33V	-	15	180	
		V _I = 24V to 30V	-	5	90	1	
Load Regulation (Note1)	5	$T_J = +25^{\circ}C$ $I_O = 5mA \text{ to } 1.5A$		-	15	100	mV
5	Regload	IO = 5mA to 1.0A		-	15	100	
		I _O = 250mA to 750mA		-	7	50	
Quiescent Current	IQ	TJ =+25 °C	-	5.2	6.0	mA	
		V _I = 21V to 3	3V, TJ=+25 °C	-	-	0.8	
Quiescent Current Change	ΔlQ	V _I = 21V to 3	3V, IO = 500mA	-	-	0.8	mA
		I _O = 5mA to 1	1.0A	-	-	0.5	
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		-	-1.0	i	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100KHz T _A =+25°C		-	10	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, I _O = 500mA V _I = 22V to 32V		-	57	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =+25°C		-	2.0	-	V
Output Resistance	ro	f = 1KHz		-	19	•	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =	=+25°C	-	250	•	mA
Peak Current	IPK	TJ=+25 °C		-	2.2	i	Α

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Electrical Characteristics (KA7824A)

(Refer to the test circuits. 0° C < T_J < +125 $^{\circ}$ C, I₀ =1A, V _I = 33V, C _I=0.33 μ F, C _O=0.1 μ F, unless otherwise specified)

Parameter	Symbol	Co	onditions	Min.	Тур.	Max.	Unit
		TJ =+25 °C		23.5	24	24.5	
Output Voltage	ltage VO I _O = 5mA to 1A, P _O ≤15W VI = 27.3V to 38V						V
		V _I = 27V to 38 IO = 500mA	3V	-	18	240	
Line Regulation (Note1)	Regline	V _I = 21V to 33	BV	-	6	240	mV
		TJ =+25 °C	V _I = 26.7V to 38V	-	18	240	
		1J =+25 C	V _I = 30V to 36V	-	6	120	
Load Regulation (Note1)		$T_J = +25 ^{\circ}C$ $I_O = 5mA to 1$	I.5A	-	15	100	.,
	Regload	IO = 5mA to 1	1.0A	-	15	100	mV
		I _O = 250mA t	o 750mA	-	7	50	
Quiescent Current	IQ	TJ =+25 °C		-	5.2	6.0	mA
		$V_I = 27.3V$ to	-	-	0.8		
Quiescent Current Change	ΔlQ	V _I = 27.3V to	38V, IO = 500mA	-	-	0.8	mA
		I _O = 5mA to 1	I.0A	-	-	0.5	
Output Voltage Drift	ΔV/ΔΤ	IO = 5mA		-	-1.5	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 10 TA = 25 °C	00KHz	-	10	-	μV/Vo
Ripple Rejection	RR	f = 120Hz, I _O V _I = 28V to 3		-	54	-	dB
Dropout Voltage	V _{Drop}	I _O = 1A, T _J =	+25 °C	-	2.0	-	V
Output Resistance	ro	f = 1KHz		-	20	ı	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A =	=+25 °C	-	250	ı	mA
Peak Current	IPK	TJ=+25 °C		-	2.2	-	Α

Note:

^{1.} Load and line regulation are specified at constant junction temperature. Change in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

Typical Perfomance Characteristics

Figure 1. Quiescent Current

Figure 3. Output Voltage

Figure 2. Peak Output Current

Figure 4. Quiescent Current

Typical Applications

Figure 5. DC Parameters

Figure 6. Load Regulation

Figure 7. Ripple Rejection

Figure 8. Fixed Output Regulator

Figure 9. Constant Current Regulator

Notes:

- (1) To specify an output voltage. substitute voltage value for "XX." A common ground is required between the input and the Output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.
- (2) C_I is required if regulator is located an appreciable distance from power Supply filter.
- (3) Co improves stability and transient response.

 $I_{RI} \ge 5IQ$ $VO = VXX(1+R_2/R_1)+I_QR_2$

Figure 10. Circuit for Increasing Output Voltage

 $I_{RI} \ge 5 I_{Q}$ $V_{O} = V_{XX}(1+R_{2}/R_{1})+I_{Q}R_{2}$

Figure 11. Adjustable Output Regulator (7 to 30V)

Figure 12. High Current Voltage Regulator

Figure 13. High Output Current with Short Circuit Protection

Figure 14. Tracking Voltage Regulator

Figure 15. Split Power Supply (±15V-1A)

Figure 16. Negative Output Voltage Circuit

Figure 17. Switching Regulator

Mechanical Dimensions

Package

TO-220

Mechancal Dimensions (Continued)

Package

Ordering Information

Product Number	Output Voltage Tolerance	Package	Operating Temperature
KA7805 / KA7806			
KA7808 / KA7809			
KA7810	<u>±</u> 4%		
KA7812 / KA7815			
KA7818 / KA7824		TO-220	
KA7805A / KA7806A		10-220	
KA7808A / KA7809A			0 ~ + 125°C
KA7810A / KA7812A	±2%		
KA7815A / KA7818A			
KA7824A			
KA7805R / KA7806R			
KA7808R / KA7809R	±4%	D-PAK	
KA7812R			

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.

SERIES 96 Conductive Rubber

FEATURES

- Quality, Economical Keyboards
- Easily Customized Legends
- Matrix Circuitry
- Backlit and Shielded Options Available
- Termination Mates With Standard Connectors
- Tactile Feedback to Operator
- 1,000,000 Operations per Button
- Compatible With High Resistance Logic Inputs

The Series 96 is Grayhill's most economical 3x4 and 4x4 keypad family. The contact system utilizes conductive rubber to mate the appropriate PC board traces. Offered in matrix circuitry, with shielded and backlit options. Built with quality component parts, the Series 96 is subjected to our rigid statistical process control to insure that it meets our reliability standards.

DIMENSIONS In inches (and millimeters)

DIMENSIONS In inches (and millimeters)

DIMENSIONS In inches (and millimeters)

CODE AND TRUTH TABLES Dots in the chart indicate connected terminals when switch is closed. Terminals are identified on the keyboard. 12 Button Keypads 16 Button Keypads MATRIX CODES MATRIX CODES 3x4 4x4 Shielded/Backlit Standard Shielded/Backlit Standard . • Shielded keypad = Shielded Backlit keypad = NC • Shielded keypad = Shielded Backlit keypad = NC • • . Shielded and backlit keypad = • • Shielded and backlit keypad = • • • • LOCATION Shielded **BUTTON LOCATION** Shielded • • • Shielded keypad = NC Shielded keypad = NC Backlit keypad = EL Panel 1 Shielded and backlit keypad = Backlit keypad = EL Panel 1 Shielded and backlit keypad = • • BUTTON • • • • . • EL Panel 1 EL Panel 1 • • • • • Shielded keypad = NC Shielded keypad = NC -• • Backlit keypad = EL Panel 2 Backlit keypad = EL Panel 2 • Shielded and backlit keypad = Shielded and backlit keypad = 1 2 3 4 6 7 8 2 3 4 5 1 9 EL Panel 2 EL Panel 2 • • • TERMINAL LOCATION • • **TERMINAL LOCATION**

SPECIFICATIONS

Rating Criteria

Rating at 12 Vdc: 5 milliamps for .5 seconds

Contact Bounce: < 12 milliseconds

Contact Resistance: < 100 ohms (at stated

operating force)

Voltage Breakdown: 250 Vac between

components

Mechanical Operation Life: 1,000,000

operations per key

Insulation Resistance: > 1012 ohms @ 500 Vdc

Push Out Force Per Pin: 5 lbs.

Operating Features

Travel: .040 minimum

Operating Force: 175 ± 40 grams Operating Temperature: -30°C to +80°C

Material and Finishes

Terminal Pin: Phosphor bronze, solder-plated

PC Board: FR-4 glass cloth epoxy **Keypad:** Silicone rubber, durometer 50 ± 5

Housing: ABS, cycolac "KJW"

Housing Color: Black

Shielding Effectiveness

Results shown are typical for a standard Grayhill Series 84S keyboard. A conductive gasket will generally increase the shielding, depending on the size and shape of the gasket and its material. Data derived for E-Field Radiation.

Test Method:

Measurements were made with the keyboard mounted to a brass plate, which in turn was mounted to a shielded enclosure containing the receiving equipment. A signal generator provided the frequency source that was radiated from the transmitting antenna to the enclosed receiving antenna. The spacing between antennas was maintained constant throughout the frequency range. The effectiveness rating is determined by establishing a reference reading without obstruction between the two antennas and determining the difference between that reading and the test setup reading.

Note:

When measured in actual equipment, shielding effectiveness is determined by many factors. This method accurately represents the shielding effectiveness of the Grayhill Series 84S under Ideal test conditions.

 Represents shielding effectiveness greater than or equal to line.

Frequency M Hz	Rating in dB
0.1	≥ 66.2
10	≥ 94.8
100	90.5
400	64.2
800	42.3
2,000	40.5
6,000	33.1
10,000	34.4
18,000	37.0

STANDARD LEGENDS

Available through Grayhill Distributors

To order one of the configurations below, use the dash number shown here; select the keypad size and code, and order the part number with the appropriate legend dash number.

ORDERING INFORMATION

Available from your local Grayhill Distributor.

For prices and discounts, contact a local Sales Office, an authorized local Distributor or Grayhill.

PRODUCT SPECIFICATIONS

- PHYSICAL DATA
- EXTERNAL DIMENSIONS
- BLOCK DIAGRAM
- ABSOLUTE MAXIMUM RATINGS
- ELECTRICAL CHARACTERISTICS
- OPERATING PRINCIPLES & METHODS
- DISPLAY DATA RAM ADDRESS MAP
- ELECTRO-OPTICAL CHARACTERISTICS
- INTERFACE PIN CONNECTIONS
- CIRCUIT DIAGRAM
- RELIABILITY
- QUALITY GUARANTEE
- INSPECTION CRITERIA
- PRECAUTIONS FOR USING LCD MODULES
- USING LCD MODULES

Version: 1.1

■ PHYSICAL DATA

Item	Contents	Unit
LCD type	TN / STN / FSTN	
LCD duty	1/16	
LCD bias	1/5	
Viewing direction	6 / 12	o'clock
Module size ($W\times H\times T$)	80.0 × 36.0 × 11.0 MAX (14.0 MAX W/LED BACKLIGHT)	mm
Viewing area (W×H)	64.5×13.8	mm
Number of characters (characters×lines)	16×2	
Character matrix (W×H)	5×8	dots
Character size (W×H)	2.95×4.35	mm
Dot size (W×H)	0.55×0.50	mm
Dot pitch (W×H)	0.60×0.55	mm

■ EXTERNAL DIMENSIONS

■ BLOCK DIAGRAM

Version: 1.1

■ **ABSOLUTE MAXIMUM RATINGS** (Ta = 25°C)

Parameter	Symbol	Min	Max	Unit
Supply voltage for logic	VDD	-0.3	7.0	V
Supply voltage for LCD	VDD - VO	-0.3	VDD+0.3	V
Input voltage	VI	-0.3	VDD+0.3	V
Normal operating temperature	TOP	0	50	°C
Normal storage temperature	TST	-10	60	°C
Wide operating / storage	TOP / TST	-30	80	°C
temperature (except FSTN)				
Wide operating / storage	TOP / TST	-30	70	°C
temperature (FSTN)				

■ **ELECTRICAL CHARACTERISTICS** ($VDD = +5V\pm10\%$, VSS = 0V, Ta = 25°C)

♦ DC Characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply voltage for logic	VDD		4.5	5.0	5.5	V
Supply current for logic	IDD			1.38	3	mA
Operating voltage for LCD	VDD - VO	25°C	4.5	4.8	5.1	V
Input voltage 'H' level	VIH		2.2		VDD	V
Input voltage 'L'level	VIL		-0.3		0.6	V

• Backlight operating information (Ta = 25°C)

	Sup	ply voltage VF	T (V)	Supply current IF (mA)					
LED Backlight	Min	Тур	Max	Min	Тур	Max			
Light box Y/G (-2)		4.2	4.6		80	120			
White (-3LP)		3.4	3.5		20	25			
Blue (-4LP)		3.4	3.5		20	25			
Green (-5LP)		3.4	3.5		20	25			
Amber (-6LP)		1.8	1.9		20	25			
	EL Enal	ole voltage EO	N (VAC)	EL 1	frequency LF	(Hz)			
EL Backlight	Min	Тур	Max	Min	Тур	Max			
EL (B)		100	150		400	1000			

♦ AC Characteristics

• Write mode

Characteristic	Symbol	Min.	Тур.	Max.	Unit	Test pin
E cycle time	$t_{\rm C}$	500			ns	Е
E rise time	t _r			25	ns	Е
E fall time	t_{f}			25	ns	Е
E pulse width (High, Low)	$t_{ m W}$	220			ns	Е
R/W and RS set-up time	t_{SU1}	40			ns	R/W, RS
R/W and RS hold time	t _{h1}	10			ns	R/W, RS
Data set-up time	t_{SU2}	60			ns	$DB_0 \sim DB_7$
Data hold time	t_{h2}	10			ns	$DB_0 \sim DB_7$

LCD MODULE

Read mode

Characteristic	Symbol	Min.	Тур.	Max.	Unit	Test pin
E cycle time	t_{C}	500			ns	Е
E rise time	t _r			25	ns	Е
E fall time	t_{f}			25	ns	Е
E pulse width	t_{W}	220			ns	Е
R/W and RS set-up time	$t_{ m SU}$	40			ns	R/W, RS
R/W and RS hold time	$t_{\rm h}$	10			ns	R/W, RS
Data output delay time	t_{D}			120	ns	$DB_0 \sim DB_7$
Data hold time	$t_{ m DH}$	20			ns	$DB_0 \sim DB_7$

Version: 1.1

■ OPERATING PRINCIPLES & METHODS

♦ Control and Display Command

Command	RS	R/W	\mathbf{DB}_7	DB_6	DB ₅	DB ₄	DB ₃	DB_2	DB_1	DB_0	Execution Time $(f_{osc} = 250kHz)$	Remark
DISPLAY CLEAR	L	L	L	L	L	L	L	L	L	Н	1.64ms	
RETURN HOME	L	L	L	L	L	L	L	L	Н	X	1.64ms	Cursor move to first digit
ENTRY MODE SET	L	L	L	L	L	L	L	Н	I/D	SH	42μs	I/D : Set cursor move direction H Increase L Decrease SH : Specifies shift of display H Display is shifted L Display is not shifted
DISPLAY ON/OFF	L	L	L	L	L	L	Н	D	С	В	42μs	Display H Display on L Display off Cursor C H Cursor on L Cursor off Blinking H Blinking on L Blinking off
SHIFT	L	L	L	L	L	Н	S/C	R/L	X	X	42μs	S/C H Display shift L Cursor move H Right shift L Left shift
SET FUNCTION	L	L	L	L	Н	DL	N	F	X	X	42μs	DL H 8 bits interface L 4 bits interface H 2 line display L 1 line display H 5 X 10 dots F L 5 X 7 dots
SET CG RAM ADDRESS	L	L	L	Н		(corres	sponds to	A address cursor a			42µs	CG RAM Data is sent and received after this setting
SET DD RAM ADDRESS	L	L	Н			DD	RAM ad	dress			42μs	DD RAM Data is sent and received after this setting
READ BUSY FLAG & ADDRESS	L	Н	BF		b			used for M addre		0µs	BF L Ready - Reads BF indication internal operating is being performed - Reads address counter contents	
WRITE DATA	Н	L					Data				46μs	Write data into DD or CG RAM
READ DATA	Н	Н				Read	Data				46μs	Read data from DD or CG RAM

Version: 1.1

♦ Initializing by Internal Reset Circuit

The KS0070B automatically initializes (resets) when the power is on using the internal reset circuit. The following instruction are executed in initialization. The busy flag is kept in busy state (BF=1) until initialization ends. The busy state is 10ms after VDD rises to 4.5V.

- (1) Display Clear
- (2) Function Set

DL = 1:8-bit interface data

N = 0: 1-line display

F = 0:5x7-dot character font

(3) Display On/Off Control

D = 0: Display Off

C = 0: Cursor Off

B = 0: Blink Off

(4) Entry Mode Set I/D = 1 : +1 (Increment)

S = 0: No Shift

♦ Initializing by Instruction

♦ Standard Character Pattern

upper 4 bit lower	0000	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
4 bit \ 0000	CG RAM (1)							00000	00000	00000					
0001	(2)							00000	00000					5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
0010	(3)								00000	2 2 2 M M					
0011	(4)							00000	00000	1970 1970 1970 1970 1970 1970 1970 1970					
0100	(5)								00000						
0101	(6)							00000	00000						
0110	(7)							00000	00000						
0111	(8)								00000						
1000	(1)														
1001	(2)			## ## ## ## ## ## ## ## ## ##				00000	00000						
1010	(3)							00000	00000						
1011	(4)														
1100	(5)	5 M M						00000	00000						
1101	(6)														5 5 5 5 5 5 5
1110	(7)														
1111	(8)							00000							

■ DISPLAY DATA RAM ADDRESS MAP

Characters	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
First line	00H	01H	02H	03H	04H	05H	06H	07H	08H	09H	0AH	0BH	0CH	0DH	0EH	0FH
Second line	40H	41H	42H	43H	44H	45H	46H	47H	48H	49H	4AH	4BH	4CH	4DH	4EH	4FH

■ ELECTRO-OPTICAL CHARACTERISTICS (Vop = 5.0V, Ta = 25°C, Transflective version)

	Typ re	esponse Typ response		TD 4 4]	Typ viewing angle q (deg)			
LCD mode	time Tr (ms)		time Tf (ms)		Typ contrast	T 00	T	T 1000	T
	Normal temp	Wide temp	Normal temp	Wide temp	ratio Cr	$\mathbf{E} = 0^{\circ}$	$E = 90^{\circ}$	$E = 180^{\circ}$	$E = 270^{\circ}$
TN (A)	temp	temp	temp	temp	28	20	40	5	40
STN Y/G (B)		1.47		57	30	60	48	57	47
STN Blue (C)	275				6	52	25	33	33
STN Grey (D)	275	147	61	57	12	60	37	55	38
FSTN (F)					38	65	49	58	48
FSTN Negative (G)					18	53	25	34	33

Note1: Definition of response time.

Note2: Definition of contrast ratio 'Cr'

Note3: Definition of viewing angle range ' θ '.

Version: 1.1

■ INTERFACE PIN CONNECTIONS

Pin NO.	Symbol	Level	Description
1	VSS	0V	Ground
2	VDD	5.0V	Supply voltage for logic
3	VO		Input voltage for LCD
4	RS	H/L	H: Data, L: Instruction code
5	R/W	H/L	H: Read mode, L: Write mode
6	E	$H, H \rightarrow L$	Chip enable signal
7	DB0	H/L	Data bit 0
8	DB1	H/L	Data bit 1
9	DB2	H/L	Data bit 2
10	DB3	H/L	Data bit 3
11	DB4	H/L	Data bit 4
12	DB5	H/L	Data bit 5
13	DB6	H/L	Data bit 6
14	DB7	H/L	Data bit 7
15	A		Backlight anode
16	K		Backlight cathode

■ CIRCUIT DIAGRAM

■ RELIABILITY

♦ Content of Reliability Test

		Environmental Test		
No.	Test Item	Content of Test	Test Condition	Applicable Standard
1	High temperature	Endurance test applying the high storage	60 °C	
	storage	temperature for a long time.	200 hrs	
2	Low temperature	Endurance test applying the low storage	-10 °C	
	storage	temperature for a long time.	200 hrs	
3	High temperature	Endurance test applying the electric stress	50 °C	
	operation	(Voltage & Current) and the thermal stress to the element for a long time.	200 hrs	
4	Low temperature	Endurance test applying the electric stress	0 °C	
	operation	under low temperature for a long time.	200 hrs	
5	High temperature /	Endurance test applying the high temperature	60 °C , 90 %RH	MIL-202E-103B
	Humidity storage	and high humidity storage for a long time.	96 hrs	JIS-C5023
6	High temperature /	Endurance test applying the electric stress	40 °C , 90 %RH	MIL-202E-103B
	Humidity operation	(Voltage & Current) and temperature /	96 hrs	JIS-C5023
		humidity stress to the element for a long time.		
7	Temperature cycle	Endurance test applying the low and high	-10°C / 60°C	
		temperature cycle.	10 cycles	
		$ \begin{array}{ccc} -10^{\circ}\text{C} & \rightleftharpoons & 25^{\circ}\text{C} & \rightleftharpoons & 60^{\circ}\text{C} \\ 30\text{min} & \rightleftharpoons & 5\text{min.} & \rightleftharpoons & 30\text{min} \end{array} $		
		1 cycle		
		Mechanical Test		
8	Vibration test	Endurance test applying the vibration during	10~22Hz → 1.5mmp-p	MIL-202E-201A
		transportation and using.	$22\sim500$ Hz $\to 1.5$ G	JIS-C5025
			Total 0.5hrs	JIS-C7022-A-10
9	Shock test	Constructional and mechanical endurance test	50G half sign	MIL-202E-213B
		applying the shock during transportation.	wave 11 msedc	
			3 times of each	
			direction	
10	Atmospheric	Endurance test applying the atmospheric	115 mbar	MIL-202E-105C
	pressure test	pressure during transportation by air.	40 hrs	
		Others		
11	Static electricity test	Endurance test applying the electric stress to the terminal.	$VS=800V$, $RS=1.5$ k Ω $CS=100$ pF 1 time	MIL-883B-3015.1

^{***} Supply voltage for logic system = 5V. Supply voltage for LCD system = Operating voltage at 25°C.

◆ Failure Judgement Criterion

V I unui e duugement Criterion												
Criterion Item		Test Item No.										Failure Judgment Criterion
	1	2	3	4	5	6	7	8	9	10	11	
Basic specification												Out of the Basic Specification
Electrical characteristic												Out of the DC and AC Characterstic
Mechanical characterstic												Out of the Mechanical Specification Color
												change: Out of Limit Apperance Specification
Optical characterstic												Out of the Apperance Standard

■ QUALITY GUARANTEE

♦ Acceptable Quality Level

Each lot should satisfy the quality level defined as follows.

- Inspection method: MIL-STD-105E LEVEL II Normal one time sampling

- AQL

Partition	AQL	Definition
A: Major	0.4%	Functional defective as product
B: Minor	1.5%	Satisfy all functions as product but not satisfy cosmetic standard

◆ Definition of 'LOT'

One lot means the delivery quantity to customer at one time.

♦ Conditions of Cosmetic Inspection

• Environmental condition

The inspection should be performed at the 1m of height from the LCD module under 2 pieces of 40W white fluorescent lamps (Normal temperature 20~25°C and normal humidity 60±15%RH).

Inspection method

The visual check should be performed vertically at more than 30cm distance from the LCD panel.

Driving voltage

The Vo value which the most optimal contrast can be obtained near the specified Vo in the specification. (Within ± 0.5 V of the typical value at 25°C.).

■ INSPECTION CRITERIA

♦ Module Cosmetic Criteria

1			Partition
	Difference in Spec.	None allowed	Major
2	Pattern peeling	No substrate pattern peeling and floating	Major
3	Soldering defects	No soldering missing	Major
		No soldering bridge	Major
		No cold soldering	Minor
4	Resist flaw on substrate	Invisible copper foil (Ø0.5mm or more) on substrate pattern	Minor
5	Accretion of metallic	No soldering dust	Minor
	Foreign matter	No accretion of metallic foreign matters (Not exceed Ø0.2mm)	Minor
6	Stain	No stain to spoil cosmetic badly	Minor
7	Plate discoloring	No plate fading, rusting and discoloring	Minor
8	Solder amount	a. Soldering side of PCB	Minor
		Solder to form a 'Filet'	
	1. Lead parts	all around the lead.	
	•	Solder should not hide the	
		lead form perfectly. (too much)	
		b. Components side	
		(In case of 'Through Hole PCB')	
		Solder to reach the Components side of PCB.	
	2. Flat packages	Either 'toe' (A) or 'heal' (B) of	Minor
	2. That paringes	the lead to be covered by 'Filet'.	1,111,01
		Lead form to be assume over	
		solder.	
	3. Chips	$(3/2) H \ge h \ge (1/2) H$	Minor
	3. Cmps	(3/2) II ≥ II ≥ (1/2) II	Willion

♦ Screen Cosmetic Criteria (Non-Operating)

No.	Defect	Juc	Partition						
1	Spots	In accordance with Screen Cost	In accordance with Screen Cosmetic Criteria (Operating) No.1.						
2	Lines	In accordance with Screen Cost	metic Criteria (Operating) No.2.	Minor					
3	Bubbles in polarizer	Size: d mm $d \le 0.3$ $0.3 < d \le 1.0$ $1.0 < d \le 1.5$ 1.5 < d	Acceptable Qty in active area Disregard 3 1 0	Minor					
4	Scratch	-	In accordance with spots and lines operating cosmetic criteria. When the light reflects on the panel surface, the scratches are not to be remarkable.						
5	Allowable density	Above defects should be separa	Above defects should be separated more than 30mm each other. Minor						
6	Coloration	Not to be noticeable coloration in the viewing area of the LCD panels.							
		Back-lit type should be judged	Back-lit type should be judged with back-lit on state only.						
7	Contamination	Not to be noticeable.	·	Minor					

♦ Screen Cosmetic Criteria (Operating)

No.	Defect	Jud	lgement Criterion	Partition
1	Spots	A) Clear		Minor
		Size : d mm	Acceptable Qty in active area	
		d ≤ 0.1	Disregard	
		$0.1 < d \le 0.2$	6	
		$0.2 < d \le 0.3$	2	
		0.3 < d	0	
		Note: Including pin holes and o size. B) Unclear	defective dots which must be within one pixel	
		Size : d mm	Acceptable Qty in active area	
		d ≤ 0.2	Disregard	
		$0.2 < d \le 0.5$	6	
		$0.5 < d \le 0.7$	2	
		0.7 < d	0	
2	Lines	A) Clear		Minor
	L		(0) See No. 1 W active area (0) See No. 1 W 0.3 See No. 1 W	

^{&#}x27;Clear' = The shade and size are not changed by Vo.

^{&#}x27;Unclear' = The shade and size are changed by Vo.

♦ Screen Cosmetic Criteria (Operating) (Continued)

No.	Defect	Judgement Criterion	Partition
3	Rubbing line	Not to be noticeable.	
4	Allowable density	Above defects should be separated more than 10mm each other.	Minor
5	Rainbow	Not to be noticeable.	Minor
6	Dot size	To be 95% ~ 105% of the dot size (Typ.) in drawing. Partial defects of each dot (ex. pin-hole) should be treated as 'spot'. (see <i>Screen Cosmetic Criteria (Operating) No.1</i>)	Minor
7	Uneven brightness (only back-lit type module)	Uneven brightness must be BMAX / BMIN ≤ 2 - BMAX : Max. value by measure in 5 points - BMIN : Min. value by measure in 5 points Divide active area into 4 vertically and horizontally. Measure 5 points shown in the following figure.	Minor

Note:

- (1) Size : d = (long length + short length) / 2
- (2) The limit samples for each item have priority.
- (3) Complexed defects are defined item by item, but if the number of defects are defined in above table, the total number should not exceed 10.
- (4) In case of 'concentration', even the spots or the lines of 'disregarded' size should not allowed. Following three situations should be treated as 'concentration'.
 - 7 or over defects in circle of Ø5mm.
 - 10 or over defects in circle of Ø10mm.
 - 20 or over defects in circle of Ø20mm.

■ PRECAUTIONS FOR USING LCD MODULES

♦ Handing Precautions

- (1) The display panel is made of glass. Do not subject it to a mechanical shock by dropping it or impact.
- (2) If the display panel is damaged and the liquid crystal substance leaks out, be sure not to get any in your mouth. If the substance contacts your skin or clothes, wash it off using soap and water.
 - (3) Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- (4) The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- (5) If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol
 - (6) Solvents other than those above-mentioned may damage the polarizer. Especially, do not use the following.
 - Water
 - Ketone
 - Aromatic solvents
- (7) Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.

Version: 1.1

P.15 of 17

- (8) Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion. In particular, do not forcibly pull or bend the I/O cable or the backlight cable.
 - (9) Do not attempt to disassemble or process the LCD module.
 - (10) NC terminal should be open. Do not connect anything.
 - (11) If the logic circuit power is off, do not apply the input signals.
 - (12) To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
 - Be sure to ground the body when handling the LCD modules.
 - Tools required for assembling, such as soldering irons, must be properly grounded.
 - To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions.
- The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.

♦ Storage Precautions

When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps. Keep the modules in bags (avoid high temperature / high humidity and low temperatures below 0°C). Whenever possible, the LCD modules should be stored in the same conditions in which they were shipped from our company.

♦ Others

Liquid crystals solidify under low temperature (below the storage temperature range) leading to defective orientation or the generation of air bubbles (black or white). Air bubbles may also be generated if the module is subject to a low temperature.

If the LCD modules have been operating for a long time showing the same display patterns, the display patterns may remain on the screen as ghost images and a slight contrast irregularity may also appear. A normal operating status can be regained by suspending use for some time. It should be noted that this phenomenon does not adversely affect performance reliability.

To minimize the performance degradation of the LCD modules resulting from destruction caused by static electricity etc., exercise care to avoid holding the following sections when handling the modules.

- Exposed area of the printed circuit board.
- Terminal electrode sections.

■ USING LCD MODULES

Liquid Crystal Display Modules

LCD is composed of glass and polarizer. Pay attention to the following items when handling.

- (1) Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.
 - (2) Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.).
- (3) N-hexane is recommended for cleaning the adhesives used to attach front/rear polarizers and reflectors made of organic substances which will be damaged by chemicals such as acetone, toluene, ethanol and isopropylalcohol.
- (4) When the display surface becomes dusty, wipe gently with absorbent cotton or other soft material like chamois soaked in petroleum benzin. Do not scrub hard to avoid damaging the display surface.
- (5) Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading.
 - (6) Avoid contacting oil and fats.
- (7) Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizers. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
 - (8) Do not put or attach anything on the display area to avoid leaving marks on.
- (9) Do not touch the display with bare hands. This will stain the display area and degradate insulation between terminals (some cosmetics are determinated to the polarizers).
- (10) As glass is fragile. It tends to become or chipped during handling especially on the edges. Please avoid dropping or jarring.

♦ Installing LCD Modules

The hole in the printed circuit board is used to fix LCM as shown in the picture below. Attend to the following items when installing the LCM.

(1) Cover the surface with a transparent protective plate to protect the polarizer and LC cell.

(2) When assembling the LCM into other equipment, the spacer to the bit between the LCM and the fitting plate should have enough height to avoid causing stress to the module surface, refer to the individual specifications for measurements. The measurement tolerance should be ± 0.1 mm.

♦ Precaution for Handing LCD Modules

Since LCM has been assembled and adjusted with a high degree of precision, avoid applying excessive shocks to the module or making any alterations or modifications to it.

- (1) Do not alter, modify or change the shape of the tab on the metal frame.
- (2) Do not make extra holes on the printed circuit board, modify its shape or change the positions of components to be attached.
 - (3) Do not damage or modify the pattern writing on the printed circuit board.
 - (4) Absolutely do not modify the zebra rubber strip (conductive rubber) or heat seal connector.
 - (5) Except for soldering the interface, do not make any alterations or modifications with a soldering iron.
 - (6) Do not drop, bend or twist LCM.

♦ Electro-Static Discharge Control

Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC.

- (1) Make certain that you are grounded when handing LCM.
- (2) Before remove LCM from its packing case or incorporating it into a set, be sure the module and your body have the same electric potential.
 - (3) When soldering the terminal of LCM, make certain the AC power source for the soldering iron does not leak.
- (4) When using an electric screwdriver to attach LCM, the screwdriver should be of ground potentiality to minimize as much as possible any transmission of electromagnetic waves produced sparks coming from the commutator of the motor.
 - (5) As far as possible make the electric potential of your work clothes and that of the work bench the ground potential.
- (6) To reduce the generation of static electricity be careful that the air in the work is not too dried. A relative humidity of 50%-60% is recommended.

♦ Precaution for soldering to the LCM

- (1) Observe the following when soldering lead wire, connector cable and etc. to the LCM.
 - Soldering iron temperature : $280^{\circ}\text{C} \pm 10^{\circ}\text{C}$.
 - Soldering time : 3-4 sec.
 - Solder: eutectic solder.

If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage dur to flux spatters.

- (2) When soldering the electroluminescent panel and PC board, the panel and board should not be detached more than three times. This maximum number is determined by the temperature and time conditions mentioned above, though there may be some variance depending on the temperature of the soldering iron.
- (3) When remove the electoluminescent panel from the PC board, be sure the solder has completely melted, the soldered pad on the PC board could be damaged.

♦ Precautions for Operation

- (1) Viewing angle varies with the change of liquid crystal driving voltage (Vo). Adjust Vo to show the best contrast.
- (2) Driving the LCD in the voltage above the limit shortens its life.
- (3) Response time is greatly delayed at temperature below the operating temperature range. However, this does not mean the LCD will be out of the order. It will recover when it returns to the specified temperature range.
- (4) If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.
- (5) Condensation on terminals can cause an electrochemical reaction disrupting the terminal circuit. Therefore, it must be used under the relative condition of 40°C, 50% RH.
 - (6) When turning the power on, input each signal after the positive/negative voltage becomes stable.

♦ Storage

When storing LCDs as spares for some years, the following precaution are necessary.

- (1) Store them in a sealed polyethylene bag. If properly sealed, there is no need for dessicant.
- (2) Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0°C and 35°C.
- (3) The polarizer surface should not come in contact with any other objects. (We advise you to store them in the container in which they were shipped.)
 - (4) Environmental conditions:
 - Do not leave them for more than 168hrs. at 60°C.
 - Should not be left for more than 48hrs, at -20°C.

♦ Safety

- (1) It is recommended to crush damaged or unnecessary LCDs into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- (2) If any liquid leakes out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.

♦ Limited Warranty

Unless agreed between DISPLAYTECH and customer, DISPLAYTECH will replace or repair any of its LCD modules which are found to be functionally defective when inspected in accordance with DISPLAYTECH LCD acceptance standards (copies available upon request) for a period of one year from date of shipments. Cosmetic/visual defects must be returned to DISPLAYTECH within 90 days of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of DISPLAYTECH limited to repair and/or replacement on the terms set forth above. DISPLAYTECH will not be responsible for any subsequent or consequential events.

♦ Return LCM under warranty

No warranty can be granted if the precautions stated above have been disregarded. The typical examples of violations are:

- Broken LCD glass.
- PCB eyelet's damaged or modified.
- PCB conductors damaged.
- Circuit modified in any way, including addition of components.
- PCB tampered with by grinding, engraving or painting varnish.
- soldering to or modifying the bezel in any manner.

Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects. Any connectors or cable installed by the customer must be removed completely without damaging the PCB eyelet's, conductors and terminals.

DS1307 64 x 8 Serial Real-Time Clock

www.maxim-ic.com

FEATURES

- Real-time clock (RTC) counts seconds, minutes, hours, date of the month, month, day of the week, and year with leap-year compensation valid up to 2100
- 56-byte, battery-backed, nonvolatile (NV)
 RAM for data storage
- Two-wire serial interface
- Programmable squarewave output signal
- Automatic power-fail detect and switch circuitry
- Consumes less than 500nA in battery backup mode with oscillator running
- Optional industrial temperature range:
 -40°C to +85°C
- Available in 8-pin DIP or SOIC
- Underwriters Laboratory (UL) recognized

ORDERING INFORMATION

DS1307	8-Pin DIP (300-mil)
DS1307Z	8-Pin SOIC (150-mil)
DS1307N	8-Pin DIP (Industrial)
DS1307ZN	8-Pin SOIC (Industrial)

PIN ASSIGNMENT

PIN DESCRIPTION

V_{CC} - Primary Power Supply

X1, X2 - 32.768kHz Crystal Connection

V_{BAT} -+3V Battery Input

GND - Ground SDA - Serial Data SCL - Serial Clock

SOW/OUT - Square Wave/Output Driver

DESCRIPTION

The DS1307 Serial Real-Time Clock is a low-power, full binary-coded decimal (BCD) clock/calendar plus 56 bytes of NV SRAM. Address and data are transferred serially via a 2-wire, bi-directional bus. The clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The end of the month date is automatically adjusted for months with fewer than 31 days, including corrections for leap year. The clock operates in either the 24-hour or 12-hour format with AM/PM indicator. The DS1307 has a built-in power sense circuit that detects power failures and automatically switches to the battery supply.

1 of 12 100101

TYPICAL OPERATING CIRCUIT

OPERATION

The DS1307 operates as a slave device on the serial bus. Access is obtained by implementing a START condition and providing a device identification code followed by a register address. Subsequent registers can be accessed sequentially until a STOP condition is executed. When V_{CC} falls below 1.25 x V_{BAT} the device terminates an access in progress and resets the device address counter. Inputs to the device will not be recognized at this time to prevent erroneous data from being written to the device from an out of tolerance system. When V_{CC} falls below V_{BAT} the device switches into a low-current battery backup mode. Upon power-up, the device switches from battery to V_{CC} when V_{CC} is greater than $V_{BAT} + 0.2V$ and recognizes inputs when V_{CC} is greater than 1.25 x V_{BAT} . The block diagram in Figure 1 shows the main elements of the serial RTC.

DS1307 BLOCK DIAGRAM Figure 1

SIGNAL DESCRIPTIONS

 V_{CC} , GND – DC power is provided to the device on these pins. V_{CC} is the +5V input. When 5V is applied within normal limits, the device is fully accessible and data can be written and read. When a 3V battery is connected to the device and V_{CC} is below 1.25 x V_{BAT} , reads and writes are inhibited. However, the timekeeping function continues unaffected by the lower input voltage. As V_{CC} falls below V_{BAT} the RAM and timekeeper are switched over to the external power supply (nominal 3.0V DC) at V_{BAT} .

 V_{BAT} – Battery input for any standard 3V lithium cell or other energy source. Battery voltage must be held between 2.0V and 3.5V for proper operation. The nominal write protect trip point voltage at which access to the RTC and user RAM is denied is set by the internal circuitry as 1.25 x V_{BAT} nominal. A lithium battery with 48mAhr or greater will back up the DS1307 for more than 10 years in the absence of power at 25°C. UL recognized to ensure against reverse charging current when used in conjunction with a lithium battery.

See "Conditions of Acceptability" at http://www.maxim-ic.com/TechSupport/QA/ntrl.htm.

SCL (Serial Clock Input) – SCL is used to synchronize data movement on the serial interface.

SDA (Serial Data Input/Output) – SDA is the input/output pin for the 2-wire serial interface. The SDA pin is open drain which requires an external pullup resistor.

SQW/OUT (Square Wave/Output Driver) – When enabled, the SQWE bit set to 1, the SQW/OUT pin outputs one of four square wave frequencies (1Hz, 4kHz, 8kHz, 32kHz). The SQW/OUT pin is open drain and requires an external pull-up resistor. SQW/OUT will operate with either Vcc or Vbat applied.

X1, X2 – Connections for a standard 32.768kHz quartz crystal. The internal oscillator circuitry is designed for operation with a crystal having a specified load capacitance (CL) of 12.5pF.

For more information on crystal selection and crystal layout considerations, please consult Application Note 58, "Crystal Considerations with Dallas Real-Time Clocks." The DS1307 can also be driven by an external 32.768kHz oscillator. In this configuration, the X1 pin is connected to the external oscillator signal and the X2 pin is floated.

RECOMMENDED LAYOUT FOR CRYSTAL

CLOCK ACCURACY

The accuracy of the clock is dependent upon the accuracy of the crystal and the accuracy of the match between the capacitive load of the oscillator circuit and the capacitive load for which the crystal was trimmed. Additional error will be added by crystal frequency drift caused by temperature shifts. External circuit noise coupled into the oscillator circuit may result in the clock running fast. See Application Note 58, "Crystal Considerations with Dallas Real-Time Clocks" for detailed information.

Please review Application Note 95, "Interfacing the DS1307 with a 8051-Compatible Microcontroller" for additional information.

RTC AND RAM ADDRESS MAP

The address map for the RTC and RAM registers of the DS1307 is shown in Figure 2. The RTC registers are located in address locations 00h to 07h. The RAM registers are located in address locations 08h to 3Fh. During a multi-byte access, when the address pointer reaches 3Fh, the end of RAM space, it wraps around to location 00h, the beginning of the clock space.

DS1307 ADDRESS MAP Figure 2

00H	SECONDS
	MINUTES
	HOURS
	DAY
	DATE
	MONTH
	YEAR
07H	CONTROL
H80	RAM
3FH	56 x 8

CLOCK AND CALENDAR

The time and calendar information is obtained by reading the appropriate register bytes. The RTC registers are illustrated in Figure 3. The time and calendar are set or initialized by writing the appropriate register bytes. The contents of the time and calendar registers are in the BCD format. Bit 7 of register 0 is the clock halt (CH) bit. When this bit is set to a 1, the oscillator is disabled. When cleared to a 0, the oscillator is enabled.

Please note that the initial power-on state of all registers is not defined. Therefore, it is important to enable the oscillator (CH bit = 0) during initial configuration.

The DS1307 can be run in either 12-hour or 24-hour mode. Bit 6 of the hours register is defined as the 12- or 24-hour mode select bit. When high, the 12-hour mode is selected. In the 12-hour mode, bit 5 is the AM/PM bit with logic high being PM. In the 24-hour mode, bit 5 is the second 10 hour bit (20-23 hours).

On a 2-wire START, the current time is transferred to a second set of registers. The time information is read from these secondary registers, while the clock may continue to run. This eliminates the need to reread the registers in case of an update of the main registers during a read.

DS1307 TIMEKEEPER REGISTERS Figure 3

CONTROL REGISTER

The DS1307 control register is used to control the operation of the SQW/OUT pin.

BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0
OUT	0	0	SQWE	0	0	RS1	RS0

OUT (Output control): This bit controls the output level of the SQW/OUT pin when the square wave output is disabled. If SQWE = 0, the logic level on the SQW/OUT pin is 1 if OUT = 1 and is 0 if OUT = 0.

SQWE (Square Wave Enable): This bit, when set to a logic 1, will enable the oscillator output. The frequency of the square wave output depends upon the value of the RS0 and RS1 bits. With the square wave output set to 1Hz, the clock registers update on the falling edge of the square wave.

RS (Rate Select): These bits control the frequency of the square wave output when the square wave output has been enabled. Table 1 lists the square wave frequencies that can be selected with the RS bits.

SQUAREWAVE OUTPUT FREQUENCY Table 1

RS1	RS0	SQW OUTPUT FREQUENCY
0	0	1Hz
0	1	4.096kHz
1	0	8.192kHz
1	1	32.768kHz

2-WIRE SERIAL DATA BUS

The DS1307 supports a bi-directional, 2-wire bus and data transmission protocol. A device that sends data onto the bus is defined as a transmitter and a device receiving data as a receiver. The device that controls the message is called a master. The devices that are controlled by the master are referred to as slaves. The bus must be controlled by a master device that generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions. The DS1307 operates as a slave on the 2-wire bus. A typical bus configuration using this 2-wire protocol is show in Figure 4.

TYPICAL 2-WIRE BUS CONFIGURATION Figure 4

Figures 5, 6, and 7 detail how data is transferred on the 2-wire bus.

- Data transfer may be initiated only when the bus is not busy.
- During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in the data line while the clock line is high will be interpreted as control signals.

Accordingly, the following bus conditions have been defined:

Bus not busy: Both data and clock lines remain HIGH.

Start data transfer: A change in the state of the data line, from HIGH to LOW, while the clock is HIGH, defines a START condition.

Stop data transfer: A change in the state of the data line, from LOW to HIGH, while the clock line is HIGH, defines the STOP condition.

Data valid: The state of the data line represents valid data when, after a START condition, the data line is stable for the duration of the HIGH period of the clock signal. The data on the line must be changed during the LOW period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of data bytes transferred between START and STOP conditions is not limited, and is determined by the master device. The information is transferred byte-wise and each receiver acknowledges with a ninth bit. Within the 2-wire bus specifications a regular mode (100kHz clock rate) and a fast mode (400kHz clock rate) are defined. The DS1307 operates in the regular mode (100kHz) only.

Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of each byte. The master device must generate an extra clock pulse which is associated with this acknowledge bit.

A device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. Of course, setup and hold times must be taken into account. A master must signal an end of data to the slave by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line HIGH to enable the master to generate the STOP condition.

DATA TRANSFER ON 2-WIRE SERIAL BUS Figure 5

Depending upon the state of the R/\overline{W} bit, two types of data transfer are possible:

- 1. **Data transfer from a master transmitter to a slave receiver.** The first byte transmitted by the master is the slave address. Next follows a number of data bytes. The slave returns an acknowledge bit after each received byte. Data is transferred with the most significant bit (MSB) first.
- 2. **Data transfer from a slave transmitter to a master receiver.** The first byte (the slave address) is transmitted by the master. The slave then returns an acknowledge bit. This is followed by the slave transmitting a number of data bytes. The master returns an acknowledge bit after all received bytes other than the last byte. At the end of the last received byte, a "not acknowledge" is returned.

The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a repeated START condition. Since a repeated START condition is also the beginning of the next serial transfer, the bus will not be released. Data is transferred with the most significant bit (MSB) first.

The DS1307 may operate in the following two modes:

1. Slave receiver mode (DS1307 write mode): Serial data and clock are received through SDA and SCL. After each byte is received an acknowledge bit is transmitted. START and STOP conditions are recognized as the beginning and end of a serial transfer. Address recognition is performed by hardware after reception of the slave address and *direction bit (See Figure 6). The address byte is the first byte received after the start condition is generated by the master. The address byte contains the 7 bit DS1307 address, which is 1101000, followed by the *direction bit (R/W) which, for a write, is a 0. After receiving and decoding the address byte the device outputs an acknowledge on the SDA line. After the DS1307 acknowledges the slave address + write bit, the master transmits a register address to the DS1307 This will set the register pointer on the DS1307. The master will then begin transmitting each byte of data with the DS1307 acknowledging each byte received. The master will generate a stop condition to terminate the data write.

DATA WRITE - SLAVE RECEIVER MODE Figure 6

2. **Slave transmitter mode (DS1307 read mode):** The first byte is received and handled as in the slave receiver mode. However, in this mode, the *direction bit will indicate that the transfer direction is reversed. Serial data is transmitted on SDA by the DS1307 while the serial clock is input on SCL. START and STOP conditions are recognized as the beginning and end of a serial transfer (See Figure 7). The address byte is the first byte received after the start condition is generated by the master. The address byte contains the 7-bit DS1307 address, which is 1101000, followed by the *direction bit (R/W) which, for a read, is a 1. After receiving and decoding the address byte the device inputs an acknowledge on the SDA line. The DS1307 then begins to transmit data starting with the register address pointed to by the register pointer. If the register pointer is not written to before the initiation of a read mode the first address that is read is the last one stored in the register pointer. The DS1307 must receive a "not acknowledge" to end a read.

DATA READ - SLAVE TRANSMITTER MODE Figure 7

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Ground Storage Temperature

Soldering Temperature

-0.5V to +7.0V -55°C to +125°C

260°C for 10 seconds DIP

See JPC/JEDEC Standard J-STD-020A for

Surface Mount Devices

* This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

Range	Temperature	$ m V_{CC}$
Commercial	0°C to +70°C	4.5V to 5.5V V _{CC1}
Industrial	-40°C to +85°C	4.5V to 5.5V V _{CC1}

RECOMMENDED DC OPERATING CONDITIONS

(Over the operating range*)

				(- p	9
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Supply Voltage	V_{CC}	4.5	5.0	5.5	V	
Logic 1	V_{IH}	2.2		$V_{CC} + 0.3$	V	
Logic 0	V_{IL}	-0.5		+0.8	V	
V _{BAT} Battery Voltage	V_{BAT}	2.0		3.5	V	

^{*}Unless otherwise specified.

DC ELECTRICAL CHARACTERISTICS

(Over the operating range*)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Leakage (SCL)	I_{LI}			1	μΑ	
I/O Leakage (SDA &	I_{LO}			1	μA	
SQW/OUT)					,	
Logic 0 Output ($I_{OL} = 5mA$)	$ m V_{OL}$			0.4	V	
Active Supply Current	I_{CCA}			1.5	mA	7
Standby Current	I_{CCS}			200	μΑ	1
Battery Current (OSC ON);	I _{BAT1}		300	500	nA	2
SQW/OUT OFF						
Battery Current (OSC ON);	I_{BAT2}		480	800	nA	
SQW/OUT ON (32kHz)						
Power-Fail Voltage	$V_{ m PF}$	$1.216 \times V_{BAT}$	$1.25 \times V_{BAT}$	$1.284 \times V_{BAT}$	V	8

^{*}Unless otherwise specified.

AC ELECTRICAL CHARACTERISTICS

(Over the operating range*)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
SCL Clock Frequency	f_{SCL}	0		100	kHz	
Bus Free Time Between a STOP and	$t_{ m BUF}$	4.7			μs	
START Condition					-	
Hold Time (Repeated) START Condition	$t_{\mathrm{HD:STA}}$	4.0			μs	3
LOW Period of SCL Clock	$t_{ m LOW}$	4.7			μs	
HIGH Period of SCL Clock	t _{HIGH}	4.0			μs	
Set-up Time for a Repeated START	$t_{ m SU:STA}$	4.7			μs	
Condition					•	
Data Hold Time	t _{HD:DAT}	0			μs	4,5
Data Set-up Time	$t_{ m SU:DAT}$	250			ns	
Rise Time of Both SDA and SCL Signals	t_{R}			1000	ns	
Fall Time of Both SDA and SCL Signals	$t_{ m F}$			300	ns	
Set-up Time for STOP Condition	$t_{ m SU:STO}$	4.7			μs	
Capacitive Load for each Bus Line	C_{B}			400	pF	6
	$C_{I/O}$		10		рF	
I/O Capacitance ($T_A = 25^{\circ}C$)	20				1	
Crystal Specified Load Capacitance			12.5		pF	
$(T_A = 25^{\circ}C)$						

^{*}Unless otherwise specified.

NOTES:

- 1. I_{CCS} specified with $V_{CC} = 5.0V$ and SDA, SCL = 5.0V.
- 2. $V_{CC} = 0V, V_{BAT} = 3V.$
- 3. After this period, the first clock pulse is generated.
- 4. A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the V_{IHMIN} of the SCL signal) in order to bridge the undefined region of the falling edge of SCL.
- 5. The maximum $t_{\text{HD:DAT}}$ has only to be met if the device does not stretch the LOW period (t_{LOW}) of the SCL signal.
- 6. C_B Total capacitance of one bus line in pF.
- 7. I_{CCA} SCL clocking at max frequency = 100kHz.
- 8. V_{PF} measured at $V_{BAT} = 3.0V$.

TIMING DIAGRAM Figure 8

DS1307 64 X 8 SERIAL REAL-TIME CLOCK 8-PIN DIP MECHANICAL DIMENSIONS

PKG	8-F	PIN
DIM	MIN	MAX
A IN.	0.360	0.400
MM	9.14	10.16
B IN.	0.240	0.260
MM	6.10	6.60
C IN.	0.120	0.140
MM	3.05	3.56
D IN.	0.300	0.325
MM	7.62	8.26
E IN.	0.015	0.040
MM	0.38	1.02
F IN.	0.120	0.140
MM	3.04	3.56
G IN.	0.090	0.110
MM	2.29	2.79
H IN.	0.320	0.370
MM	8.13	9.40
J IN.	0.008	0.012
MM	0.20	0.30
K IN.	0.015	0.021
MM	0.38	0.53

DS1307Z 64 X 8 SERIAL REAL-TIME CLOCK 8-PIN SOIC (150-MIL) MECHANICAL DIMENSIONS

PKG	8-PIN			
TKO	(150 MIL)			
DIM	MIN MAX			
A IN.	0.188	0.196		
MM	4.78	4.98		
B IN.	0.150	0.158		
MM	3.81	4.01		
C IN.	0.048	0.062		
MM	1.22	1.57		
E IN.	0.004	0.010		
MM	0.10	0.25		
F IN.	0.053	0.069		
MM	1.35	1.75		
G IN.	0.050 BSC			
MM	1.27	BSC		
H IN.	0.230	0.244		
MM	5.84	6.20		
J IN.	0.007	0.011		
MM	0.18	0.28		
K IN.	0.012	0.020		
MM	0.30	0.51		
L IN.	0.016	0.050		
MM	0.41	1.27		
phi	0°	8°		

56-G2008-001

```
; Function Discreption Template
;
     Func:
;
     Input:
      Output:
      Affect:
      Runtime:
list p=16f877
                            ; list directive to define processor
   #include <p16f877.inc>
                           ; processor specific variable definitions
   __CONFIG _CP_OFF & _WDT_OFF & _BODEN_ON & _PWRTE_ON & _HS_OSC & _WRT_ENABLE_ON & _CPD_OFF & _LVP_ON
   #include <common.inc>
   extern LCD_init, LCD_clear, LCD_line2, LCD_out, LCD_wt
   extern delay50us, delay5ms, delayX5msm, delay100ms, delayX100msm, delay1sl
cblock
           0x20
   phase
                   ; 0 = realtime, 1 = report, 2 = run
   report num
   line num
            : .17 ; 16 + null
   LCDline
                   ; only local use: must be discard before calling/jumping
   temp
   temp2
   temp3
   temp4
   temp5
   temp6
   temp7
   arg
                 ; argument
   arg2
   literal_addr
                 ; how many rows left to inspect
   rowleft
                ; adress to store result of current row in "layout"
   result addr
                 ; realtime
   rt year
   rt_month
   rt day
   rt_hour
   rt_min
   rt sec
                 ; start
   st_year
   st_month
   st_day
   st_hour
   st_min
   st_sec
   end_hour
   end min
   end_sec
   runtime
   cl_total
   cl_pass
   cl_fail
   layout
            : .20 ; result
   smotor_dir
               ; direction of stepper motor
   log_total
                 ; total numbers of reports available
   log_next
                  ; index of where next report will be written
   arith_temp
                  ; arithmetic temp
   arith_temp2
   newsec
                 ; a new second occur (Bool from interrupt)
```

```
endc
             0xB0
   cblock
   light_bg
             : 5
                    ; background light intensity of current row
   light_pos
             : 5
                    ; position reflected light intensity of current row
             : 5
                    ; closet light LEDs light intensity of current row
   light_cl
   light_off : 5
                    ; closet light off light intensity of current row
   endc
   udata shr
w_temp
       res 1
status_temp res 1
;pclath_temp res 1
FSR_temp res 1
rt_counter res 1
                    ; real time counter
table temp res 1
DIVLW
         macro L
   movwf
          arith_temp
   movlw
             1
   call
             divfn
   endm
MODLW
         macro L
   movwf
             arith_temp
   movlw
   call
             divfn
   movf
             arith_temp, w
   endm
MULLW
         macro L
   movwf
             arith_temp
   movlw
             L
   call
             mulfn
   endm
COPY_STRING macro string_table
   movlw
             string table
   call
             copystring
   endm
COPY_LAYOUT macro rownum
   movlw
           rownum
   call
             copylayout
   endm
COPY_DEC1 macro decnumber
   movf
           decnumber, w
             arg
   movwf
   movlw
             0x01
   movwf
             arg2
   call
             copydec
   endm
COPY_DEC2 macro decnumber
   movf
             decnumber, w
   movwf
             arg
   movlw
             0x02
   movwf
             arg2
   call
             copydec
   endm
```

COPY_DEC3 macro decnumber

```
movf
           decnumber, w
  movwf
           arg
  movlw
           0x03
  movwf
           arg2
  call
           copydec
  endm
TABLE
        macro
  local
       tablename
  movwf
           table temp
          HIGH tablename
  movlw
          PCLATH
  movwf
  movf
          table_temp, w
  addlw
          LOW tablename
          STATUS, C
  btfsc
  incf
           PCLATH, f
  movwf
           PCL
tablename
  endm
STORE_LIGHT macro addr
  movlw
           addr
  call
           lightsensor
  endm
IRLED ON
        macro
           0x01
  movlw
           ledcontrol
  call
  endm
IRLED OFF macro
  movlw
           0x00
  call
           ledcontrol
  endm
CALC_POS macro threshold
  movwf
          temp
  movlw
           threshold
  movwf
          temp4
  call
           calcpos
  endm
PRINT_DOT macro
  MOVLF FSR, LCDline
  COPY_STRING str_dot
  call
           writeline
  endm
org
           0x0000
#IFNDEF
        DEBUG
  goto
           main
#ELSE
           mac_test
  goto
#ENDIF
#IFNDEF
        DEBUG
  org
          0x0004
  goto
           interrupt
#ENDIF
"literal": String Literal Function
```

```
Store all string literal in this project here, it return
;
      Func:
                 any char wanted
      Input:
                 W = the program memory address of the wanted char
      Output:
                 W = the corresponding char
0x0005
                           ; make sure literal table is in first 256 lines
   org
literal
   movwf
             temp
   clrf
             PCLATH
   movf
             temp, w
   movwf
             PCL
; max length 16 dt "0123456789ABCDEF", 0
            dt "INITIALIZING...", 0
str_init
             dt "NO REPORT", 0
str_noreport
str_enterymd
             dt "ENTER 20YYMMDD:",0
str enterhms
             dt "ENTER hhmmss:", 0
             dt "20", 0
                           ; all years like 20XX
str yearhead
             dt "-", 0
dt ":", 0
str dash
str_colon
             dt "LOG ENTRY: ",0
str_entry
str_start
             dt "START: ", 0
str_finish
             dt "FINISH: ", 0
             dt "RUNTIME: ", 0
dt "s", 0 ; i.e. second
str_runtime
str_s
             dt "TOTAL: ", 0
dt "PASS: ", 0
str total
             rass: ", 0
dt " FAIL: ", 0
dt "'
str_pass
str_fail
            dt "LAYOUT:", 0
dt "TOP 1 ", 0
dt " 2 ", 0
dt " 3 ", 0
dt " BOT 4 ", 0
str layout
str layout1
           dt "
str_layout2
str layout3
str layout4
             dt "RUNNING", 0
str_running
             dt ".", 0
str_dot
             dt "INSPECTION FIN", 0
str_insp_fin
             dt "EMERGENCY STOP", 0
str_emerstop
str null
             dt 0
; corresponds to the layout byte
             dt "XFFPXFFP" ; "XF2P4567"; "XFEPEEEE"
char layout
; corresponds to keypad
char keynumber dt "123", 0, "456", 0, "789", 0, 0, "0", 0, 0
          dt "/", 0
char_slash
;????!!!!copy spaceX function
   code
#IFNDEF
         DEBUG
"main":
                 Main Function
      Func:
                 Call initialization and then keep polling the keypad for
;
                 input (or interrupt)
      Input:
                 None
      Output:
                 None
      Affect:
main
   call
             init
keypoll
   btfsc
             KEYPAD_DA
   call
             keyresp
   call
             keypad_timeout
             keypoll
   goto
```

```
"mac test":
                 Machenical System Test Function
                 Test the machenical system, each botton on keypad
       Func:
;
                 corresponds to a machine function (i.e. driver)
;
       Input:
                 None
      Output:
                 None
      Affect:
mac_test
   call
             init pic
   call
             reset_software
             reset hardware
   call
   ; PORT Reset/Initialization
   BANK0
                           ; RA4 (Reserved) output 0
   clrf
             PORTA
                           ; RBO, 2, 3 (Reserved) output 0
   clrf
             PORTB
                           ; VMOTOR disable, LED off
   clrf
             PORTC
                           ; clear S0, S1 of SMOTOR
   clrf
             PORTD
             PORTE
                           ; SMOTOR disable, clear S2, S3 of SMOTOR
   clrf
   ; LCD Reset/Initialization
   call
             LCD_init
   call
             display
mac test loop
              analogtest2
   call
   btfsc
             KEYPAD_DA
   call
             keyresp_ma
   movlw
             0x64
             delavX5msm
   call
             mac_test_loop
   goto
keyresp_ma
             PORTB, w
   swapf
   andlw
             0x0F
   TABLE
;keyresp_switch_table
                           ; keypressed = 0
                                             "1" = SM forward
             kma0
   goto
                                             "2" = SM backward
                           ; keypressed = 1
   goto
              kma1
                                             "3" = SM step
                           ; keypressed = 2
   goto
             kma2
                                             "A"
             kma3
                           ; keypressed = 3
   goto
                                             "4" = DC up
             kma4
                           ; keypressed = 4
   goto
                                             "5" = DC down
                          ; keypressed = 5
   goto
             kma5
                          ; keypressed = 6
                                             "6" = DC stop
   goto
              kma6
                                             "B"
             kma7
                          ; keypressed = 7
   goto
                                             "7" = IRLED on
   goto
             kma8
                          ; keypressed = 8
                                             "8" = IRLED off
   goto
                          ; keypressed = 9
             kma9
             kmaA
                          ; keypressed = A
                                             "9"
   goto
                          ; keypressed = B
                                             "C"
   goto
              kmaB
                          ; keypressed = C
                                             "*"
   goto
              kmaC
                          ; keypressed = D
                                             "0"
   goto
              kmaD
                          ; keypressed = E
                                             "#"
              kmaE
   goto
                                             "D"
   goto
              kmaF
                           ; keypressed = F
kma_next
kma3
kma7
kmaA
kmaB
kmaC
kmaD
kmaE
kmaF
kma_release
   btfsc
              KEYPAD DA
                           ;Wait until key is released
```

```
goto
             kma_release
   return
kma0
   movlw
             0x00
   movwf
             smotor_dir
   call
             advancerow
   goto
             kma_next
kma1
   movlw
             0x01
             smotor_dir
   movwf
   call
             advancerow
   goto
             kma_next
kma2
             SMOTOR EN
   bcf
   goto
             kma_next
kma4
   call
             moveup
   goto
             kma_next
kma5
   call
             movedown
   goto
             kma_next
kma6
   bcf
             VMOTOR C0
   bcf
             VMOTOR C1
             kma_next
   goto
kma8
   IRLED ON
   goto
             kma_next
kma9
   IRLED OFF
   goto
             kma next
"analogtest2": Analog-to-Digital Test Function
;
      Func:
                 Convert RAO to digital and display its value every second
;
      Input:
;
      Output:
;
      Affect:
analogtest2
   STORE_LIGHT light_bg
                           ; counter
   MOVLF
             temp5, COLS
   MOVLF
             temp2, LCDline; LCDline addr
   MOVLF
             temp3, light_bg; storage addr
   MOVFF
             FSR, temp3
   MOVFF
             temp4, INDF
                           ; temp storage
   MOVFF
             FSR, temp2
   COPY DEC3
             temp4
   COPY_STRING str_dot
   COPY_STRING str_dot
   COPY_STRING str_dot
   MOVFF
             temp2, FSR
             temp3, f
   incf
             temp3, f
   incf
   MOVFF
             FSR, temp3
   MOVFF
             temp4, INDF
                           ; temp storage
   MOVFF
             FSR, temp2
   COPY_DEC3
             temp4
   {\tt COPY\_STRING\ str\_dot}
   COPY_STRING str_dot
```

```
COPY_STRING str_dot
   MOVFF
              temp2, FSR
   incf
              temp3, f
              temp3, f
   incf
   MOVFF
              FSR, temp3
   MOVFF
              temp4, INDF
                             ; temp storage
   MOVFF
              FSR, temp2
   COPY DEC3
              temp4
   COPY_STRING str_dot
   COPY_STRING str_dot
   COPY_STRING str_dot
   MOVFF
              temp2, FSR
   call
              LCD_clear
                             ; clear LCD display
   call
              writeline
   call
              LCD line2
              temp2, LCDline ; LCDline addr
   MOVLF
   MOVLF
              temp3, light_bg; storage addr
   incf
              temp3, f
   MOVFF
              FSR, temp3
   MOVFF
              temp4, INDF
                             ; temp storage
              FSR, temp2
   MOVFF
   COPY_STRING str_dot
   COPY_STRING str_dot
   COPY_STRING str_dot
   COPY DEC3 temp4
   COPY STRING str dot
   COPY STRING str dot
   COPY STRING str dot
   MOVFF
              temp2, FSR
              temp3, f
   incf
   incf
              temp3, f
   MOVFF
              FSR, temp3
   MOVFF
              temp4, INDF
                             ; temp storage
              FSR, temp2
   MOVFF
   COPY DEC3
              temp4
   MOVFF
              temp2, FSR
   call
              writeline
              LCD_out
   call
;ADCtest2_loop2
   MOVFF
              FSR, temp3
   MOVFF
              temp4, INDF
                             ; temp storage
   MOVFF
              FSR, temp2
   COPY_DEC3
              temp4
;; COPY_STRING str_dot
   MOVFF
              temp2, FSR
              temp3, f
   incf
   decfsz
              temp5,f
   goto
              ADCtest2_loop2
                             ; clear LCD display
              LCD_clear
   call
   call
              writeline
   return
"analogtest": Analog-to-Digital Test Function
       Func:
                  Convert RAO to digital and display its value every second
       Input:
       Output:
```

;

;

;

;

;

; ;

;

;

;

```
Affect:
analogtest
ADCtest_loop
            delay50us
                         ; require 2Tosc + Tacq = 28us
   call
   bsf
            ADCON0, GO
                         ; about 40us
analog_poll
   btfsc
            ADCON0, GO
   goto
            analog_poll
   movf
            ADRESH, w
   MOVLF
            FSR, LCDline
   COPY_DEC1 ADRESH
                         ; clear LCD display
   call
            LCD clear
   call
            writeline
   ; delay 0.5s
            0x64
   movwf
            temp
ADCtest_simpledelay
   call
            delay5ms
   decfsz
            temp, f
   goto
            ADCtest simpledelay
   goto
            ADCtest loop
#ENDIF
#IFNDEF
         DEBUG
"interrupt": Interrupt Handle Function
               Handle all interrupt that occurs in runtime
      Input:
               INTCON
      Output:
              INTCON, rt_*, newsec
              None (w_temp, status_temp)
      Affect:
interrupt
   movwf
            w temp
                         ; save W
   swapf
            STATUS, w
                         ; save STATUS, note swapf will not affect STATUS
   BANK00
   movwf
            status_temp
   movf
            PCLATH, w
                         ; save page information
   movwf
            pclath_temp
   clrf
            PCLATH
                         ; save FSR
   movf
            FSR, w
   movwf
            FSR_temp
   ; Timer0 Interrupt Handle
   ; TOIE always on, no test
   btfss
            INTCON, TOIF
   goto
            int_tmr0_skip
   incf
            rt_counter, f
            rt_counter, w ; test with 98h, correponds to 996,147.2us
   movf
   sublw
            0x98
   btfss
            STATUS, Z
            int_tmr0_end ; rt_counter <> 98h
   goto
                         ; rt_counter == 98h
   clrf
            rt_counter
            rt_sec
   movlw
   call
            addsec
   movlw
            rt_day
            STATUS, C
   btfsc
                         ; addday if carry from addsec
   call
            addday
   MOVLF
            newsec, TRUE
int_tmr0_end
   bcf
            INTCON, TOIF
```

```
int_tmr0_skip
   ; Keypad (PORTB) Change Interrupt
   btfss
             INTCON, RBIE
                           ; interrept must be enabled first
   goto
             int_rb_skip
   btfss
             INTCON, RBIF
   goto
             int_rb_skip
             PORTB, w
                           ; test PORTB<7:4> against stop button
   swapf
   andlw
             0x0F
   sublw
             STOP BUT
   btfss
             STATUS, Z
   goto
             int_rb_end
   ; Emergency Stop!!!!
                           ; turn off IRLEDs
   bcf
             IRLED
   bcf
             VMOTOR CØ
                           ; turn off v motor
   bcf
             VMOTOR C1
             SMOTOR EN
                           ; turn off s motor
   bcf
                           ; display emergency stop
   MOVLF
             FSR, LCDline
   COPY_STRING str_emerstop
   call
             LCD_clear
                              ; clear LCD display
   call
             writeline
   call
             LCD_out
stop
          goto
                    stop
                           ; hang the program
int_rb_end
   bcf
             INTCON, RBIF
int_rb_skip
   movf
             FSR_temp, w
                           ; restore FSR
   movwf
             FSR
   movf
             pclath_temp, w ; restore page information
   movwf
             PCLATH
   swapf
             status temp, w; restore STATUS
   movwf
             STATUS
   swapf
             w_temp, f
                          ; restore W, not affecting STATUS
   swapf
             w_temp, w
   retfie
"init":
                 Initialization Function
;
                 Initialize chip settings, variables and reset hardware
      Func:
;
                 position
;
      Input:
                None
;
      Output:
      Affect:
                 W, STATUS, temp, delaytemp, delaycount, delaytemp2,
                 delaycount2, delaytemp3, delaycount3
*******************************
init
   call
             init_pic
   call
             reset_software
   call
             reset_hardware
   call
             reset_realtime
             TMR0
                           ; start timing
   clrf
             INTCON, T0IE
   bsf
             INTCON, GIE
   bsf
             PHASE_REALTIME
   movlw
   movwf
             phase
             display
   call
   return
#ENDIF
"init_pic":
                 PIC Initialization Function
;
      Func:
                 Initialize chip settings: Interrupt, TMR0, PORT, ADC
;
      Input:
                 None
;
```

```
INTCON, TRISA, TRISB, TRISC, TRISD, TRISE, ADCCON0, ADCCON1
      Output:
               W, STATUS
      Affect:
init_pic
   ; Interrupt Initialization
   ; Disable Global interrupt, diable peripheral interrupt, enable timer0 and
   ; PORTB interrupton change (keypad), diable RB0 interrupt
   ; #define INITVAL_INTCON B'00101000'
   ; movlw
            INITVAL_INTCON
   clrf
            INTCON
   ;clrf
            SSPBUF
   ;BANK1
   ;clrf
            TXSTA
   ;clrf
            PIE1
   ;clrf
            PIE2
   ; Timer0 Initialization
   BANK0
   clrf
            TMR0
   clrf
            rt_counter
   BANK1
   movlw
            INITVAL OPTREG
   movwf
            OPTION REG
   ; PORT Initialzation
   BANK1
   movlw
            INITVAL_TRISA
   movwf
            TRISA
   movlw
            INITVAL_TRISB
   movwf
            TRISB
            INITVAL_TRISC
   movlw
   movwf
            TRISC
   movlw
            INITVAL_TRISD
   movwf
            TRISD
            INITVAL TRISE
   movlw
   movwf
            TRISE
   ; Analog to Digital Convertor Initialization
   BANK1
   movlw
            INITVAL_ADCON1
   movwf
            ADCON1
   BANK0
   movlw
            INITVAL_ADCON0
   movwf
            ADCON0
   return
;"reset_software": Software Reset/Initialization Function
                Reset all variables
      Func:
;
      Input:
               None
;
                phase, report_num, line_num, log_total, log_next, smotor_dir
      Output:
;
      Affect:
                STATUS
reset_software
   movlw
            PHASE_HDINIT
   movwf
            phase
   clrf
            report_num
   clrf
            line_num
   clrf
            log_total
   clrf
            log_next
   MOVLF
            smotor_dir, 1
```

```
;"reset_hardware": Hardware Reset/Initialization Function
      Func:
                Reset/Initialize hardwares to their default position:
                Pos Sensor Off, V DC Motor at top, S Motor at "Row 1",
                LCD, (RTC)
                None
      Input:
                PORTA, PORTB, PORTC, PORTD, PORTE
      Output:
      Affect:
                W, STATUS, temp, delaytemp, delaycount, delaytemp2,
                delaycount2, delaytemp3, delaycount3
reset hardware
   ; PORT Reset/Initialization
   BANK0
                         ; RA4 (Reserved) output 0
   clrf
            PORTA
                         ; RB0, 2, 3 (Reserved) output 0
   clrf
            PORTB
                         ; VMOTOR disable, LED off
   clrf
            PORTC
            PORTD
                         ; clear S0, S1 of SMOTOR
   clrf
   clrf
            PORTE
                         ; SMOTOR disable, clear S2, S3 of SMOTOR
   ; LCD Reset/Initialization
   call
            LCD init
   call
            display
   ; Position Sensor(IRLED) Reset/Initialization: all off
   ; Already done with PORT reset
   ; Vertical DC Motor Reset/Initialization: move to top
   call
            moveup
   ; Stepper Motor Reset/Initialization: move to "Row 4"
   clrf
            smotor dir
   call
            advancerow
                         ; 4 advance row to ensure to init pos
   call
            advancerow
   call
            advancerow
   call
            advancerow
   MOVLF
            smotor dir, 1
   return
;"reset_realtime": Real Time Clock Reset/Initialization Function
      Func: Reset Real Time Clock
;
              None (from Keypad)
      Input:
;
      Output:
               rt_year, rt_month, rt_day, rt_hour, rt_min, rt_sec
      Affect:
reset_realtime
   movlw
            PHASE_RTCINIT
   movwf
            phase
   clrf
            rt_year
   clrf
            rt_month
            rt_day
   clrf
   clrf
            rt_hour
   clrf
            rt_min
   clrf
            rt_sec
   ; YYMMDD
   call
            LCD_clear
                        ; clear LCD display
   MOVLF
            FSR, LCDline
   COPY_STRING str_enterymd
   call
            writeline
```

```
call
               LCD_line2
   MOVLF
               FSR, LCDline
   COPY STRING str yearhead
   call
               writeline
   clrf
               temp3
                                ; number of valid numbers entered
reset_rt_ymd
   btfss
               KEYPAD DA
                                ; Wait until data is available from the keypad
               reset_rt_ymd
   goto
               PORTB, W
                                ; Read PortB<7:4> into W<3:0>
   swapf
   andlw
               0x0F
               char_keynumber
   addlw
   call
                                ; Convert keypad value to LCD character (value is still held in W)
               literal
   addlw
               0x00
                                ; test for valid input (number)
   btfsc
               STATUS, Z
               reset_rt_ymdrl
   goto
   movwf
               temp2
                               ; hold the value
                                ; Write the value in W to LCD
   call
               LCD_wt
               0x30
   movlw
   subwf
               temp2, f
                                ; convert ASCII to number
   movf
               temp3, w
   TABLE
                                ; switch (temp)
   goto
               reset rt ymd0
    goto
               reset_rt_ymd1
               reset_rt_ymd2
   goto
               reset_rt_ymd3
   goto
   goto
               reset rt ymd4
               reset_rt_ymd5
   goto
reset_rt_ymd0
   movf
               temp2, w
   MULLW
                .10
               rt_year, f
   addwf
   incf
               temp3, f
   goto
               reset_rt_ymdrl
reset_rt_ymd1
               temp2, w
   movf
   addwf
               rt year, f
               temp3, f
   incf
   goto
               reset_rt_ymdrl
reset_rt_ymd2
   movf
               temp2, w
   MULLW
                .10
   addwf
               rt_month, f
   incf
               temp3, f
                reset_rt_ymdrl
   goto
reset_rt_ymd3
               temp2, w
   movf
   addwf
               rt_month, f
   incf
               temp3, f
   goto
                reset_rt_ymdrl
reset_rt_ymd4
   movf
               temp2, w
   MULLW
                .10
   addwf
               rt_day, f
   incf
               temp3, f
               reset_rt_ymdrl
   goto
reset_rt_ymd5
   movf
               temp2, w
   addwf
               rt_day, f
   incf
               temp3, f
```

reset_rt_ymdrl

```
btfsc
               KEYPAD DA
                               ; Wait until key is released
   goto
               reset_rt_ymdrl
   movlw
               0x06
                               ; 6 chars entered
   subwf
               temp3, w
   btfss
               STATUS, C
               reset_rt_ymd
   goto
   ; hhmmss
                               ; clear LCD display
   call
               LCD_clear
   MOVLF
               FSR, LCDline
   COPY_STRING str_enterhms
               writeline
   call
   call
               LCD line2
   clrf
               temp3
                               ; number of valid numbers entered
reset rt hms
   btfss
               KEYPAD DA
                               ; Wait until data is available from the keypad
   goto
               reset rt hms
               PORTB, W
                               ; Read PortB<7:4> into W<3:0>
   swapf
   andlw
               0x0F
   addlw
               char_keynumber
   call
               literal
                               ; Convert keypad value to LCD character (value is still held in W)
   addlw
               0x00
                               ; test for valid input (number)
   btfsc
               STATUS, Z
   goto
               reset_rt_hmsrl
                               ; hold the value
   movwf
               temp2
   call
               LCD wt
                               ; Write the value in W to LCD
               0x30
   movlw
   subwf
               temp2, f
                               ; convert ASCII to number
   movf
               temp3, w
   TABLE
                               ; switch (temp)
               reset_rt_hms0
   goto
               reset_rt_hms1
   goto
   goto
               reset_rt_hms2
               reset_rt_hms3
   goto
               reset rt hms4
   goto
   goto
               reset rt hms5
reset_rt_hms0
   movf
               temp2, w
   MULLW
               .10
   addwf
               rt_hour, f
   incf
               temp3, f
               reset_rt_hmsrl
   goto
reset_rt_hms1
   movf
               temp2, w
   addwf
               rt_hour, f
   incf
               temp3, f
   goto
               reset_rt_hmsrl
reset_rt_hms2
   movf
               temp2, w
   MULLW
               .10
               rt_min, f
   addwf
   incf
               temp3, f
               reset_rt_hmsrl
   goto
reset_rt_hms3
   movf
               temp2, w
   addwf
               rt_min, f
   incf
               temp3, f
               reset_rt_hmsrl
   goto
reset_rt_hms4
   \mathsf{movf}
               temp2, w
   MULLW
               .10
```

```
addwf
             rt_sec, f
   incf
             temp3, f
              reset rt hmsrl
   goto
reset_rt_hms5
   movf
             temp2, w
   addwf
             rt_sec, f
              temp3, f
   incf
reset_rt_hmsrl
                           ; Wait until key is released
              KEYPAD DA
   btfsc
   goto
             reset_rt_hmsrl
   movlw
             0x06
                           ; 6 chars entered
   subwf
             temp3, w
   btfss
             STATUS, C
   goto
             reset_rt_hms
   return
"keyresp": Key Response Function
;
                 Display information or run an inspection according to the
;
                 pressed key
;
       Input:
                 W: Index of the key that being pressed
       Output:
                 All actions
      Affect:
keyresp
   swapf
             PORTB, w
   andlw
             0x0F
   TABLE
;keyresp_switch_table
                                             "1" = "real time"
             realtime
                           ; keypressed = 0
   goto
                                             "2" = "report"
   goto
             report
                           ; keypressed = 1
                                             "3"
                           ; keypressed = 2
   goto
             unused key
                           ; keypressed = 3
                                             "A"
             unused_key
   goto
                           ; keypressed = 4
                                             "4"
   goto
             unused_key
                           ; keypressed = 5
                                             "5"
   goto
             unused key
                           ; keypressed = 6
                                             "6"
             unused key
   goto
                                             "B"
                           ; keypressed = 7
              unused key
   goto
                                             "7" = "scroll up"
              scroll_up
   goto
                           ; keypressed = 8
                                             "8" = "report last"
             report last
                           ; keypressed = 9
   goto
                                             "9"
                           ; keypressed = A
             unused_key
   goto
                           ; keypressed = B
                                             "C" = "stop"
   goto
             stoprun
                                             "*" = "scroll down"
                          ; keypressed = C
             scroll down
   goto
                                             "0" = "scroll up"
             report_next
                          ; keypressed = D
   goto
                                             "#"
              unused_key
                          ; keypressed = E
   goto
                                             "D" = "run"
   goto
              startrun
                           ; keypressed = F
unused_key
keyresp_next
wait_release
              KEYPAD DA
                           ; Wait until key is released????
   btfsc
                           ; !!!!!!!!!time
   goto
             wait release
             display
   ; reset timeout!!!!!!!!
   return
realtime
   movlw
             PHASE_REALTIME
   movwf
              phase
   clrf
              line_num
   goto
              keyresp_next
report
   movlw
             PHASE_REPORT ; assuem log_total <> 0
```

```
movf
               log_total, f
   btfsc
               STATUS, Z
               PHASE NOREPORT; log total == 0, no report
   movlw
   movwf
   clrf
               line_num
               keyresp_next
   goto
report_last
; !!!! some ideas: must in REPORT phase; no change in line_num if at last report;
 do not go through report; if enter from other phase same fn to report;
; display report# and can go across upper/lower limit
   movf
               log_total, f
   btfsc
               STATUS, Z
                               ; log_total == 0, no report!!!!
               report
   goto
    ; lower bound = (log_next - log_total + MAXLOG) MOD MAXLOG
   movf
               log total, w
                              ; get lower bound
               log next, w
   subwf
   addlw
               MAXLOG
   MODLW
               MAXLOG
   subwf
               report_num, w
   btfsc
               STATUS, Z
   goto
                               ; current report at lower bound!!!!"This is the last report"!!!!
               report
   decf
               report_num, w ; get last report
   addlw
               MAXLOG
                               ; make sure report num between 0 and MAXLOG - 1
   MODLW
               MAXLOG
   movwf
               report num
   call
               readlog
               report
   goto
report_next
   movf
               log_total, f
   btfsc
               STATUS, Z
                               ; log_total == 0, no report!!!!
   goto
               report
   ; upper bound = (log next - 1 + MAXLOG) MOD MAXLOG
   decf
               log_next, w; get upper bound
   addlw
               MAXLOG
   MODI W
               MAXLOG
   subwf
               report_num, w
               STATUS, Z
   btfsc
                               ; current report at upper bound!!!!
   goto
               report
   incf
               report num, w
                              ; get next report
   MODLW
               MAXLOG
                               ; make sure report_num between 0 and MAXLOG - 1
   movwf
               report num
   call
               readlog
   goto
               report
scroll up
   movlw
               PHASE_REPORT
                               ; test phase == PHASE_REPORT
   subwf
               phase, w
   btfss
               STATUS, Z
               keyresp_next
                               ; phase <> PHASE_REPORT, do nothing
   goto
                               ; phase == PHASE_REPORT, test line_num == 0
               line_num, f
   movf
   btfss
               STATUS, Z
   decf
               line num, f
                               ; line_num <> 0, decrease line_num (scroll up)
   goto
               keyresp_next
scroll_down
   movlw
               PHASE_REPORT
                               ; test phase == PHASE_REPORT
   subwf
               phase, w
   btfss
               STATUS, Z
   goto
                               ; phase <> PHASE_REPORT, do nothing
               keyresp_next
   movlw
               MAXLINE
                               ; phase == PHASE_REPORT, test line_num == MAXLINE????
   subwf
               line_num, w
   btfss
               STATUS, Z
                               ; line_num <> MAXLINE, increase line_num (scroll down)
   incf
               line_num, f
   goto
               keyresp_next
startrun
   movlw
               PHASE_RUN
```

```
movwf
             phase
   clrf
             line_num
;!!!! call
               display
   call
             LCD_clear
                          ; clear LCD display
   MOVLF
             FSR, LCDline
   COPY_STRING str_running
   call
            writeline
   call
             run
   MOVLF
             phase, PHASE_FINISH
   clrf
             line num
   call
             display
   call
             delay1sl
   MOVLF
             phase, PHASE REPORT
   clrf
             line num
   call
             display
   ; assume run time is very long, key has been released
   return
stoprun
   goto
             keyresp next
;"keypad_timeout":
      Func:
      Input:
      Output:
      Affect:
*******************************
keypad timeout
   movf
            newsec, f
   btfsc
            STATUS, Z
            kp_to_nonewsec ; newsec == 0(FALSE), skip
   goto
   call
            display
                     ; newsec == TRUE, display the new sec
   clrf
             newsec
kp to nonewsec
; SLEEP test goes here!!!!
   return
       ***********************
      "display": Display Function (User Interface)
                First make up the content to be displayed into LCDline
;
;
                according to phase and line_num, then print the string
                to the LCD
      Input:
                phase, line_num
      Output:
                None (to LCD)
      Affect:
                W, STATUS, FSR, temp2, table_temp, arg, arg2,
                delaytemp, delaycount, lcd_temp
*******************************
display
   ; run phase does not use general display function
   movf
             phase, w
             PHASE_RUN
   sublw
             STATUS, Z
   btfsc
   return
   movf
             line_num, w
                        ; current line#
   call
             makeline
   call
             LCD_clear
                          ; clear LCD display
   call
             writeline
```

```
incf
              line_num, w    ; next line# in W, but not inc line#
              makeline
   call
              LCD line2
   call
   call
              writeline
   call
              LCD out
                            ; move the cursor out of screen
   return
"makeline":
                 Displayable Line Make & Copy Function
;
                 Make lines to be displayed according to the phase and
       Func:
;
                 line number (W), copy it to the LCDline array
;
       Input:
                 W = line # to be displayed, phase
;
       Output:
                 FSR = point to the null termination of the line made &
                 copied, (Copied line in LCDline)
       Affect:
                 W, STATUS, temp2, temp3, table_temp, arg, arg2, literal_addr
makeline
   movwf
                            ; line#
              temp2
   MOVLF
              FSR, LCDline ; start from LCDline
   movf
              phase, w
   TABLE
                            ; switch (phase)
                            ; phase == 0
   goto
              ML_hdinit
                            ; phase == 1
   goto
              ML rtcinit
                            ; phase == 2
              ML realtime
   goto
                            ; phase == 3
              ML_noreport
   goto
                            ; phase == 4
              ML report
   goto
   goto
              ML run
                            ; phase == 5
              ML finish
                            ; phase == 6
   goto
ML hdinit
   movf
              temp2, w
   TABLE
                            ; switch (temp2(line#))
                           ; line# == 0
; line# == 1
              ML_hdinit_0
   goto
   goto
              ML_hdinit_1
              ; display do not use this function
ML rtcinit
   COPY STRING str null
                            ; null termination
   return
ML realtime
   movf
              temp2, w
   TABLE
                            ; switch (temp2(line#))
   goto
              ML_realtime_0 ; line# == 0
   goto
              ML_realtime_1 ; line# == 1
ML_noreport
   movf
              temp2, w
   TABLE
                            ; switch (temp2(line#))
              ML_noreport_0 ; line# == 0
   goto
              ML_noreport_1 ; line# == 1
   goto
ML_report
   movf
              temp2, w
                            ; switch (temp2(line#))
   TABLE
                            ; line# == 0
   goto
              ML_report_0
                            ; line# == 1
   goto
              ML_report_1
                            ; line# == 2
              ML_report_2
   goto
                            ; line# == 3
              ML_report_3
   goto
                            ; line# == 4
              ML_report_4
   goto
                            ; line# == 5
              ML_report_5
   goto
   goto
              ML_report_6
                            ; line# == 6
   goto
              ML_report_7
                            ; line# == 7
                           ; line# == 8
   goto
              ML_report_8
                           ; line# == 9
              ML_report_9
   goto
   goto
              ML_report_10
                           ; line# == 10
ML_run
```

```
movf
               temp2, w
   TABLE
                               ; switch (temp2(line#))
                               ; line# == 0
   goto
               ML run 0
   goto
               ML_run_1
                               ; line# == 1
ML_finish
   movf
               temp2, w
                               ; switch (temp2(line#))
   TABLE
                               ; line# == 0
   goto
               ML_finish_0
               ML_finish_1
   goto
                               ; line# == 1
ML_hdinit_0
   COPY_STRING str_init
   return
ML hdinit 1
   COPY_STRING str_null
   return
ML realtime 0
   COPY_STRING str_yearhead
   COPY_DEC2 rt_year
   COPY_STRING str_dash
   COPY_DEC2 rt_month
   {\tt COPY\_STRING\ str\_dash}
   COPY DEC2 rt day
   return
ML_realtime_1
   COPY_DEC2 rt_hour
   COPY_STRING str_colon
   COPY DEC2 rt min
   COPY STRING str colon
   COPY DEC2 rt sec
   return
ML noreport 0
   COPY_STRING str_noreport
   return
ML_noreport 1
   COPY_STRING str_null
   return
ML_report_0
   COPY_STRING str_entry
   ; log# = (log_total - log_next + report_num + 1 + MAXLOG) MOD MAXLOG
   ; also log# = MAXLOG if result == 0
   movf
               log_next, w
   subwf
               log_total, w
   addwf
               report_num, w
   addlw
               0x01
   addlw
               MAXLOG
   MODLW
               MAXLOG
   btfsc
               STATUS, Z
                               ; result == 0, log# = MAXLOG
   movlw
               MAXLOG
   movwf
               temp3
   COPY_DEC2 temp3
   COPY_STRING char_slash
   COPY_DEC2 log_total
   return
ML_report_1
   COPY_STRING str_start
   COPY_DEC2 st_hour
   COPY_STRING str_colon
   COPY_DEC2 st_min
   COPY_STRING str_colon
```

```
COPY_DEC2 st_sec
   return
ML_report_2
   COPY_STRING str_finish
   COPY_DEC2 end_hour
   COPY_STRING str_colon
   COPY_DEC2 end_min
   {\tt COPY\_STRING\ str\_colon}
   COPY DEC2 end sec
   return
ML_report_3
   COPY_STRING str_runtime
   COPY_DEC1 runtime
   COPY_STRING str_s
   return
ML report 4
   COPY_STRING str_total
   COPY DEC1 cl total
   return
ML_report_5
   COPY_STRING str_pass
   COPY_DEC1 cl_pass
   COPY_STRING str_fail
   COPY_DEC1 cl_fail
   return
ML_report_6
   COPY_STRING str_layout
   return
ML_report_7
   COPY STRING str layout1
   COPY LAYOUT 0
   return
ML_report_8
   COPY_STRING str_layout2
   COPY_LAYOUT 1
   return
ML_report 9
   COPY_STRING str_layout3
   COPY LAYOUT 2
   return
ML report 10
   COPY_STRING str_layout4
   COPY_LAYOUT 3
   return
ML_run_0
   COPY_STRING str_running
   return
ML_run_1
   COPY_STRING str_null
   return
ML_finish_0
   COPY_STRING str_insp_fin
   return
              ; ALL PASS????!!!!
ML_finish_1
   COPY_STRING str_runtime
   COPY DEC1 runtime
   COPY_STRING str_s
"copystring": String Copy Function
       Func:
                 Copy the string literal (null terminated) pointed by W
```

```
to position pointed by FSR (indirect pointer)
;
       Input:
                 W = address of the string literal wanted,
                 FSR = adress of destination
       Output:
                 FSR = adress of the null terminator of the copyed string
;
       Affect:
                 W, STATUS, literal_addr
          ******************
copystring
   movwf
             literal_addr
copystring_loop
              literal addr, w
   movf
   call
              literal
              INDF
   movwf
              INDF, f
                           ; test INDF(last char) == 0(NULL)
   movf
   btfsc
             STATUS, Z
   return
                           ; if end of string is reached (NULL)
   incf
              FSR, f
              literal addr, f
   incf
              copystring loop
   goto
"copylayout": Layout Row Translate & Copy Function
       Func:
                 Translate a row in layout array into printable format,
                 copy it to position pointed by FSR,
                 and add a null termination after the copied charactor
;
       Input:
                 W = raw number, FSR = adress of destination
                 FSR = adress of the null terminator after copied layout
;
       Output:
       Affect:
;
copylayout
   movwf
              temp
                           ; raw number, later hold translated layout byte
   movlw
              layout
   movf
              temp, f
                            ; test if temp == 0
   btfsc
              STATUS, Z
   goto
              copylayout next; temp == 0, starting position = layout
copylayout_startloop
   addlw
             COLS
   decfsz
              temp, f
              copylayout startloop
   goto
copylayout next
                           ; address of layout byte
   movwf
              temp2
   movf
              FSR, w
   movwf
             temp3
                           ; address of destination
   movlw
              COLS
                           ; colume counter
   movwf
             temp4
copylayout_charloop
   movf
              temp2, w
                           ; get layout byte
   movwf
              FSR
   movlw
              char_layout
                           ; get translated layout byte address
              INDF, w
   addwf
   call
              literal
                           ; translate char
   movwf
              temp
                           ; save the translated layout byte into temp
   movf
              temp3, w
                           ; get destination
   movwf
              FSR
                           ; copy translated byte to destination
   movf
              temp, w
   movwf
              INDF
   incf
              temp2, f
   incf
              temp3, f
   decfsz
              temp4, f
   goto
              copylayout_charloop
   movf
              temp3, w
   movwf
             FSR
                            ; FSR will now have the address after last byte
   movlw
              NULL
                           ; add null terminator
```

```
movwf
              INDF
   return
"copydec": Byte Display Conversion & Copy Function
;
                  Convert a number store in a byte to a printable decimal
       Func:
;
                  ASCII string with null termination and copy it to a position
;
                  pointed by FSR
       Input:
                  arg = number to be converted,
                  arg2 = minimum number of digits displayed
                  FSR = adress of destination
                 FSR = adress of the null terminator of the decimal display
       Output:
       Affect:
                 W, STATUS, arith_temp, arith_temp2
copydec
   movf
              arg, w
   DIVLW
                            ; 100
              0x64
   btfss
              STATUS, Z
                            ; test if quotient is 0
   goto
              copydec_copyhundreds ; quotient <> 0, normal display
                            ; quotient == 0, depends on arg2
   mov1w
              0x03
   subwf
              arg2, w
   btfss
              STATUS, C
                            ; test if arg2 < 3
   goto
              copydec tens
                            ; arg2 < 3, skip 0 hundred
   movlw
                            ; arg2 >= 3, display 0
copydec copyhundreds
                            ; num+0x30 = its ASCII
   addlw
              0x30
              INDF
   movwf
              FSR, f
   incf
                            ; hundreds already displayed, set arg2 to 3
   movlw
              0x03
   movwf
              arg2
                            ; because all following digit shall be seen
copydec tens
   movf
              arg, w
   MODLW
              0x64
                            ; 100
   DIVLW
              0x0A
                            ; 10
   btfss
                            ; test if quotient is 0
              STATUS, Z
              copydec_copytens ; quotient <> 0, normal display
   goto
   movlw
              0x02
                            ; quotient == 0, depends on arg2
   subwf
              arg2, w
   btfss
              STATUS, C
                            ; test if arg2 < 2
   goto
              copydec_ones
                            ; arg2 < 2, skip 0 tens
   movlw
              0x00
                            ; arg2 >= 2, display 0
copydec_copytens
   addlw
              0x30
                            ; num+0x30 = its ASCII
   movwf
              INDF
   incf
              FSR, f
       movlw
                 0x02
                                ; tens already displayed, set arg2 to 2
       movwf
                 arg2
                                ; because all following digit shall be seen
copydec_ones
   movf
              arg, w
   MODLW
              0x0A
                            ; 10
                            ; ones shall be displayed anyways
   addlw
              0x30
                            ; num+0x30 = its ASCII
   movwf
              INDF
              FSR, f
   incf
copydec_ending
                            ; write a null ending
              NULL
   movlw
              INDF
   movwf
   return
"writeline":
                 Write Displayable Line to LCD Function
;
                  Send LCDline string to LCD charactor by charactor
;
       Func:
       Input:
                 None (string prepared in LCDline)
;
```

Output:

None (to LCD)

```
W, STATUS, FSR, delaytemp, delaycount
      Affect:
                 (3.2 + 216.0 * N) us, N = # of char, not including NULL
       Runtime:
writeline
   MOVLF
             FSR, LCDline
writeline_loop
             INDF, w
   movf
                           ; test INDF(char pointer to the string)==0(NULL)
   btfsc
             STATUS, Z
                           ; if end of string is reached (NULL)
   return
   call
              LCD wt
   incf
             FSR, f
   goto
             writeline_loop
"Run":
                 Run Inspection Function
       Func:
                 Control the entire process of inspection
       Input:
       Output:
                 st year, st month, st day, st hour, st min, st sec,
                 end_hour, end_min, end_sec, runtime, cl_total, cl_pass,
                 cl_fail, layout, smotor_dir, log!!!!
      Affect:
run
   ; store sarting time
   MOVFF
             st year, rt year
   MOVFF
              st_month, rt_month
   MOVFF
              st_day, rt_day
   MOVFF
             st_hour, rt_hour
   MOVFF
             st_min, rt_min
   MOVFF
             st_sec, rt_sec
   ; reset all layouts
   MOVLF
             FSR, layout
             temp, MAXPOS
   MOVLF
run_clearlayoutloop
   clrf
             INDF
             FSR, f
   incf
   decfsz
             temp, f
   goto
             run clearlayoutloop
   ; initialize variables
   movlw
             layout
   movf
             smotor_dir, f
   btfsc
             STATUS, Z
             run_init_smotornext; smotor_dir == 0, "row1" to "row4"
   goto
                          ; smotor_dir <> 0, "row4" to "row1"
   addlw
             MAXPOS
   movwf
             temp
                           ; temperary storage
             COLS
   movlw
   subwf
             temp, w
                           ; layout + MAXPOS - COLS, at last row
run init smotornext
   movwf
             result_addr
              rowleft, ROWS
   MOVLF
   clrf
              cl_total
              cl_pass
   clrf
              cl_fail
   clrf
   bcf
              INTCON, RBIF
             INTCON, RBIE
                           ; enable keypad interrept
   STORE_LIGHT light_bg
   PRINT_DOT
                           ; !!!!
run_loop
```

```
IRLED ON
   STORE_LIGHT light_pos
   IRLED OFF
   movf
               result_addr, w
   CALC_POS
               THD IRLED
   btfsc
               STATUS, Z
   goto
               run_noextrarow ; return value == 0, no lights in this row
   ;PRESS_CL
               movedown
   call
   STORE_LIGHT light_pos
   CALC_POS
               THD_CL3LED
   call
               moveup
   STORE_LIGHT light_cl
                               ; !!!!
   PRINT DOT
   ;PRESS CL
   call
               movedown
   call
               moveup
   STORE_LIGHT light_off
                               ; !!!!
   PRINT_DOT
               result_addr, w
   movf
   call
               calcfunc
   addlw
               0x00
   btfsc
               STATUS, Z
               run noextrarow ; return value == 0, no extra row
   ; return value <> 0, advance extra row
    ; advance to next RAM location
               COLS
   movlw
               smotor dir, f
   movf
   btfss
               run nextRAM reverse; smotor dir<>0, "row4" to "row1", sub COLS
   goto
   addwf
               result_addr, f; smotor_dir == 0, "row1" to "row4", add COLS
   goto
               run nextRAM next
run_nextRAM_reverse
   subwf
               result_addr, f
run_nextRAM next
               rowleft, f
   decf
   btfsc
               STATUS, Z
   goto
                               ; no row left, end run
               run_end
                               ; advance to next machine location
   call
               advancerow
                               ; !!!!
   PRINT_DOT
run noextrarow
   ; advance to next RAM location
   movlw
               COLS
   movf
               smotor_dir, f
   btfss
               STATUS, Z
               run_nextRAM_reverse2
                                     ; smotor_dir <> 0, "row4" to "row1"
   goto
               result_addr, f ; smotor_dir == 0, "row1" to "row4", add COLS
   addwf
   goto
               run_nextRAM_next2
run_nextRAM_reverse2
               result_addr, f
   subwf
run_nextRAM_next2
   decf
               rowleft, f
   btfsc
               STATUS, Z
                               ; no row left, end run
   goto
               run_end
                               ; advance to next machine location
               advancerow
   call
   PRINT_DOT
                               ; !!!!
   goto
               run_loop
run_end
   bcf
               INTCON, RBIE
                               ; disable keypad interrept
   movlw
               0x01
                               ; mask last bit
```

```
smotor_dir, f ; logic NOT last digit, reverse direction
   xorwf
   ; store end time
   MOVFF
             end_hour, rt_hour
   MOVFF
             end_min, rt_min
   MOVFF
             end_sec, rt_sec
   call.
             calcruntime
   call
             writelog
             report num
   movwf
   return
       "calcpos": Row Position Calculation Function
      Func:
                 Determine the existance of closet light at any positions in
;
                 current row: result CL POS BIT = (light pos >= THD IRLED)
                 W = the starting address where the result will be stored,
      Input:
                 temp = address of the result, temp4 = threshold, light pos[]
      Output:
                 W = number of lights in current row, result bytes,
                 STATUS is set according to W
      Affect:
                 FSR, temp, temp2, temp3, temp4
calcpos
                           ; address of the result
   movwf
             temp
   clrf
             temp2
                           ; colume number
                           ; number of CLs in current row
   clrf
             temp3
calcpos_loop
   MOVFF
             FSR, temp
             light_pos
   movlw
   addwf
             temp2, w
             FSR
                           ; get current light pos
   movwf
   movf
             temp4, w
   subwf
             INDF, w
                           ; light_pos - threshold
   btfss
             STATUS, C
   goto
             calcpos_next
                           ; light_pos < threshold, no light
   MOVFF
             FSR, temp
                           ; light_pos >= threshold, has light
   bsf
             INDF, CL_POS_BIT ; set pos bit
             temp3, f
   incf
calcpos next
   incf
             temp, f
   incf
             temp2, f
   mov1w
             COLS
   subwf
             temp2, w
                           ; temp2(col#) - COLS(max col#)
   btfss
             STATUS, C
             calcpos_loop
                          ; temp2(col#) < COLS(max col#)</pre>
   goto
   movf
             temp3, w
   return
"calcfunc":
                 Row Functionality Calculation Function
      Func:
                 Determine the functionality of closet light at ANY positions
                 (not only those maked pos) of current row, also determine
                 whether next row can physically have any CL
                 W = the starting address where the result will be stored,
      Input:
;
                 light_bg[], light_cl[], light_off[], result bytes
                 W = whether the machine need to advance one more row
      Output:
                 (0 = advance one row; 1 = advance two rows),
                 cl_total, cl_pass, cl_fail, layout[]
      Affect:
                 STATUS, FSR, temp, temp2, temp3, temp4, temp5, temp6, temp7
calcfunc
   movwf
                           ; address of the result
             temp
                           ; colume number
   clrf
             temp2
```

```
; C0 = light_pos >= THD_IRLED
   clrf
               temp3
                               ; C1 = light_cl >= THD CL3LED
   clrf
               temp4
   clrf
                               ; C2 = light_off >= (lihgt_bg + THD_BG)
               temp5
   clrf
               temp6
                               ; number of CLs in current row
   clrf
               temp7
                               ; temperaty storage
calcfunc_loop
    ; get C0 = CL_POS_BIT from calcpos
   MOVFF
               FSR, temp
   movlw
               FALSE
   btfsc
               INDF, CL POS BIT
   movlw
               TRUE
                               ; CL_POS_BIT set, C0 = true
   movwf
               temp3
    ; get C1 = light_cl >= THD_CL3LED
               light_cl
   movlw
   addwf
               temp2, w
   movwf
               FSR
                               ; get current light_cl
               THD CL3LED
   movlw
   subwf
               INDF, w
                               ; light cl - THD CL3LED
   btfss
               STATUS, C
               calcfunc_C1false ; light_pos < THD_IRLED, C1 = false</pre>
   goto
                               ; light_pos >= THD_IRLED, C1 = ture
               TRUE
   movlw
   goto
               calcfunc_C1next
calcfunc C1false
   movlw
               FALSE
calcfunc C1next
   movwf
               temp4
    ; get C2 = light_off >= (lihgt_bg + THD_BG)
   movlw
               light_bg
   addwf
               temp2, w
   movwf
               FSR
                               ; get current light bg
               THD BG
   movlw
   addwf
               INDF, w
                               ; lihgt_bg + THD_BG
   movwf
               temp7
                               ; temperally save
   movlw
               light off
   addwf
               temp2, w
                               ; get current light_off
   movwf
               FSR
                               ; put (lihgt_bg + THD_BG) back
   movf
               temp7, w
               INDF, w
                               ; light_off - (lihgt_bg + THD_BG)
   subwf
   btfss
               STATUS, C
               calcfunc_C2false ; light_off < (lihgt_bg - THD_BG), C2 = false</pre>
   goto
   movlw
               TRUE
                               ; light_off >= (lihgt_bg - THD_BG), C2 = true
               calcfunc_C2next
   goto
calcfunc C2false
   movlw
               FALSE
calcfunc_C2next
   movwf
               temp5
    ; determine the functionality of CL:
   MOVFF
               FSR, temp
   clrf
               INDF
                                ; reset layout byte
    ; CL_POS_BIT = C0 IOR C1 IOR C2
   movf
               temp3, w
                               ; W = C0
    iorwf
               temp4, w
                               ; W = C0 IOR C1
                               ; W = C0 IOR C1 IOR C2
   iorwf
               temp5, w
   btfsc
               STATUS, Z
               calcfunc_POSfalse ; W == 0, false
   goto
               INDF, CL_POS_BIT
                                  ; W <> 0, true
   bsf
   incf
               cl_total, f
   incf
               temp6, f
calcfunc_POSfalse
    ; CL_FN_BIT = (C1 AND (NOT C2)) IOR (C0 AND (NOT C1) AND C2)
                               ; W = C2
   movf
               temp5, w
                               ; W = NOT C2
               0xFF
   xorlw
   andwf
               temp4, w
                               ; W = C1 AND (NOT C2)
```

```
movwf
              temp7
                           ; temperally save
                           ; W = C1
              temp4, w
   movf
                           ; W = NOT C1
   xorlw
              0xFF
   andwf
              temp3, w
                           ; W = CO AND (NOT C1)
                           ; W = C0 AND (NOT C1) AND C2
   andwf
              temp5, w
   iorwf
              temp7, w
                           ; W = (C1 AND(NOT C2))IOR(C0 AND(NOT C1)AND C2)
              STATUS, Z
   btfsc
   goto
              calcfunc_FNfalse ; W == 0, false
              INDF, CL_FN_BIT ; W \leftrightarrow 0, true
   bsf
   incf
              cl pass, f
calcfunc_FNfalse
   ; CL ERR BIT = (C1 AND (NOT C0)) IOR (C2 AND (NOT C1))
                         ; W = C1
   movf
             temp4, w
                           ; W = NOT C1
   xorlw
              0xFF
                           ; W = C2 AND (NOT C1)
   andwf
              temp5, w
                           ; temperally save
   movwf
              temp7
   movf
              temp3, w
                           ; W = C0
   xorlw
              0xFF
                           ; W = NOT C0
                           ; W = C1 AND (NOT C0)
   andwf
             temp4, w
   iorwf
                           ; W = (C1 \text{ AND (NOT C0)}) \text{ IOR (C2 AND (NOT C1))}
              temp7, w
   btfss
              STATUS, Z
   bsf
              INDF, CL_ERR_BIT ; W <> 0, true
   incf
              temp, f
   incf
              temp2, f
              COLS
   movlw
              temp2, w
                            ; temp2(col#) - COLS(max col#)
   subwf
   btfss
              STATUS, C
   goto
              calcfunc loop ; temp2(col#) < COLS(max col#)</pre>
   ; cl fail = cl total - cl pass
             cl pass, w
   subwf
              cl_total, w
                          ; cl_total - cl_pass
              cl fail
   movwf
   ; advance two rows if "CLs in this row" >= MAXCLINROW
              MAXCLINROW
   movlw
   subwf
              temp6, w
                            ; "CLs in this row" - MAXCLINROW
   btfss
              STATUS, C
              0x00
                            ; "CLs in this row" < MAXCLINROW
   retlw
                            ; "CLs in this row" >= MAXCLINROW
              0x01
   retlw
"calcruntime": Runtime Calculation Function
;
                 Calculate the running time of the run = endtime - starttime
;
       Input:
                st_min, st_sec, end_min, end_sec
;
      Output:
                 runtime
;
      Affect:
                W, STATUS, temp
calcruntime
   movf
              st min, w
                            ; temp = end_min - st_min
              end min, w
   subwf
   btfsc
              STATUS, C
   goto
              calcruntime_next1
   addlw
              .60
                          ; borrow occur, +60min
calcruntime_next1
   movwf
             temp
   movf
              st_sec, w
                            ; W = end_sec - st_sec
   subwf
              end_sec, w
   btfsc
              STATUS, C
   goto
              calcruntime_next2
   addlw
             .60
                      ; borrow occur, +60sec
              temp, f
   decf
                           ; -1min
```

```
calcruntime_next2
   movf
              temp, f
   btfsc
              STATUS, Z
              calcruntime_next3 ; temp == 0, runtime = W
   goto
calcruntime_loop
                            ; runtime = W + .60*temp
              .60
   addlw
   btfsc
              STATUS, C
   goto
              calcruntime overflow ; W>255 overflow
   decfsz
              temp, f
   goto
              calcruntime_loop
calcruntime next3
   movwf
              runtime
   return
calcruntime_overflow
   movlw
              0xFF
                            ; !!!!
   movwf
              runtime
   return
"lightsensor": Light Sensor Read, A/D Convert, and Store Function
       Func:
                  Read in analog signal from light sensor, convert it to
                  digital, and store the most significant 8-bit result to
                  designated address, convert voltage reading to intensity,
                  take average of LIGHTAVGX readings,
                  repeat COLS times for a row
                  W = the staring address where the readings will be stored
       Input:
       Output:
                  readings store into designated bytes
       Affect:
                  W, STATUS, FSR, ADCONO, ADRESH, ADRESL, temp, temp2, temp3
                  delaytemp, delaycount, arith temp, arith temp2
****************************
lightsensor
   movwf
              FSR
                            ; CHS (Channel Select) bits
   clrf
              temp
   MOVLF
              temp2, COLS
                            ; number of colume left
lightsensor_loop_col
              B'11000111'
   movlw
                            ; mask CHS bits
   andwf
              ADCON0, f
                            ; clear CHS bits
   movf
              temp, w
   iorwf
              ADCON0, f
                            ; set CHS bits
    ; avergae = (X1/n) + (X2/n) + ... + (Xn/n)
              temp3, LIGHTAVGX ; count of sample light sensor reading
   MOVLF
              INDF
   clrf
lightsensor_loop_avg
   call
              delay50us
                            ; require 2Tosc + Tacq = 28us
              ADCON0, GO
   bsf
lightsensor_poll
                            ; about 40us
   btfsc
              ADCON0, GO
   goto
              lightsensor_poll
                           ; the most significant 8-bit result
   movf
              ADRESH, w
              0xFF
                            ; invert result, since 5V = 0 intensity!!!!
   xorlw
   DIVLW
              LIGHTAVGX
              INDF, f
   addwf
              temp3, f
   decfsz
              lightsensor_loop_avg
   goto
   movlw
              B'00001000'
   addwf
              temp, f
                            ; advance CHS
   incf
              FSR, f
              temp2, f
   decfsz
              lightsensor_loop_col
   goto
   return
```

```
"ledcontrol": IR LEDs Control Function
             Turn on or off the infrared LEDs according to W
     Input:
             W = turn on or off the LED (0=off or else=on)
;
     Output:
             None
     Affect:
             STATUS
     Runtime:
            3.2 us
********************************
ledcontrol
           IRLED
  bcf
  addlw
           0x00
           STATUS, Z
  btfss
  bsf
                      ; if w <> 0, set IRLED
           TRI FD
  return
"movedown": Arm Move Down Control Function
     Func:
             Order the test arm to move down to the Closet Lights
;
     Input:
             None
;
     Output:
             None
             VMOTOR_C0, VMOTOR_C1
     Affect:
     Runtime:
              ???? us
movedown
                     ; power s_motor to hold position
  bsf
           SMOTOR EN
  bcf
           VMOTOR C1
                      ; to be safe
  bsf
           VMOTOR_C0
;movedown_poll
           FB BOT
  btfsc
  goto
           movedown poll
           DCDOWNDELAY
  movlw
  call
           delayX100msm
  bcf
           VMOTOR CØ
  bcf
           SMOTOR_EN
  return
"moveup": Arm Move Up Control Function
;
     Func:
              Order the test arm to move up to its default position
;
     Input:
             None
;
     Output:
             None
             VMOTOR_C0, VMOTOR_C1
     Affect:
     Runtime: ???? us
moveup
  bsf
           SMOTOR EN
                     ; power s_motor to hold position
  bcf
           VMOTOR_C0
                      ; to be safe
           VMOTOR_C1
  bsf
moveup_poll
  btfsc
           FB_TOP
  goto
           moveup_poll
           VMOTOR C1
  bcf
  bcf
           SMOTOR EN
  return
 ********************************
   "advancerow": Arm Advance-to-Next-Row Control Function
     Func:
              Order the test arm to the next(determined by smotor_dir) row
;
     Input:
              smotor_dir = direction of stpper motor
;
              (0 = "Row 1" to "Row 4"; 1 = "Row 4" to "Row 1")
     Output:
              None
              W, STATUS, temp, SMOTOR_EN, SMOTOR_S0, SMOTOR_S1, SMOTOR_S2,
     Affect:
              SMOTOR_S3, delaytemp, delaycount, delaytemp2, delaycount2,
              delaytemp3, delaycount3
```

```
advancerow
   bcf
             SMOTOR S1
                              ; state init
   bsf
             SMOTOR_S3
   bsf
             SMOTOR_EN
                               ; start motor
   movlw
             SMOTOR_STEPS
   movwf
             temp
   movlw
             SMOTOR_SPD_F
                               ; note: w must keep its value until very end
   movf
             smotor_dir, f
   btfss
             STATUS, Z
   goto
             advancerow_backwardloop
                              ; smotor dir == 0, "Row 1" to "Row 4"
advancerow forwardloop
   bcf
             SMOTOR_S0
   bsf
             SMOTOR_S2
   htfss
             FB ROW4
   goto
             advancerow end
             delayX5msm
   call
   bcf
             SMOTOR S3
             SMOTOR S1
   bsf
   btfss
             FB_ROW4
   goto
             advancerow_end
   call
             delayX5msm
             SMOTOR_S2
   bcf
   bsf
             SMOTOR SØ
   btfss
             FB ROW4
   goto
             advancerow_end
             delayX5msm
   call
             SMOTOR S1
   bcf
   bsf
             SMOTOR S3
             FB ROW4
   btfss
             advancerow end
   goto
   call
             delayX5msm
   decfsz
             temp, f
   goto
             advancerow_forwardloop
             advancerow_end
   goto
                                  ; smotor dir <> 0, "Row 4" to "Row 1"
advancerow_backwardloop
             SMOTOR S3
   bcf
   bsf
             SMOTOR S1
   call
             delayX5msm
             SMOTOR SØ
   bcf
   bsf
             SMOTOR S2
   call
             delayX5msm
   bcf
             SMOTOR_S1
             SMOTOR S3
   bsf
   call
             delayX5msm
   bcf
             SMOTOR_S2
             SMOTOR_S0
   bsf
             delayX5msm
   call
   decfsz
             temp, f
   goto
             advancerow_backwardloop
advancerow end
   bcf
             SMOTOR EN
   return
"writelog":
                 Log Write Function
;
                 Write the result of current run to log
      Func:
;
      Input:
                 st_year, st_month, st_day, st_hour, st_min, st_sec,
;
                 runtime, layout[], log_total, log_next
;
      Output:
                 W = current log index, log_total, log_next, Log Entry
;
      Affect:
                 STATUS, FSR, temp, temp2, temp3, temp4,
                 arith_temp, arith_temp2
                                    **************
writelog
```

```
; starting address (indirect) offset = (log_next / MAXLOGBANK) * 0x80 + 0x10
   movf
               log next, w
   DIVLW
               MAXLOGBANK
   MULLW
               0x80
   addlw
               0x10
   movwf
               temp
                               ; save in temp
    ; starting address (indirect) = (log_next MOD MAXLOGBANK)*LOGLENGTH + offset
               log next, w
   movf
   MODLW
               MAXLOGBANK
                               ; W = log next mod MAXLOGBANK
   MULLW
               LOGLENGTH
   addwf
               temp, w
    ; store easy-access variables
                               ; BANK2&3 indirect access
   hsf
               STATUS, IRP
   movwf
               FSR
                               ; log addr + 0
   MOVFF
               INDF, runtime
   incf
               FSR, f
                               ; log addr + 1
   swapf
               st_year, w
   addwf
               st_month, w
               INDF
   movwf
   incf
               FSR, f
                               ; log addr + 2
   MOVFF
               {\tt INDF, st\_day}
   incf
               FSR, f
                               ; log addr + 3
   MOVFF
               INDF, st hour
               FSR, f
                               ; log addr + 4
   incf
               INDF, st_min
   MOVFF
                               ; log addr + 5
               FSR, f
   incf
   MOVFF
               INDF, st_sec
                               ; log addr + 6
   incf
               FSR, f
    ; store layout
   MOVFF
               temp, FSR
                               ; the address of log entry (start at + 6)
   MOVLF
               temp2, layout
                               ; address of layout bytes
               temp3, MAXPOS ; position counter
   MOVI F
                               ; copy layout bytes in pairs
writelog_layoutloop
    ; write upper ribble
   MOVFF
                               ; get first layout byte
               FSR, temp2
   bcf
               STATUS, IRP
                               ; BANKO&1 indirect access
               INDF, w
   swapf
                               ; temp4 hold the swaped layout byte temperally
   movwf
               temp4
   MOVFF
               FSR, temp
                               ; log entry
   bsf
               STATUS, IRP
                               ; BANK2&3 indirect access
   MOVFF
               INDF, temp4
   incf
               temp2, f
   decf
               temp3, f
   btfsc
               STATUS, Z
   goto
               writelog_layoutnext
    ; write lower ribble
                               ; get second layout byte
   MOVFF
               FSR, temp2
                               ; BANK0&1 indirect access
   bcf
               STATUS, IRP
   MOVFF
               temp4, INDF
                               ; temp4 hold the layout byte temperally
   MOVFF
               FSR, temp
                               ; log entry
               STATUS, IRP
                               ; BANK2&3 indirect access
   bsf
   movf
               temp4, w
   addwf
               INDF, f
   incf
               temp2, f
   incf
               temp, f
    decfsz
               temp3, f
   goto
               writelog_layoutloop
writelog_layoutnext
    ; calculate new log_next = (log_next + 1) MOD MAXLOG
```

```
MOVFF
              temp, log_next; save current log index in temp
              log_next, f
   incf
                            ; test if max log reached
   movlw
              MAXLOG
   subwf
              log_next, w
                            ; log_next + 1 - MAXLOG
   btfss
              STATUS, C
   addlw
              MAXLOG
                            ; log_next + 1 < MAXLOG, add MAXLOG back</pre>
   movwf
              log_next
                            ; log_next = (log_next + 1) MOD MAXLOG
   ; calculate new log_total
              MAXLOG
   movlw
   subwf
              log_total, w
                            ; log_total - MAXLOG
   btfss
              STATUS, C
              log_total, f
                            ; log_total < MAXLOG, increase total number
   incf
   movf
              temp, w
                            ; resume current log entry index
   bcf
              STATUS, IRP
                            ; back to BANK0&1 indirect access
   return
"readlog": Log Read Function
;
       Func:
                 Read the log of specified run
;
       Input:
                 W = index of wanted report
       Output:
                 st_year, st_month, st_day, st_hour, st_min, st_sec,
                 end_hour, end_min, end_sec, runtime, cl_total, cl_pass,
                  cl fail, layout[]
       Affect:
                 W, STATUS, FSR, temp, temp2, temp3, temp4,
                 arith_temp, arith_temp2
readlog
   movwf
              temp2
                           ; save the index in temp2
   clrf
              cl total
   clrf
              cl pass
   ; starting address (indirect) offset = (index / MAXLOGBANK) * 0x80 + 0x10
   DIVLW
              MAXLOGBANK
   MULLW
              0x80
   addlw
              0x10
   movwf
              temp
                            ; save in temp
   ; starting address (indirect) = (index MOD MAXLOGBANK)*LOGLENGTH + offset
   movf
              temp2, w
                            ; resume index
   MODLW
              MAXLOGBANK
                            ; W = index mod MAXLOGBANK
   MULLW
              LOGLENGTH
   addwf
              temp, w
   ; read easy-access variables
   bsf
              STATUS, IRP
                            ; BANK2&3 indirect access
   movwf
              FSR
                            ; log addr + 0
   MOVFF
              runtime, INDF
   incf
              FSR, f
                            ; log addr + 1
              INDF, w
                            ; swap upper 4 bits and lower 4 bits
   swapf
              0x0F
   andlw
                            ; mask the lower 4 bits only
   movwf
              st_year
   movf
              INDF, w
   andlw
              0x0F
                            ; mask the lower 4 bits only
   movwf
              st_month
              FSR, f
                            ; log addr + 2
   incf
   MOVFF
              st_day, INDF
   incf
              FSR, f
                            ; log addr + 3
   MOVFF
              st_hour, INDF
   incf
              FSR, f
                            ; log addr + 4
              st_min, INDF
   MOVFF
              FSR, f
                            ; log addr + 5
   incf
   MOVEE
              st_sec, INDF
   incf
              FSR, f
                            ; log addr + 6
```

```
; read layout[], cl_total and cl_pass
                               ; the address of log entry (start at + 6)
   MOVFF
               temp, FSR
   MOVLF
               temp2, layout
                              ; address of layout bytes
   MOVLF
               temp3, MAXPOS ; position counter
readlog_layoutloop
                               ; read layout bytes in pairs
   ; read upper ribble
               FSR, temp
   MOVFF
                               ; log entry
   bsf
               STATUS, IRP
                               ; BANK2&3 indirect access
   swapf
               INDF, w
   andlw
               0x0F
                               ; mask the lower 4 bits only (not 3 bits!!!!)
                               ; temp4 hold the swaped layout byte temperally
   movwf
               temp4
   MOVFF
               FSR, temp2
                               ; get first layout byte
   bcf
               STATUS, IRP
                               ; BANK0&1 indirect access
   MOVFF
               INDF, temp4
   btfsc
               INDF, CL POS BIT
               cl total, f
   incf
   btfsc
               INDF, CL FN BIT
   incf
               cl_pass, f
               temp2, f
   incf
               temp3, f
   decf
   btfsc
               STATUS, Z
   goto
               readlog layoutnext
   ; read lower ribble
   MOVFF
               FSR, temp
                               ; log entry
               STATUS, IRP
   bsf
                               ; BANK2&3 indirect access
   movf
               INDF, w
                               ; mask the lower 4 bits only (not 3 bits!!!!)
   andlw
               0x0F
                               ; temp4 hold the layout byte temperally
   movwf
               temp4
   MOVFF
               FSR, temp2
                               ; get second layout byte
   bcf
               STATUS, IRP
                               ; BANK0&1 indirect access
   MOVFF
               INDF, temp4
   btfsc
               INDF, CL_POS_BIT
               cl_total, f
   incf
   btfsc
               INDF, CL_FN_BIT
               cl_pass, f
   incf
   incf
               temp2, f
   incf
               temp, f
               temp3, f
   decfsz
               readlog layoutloop
   goto
readlog_layoutnext
   ; calculate end time
   MOVFF
               end_hour, st_hour
   MOVFF
               end_min, st_min
   MOVFF
               end_sec, st_sec
   movf
               runtime, w
   DIVLW
               .60
   addwf
               end_min, f
                               ; end_min = st_min + runtime / .60
   movf
               runtime, w
   MODLW
               .60
   addwf
               end_sec, f
                               ; end_sec = st_sec + runtime MOD .60
                               ; test if 60s
   movlw
               .60
               end_sec, w
                               ; w = end_sec - 60
   subwf
               STATUS, C
   btfss
   goto
               readlog_endsec_next; end_sec < 60, end_sec OK</pre>
   movlw
               .60
                               ; end_sec >= 60, +1min, -60s
   subwf
               end_sec, f
   incf
               end_min, f
readlog_endsec_next
                               ; test if 60min
   movlw
               .60
   subwf
               end_min, w
               STATUS, C
   btfss
```

```
; end_min < 60, end_min OK, end_hour should OK</pre>
              readlog_next
   goto
   movlw
              .60
                            ; end_min >= 60, +1h, -60min
   subwf
              end min, f
   incf
              end_hour, f
              .24
                           ; test if 24h
   movlw
   subwf
              end_hour, w
   btfss
              STATUS, C
   goto
              readlog_next
                           ; >24h, -24h
   movlw
              .24
   subwf
              end hour, f
readlog_next
   ; cl_fail = cl_total - cl_pass
   movf
             cl_pass, w
   subwf
             cl_total, w
   movwf
             cl fail
   bcf
              STATUS, IRP
                           ; back to BANK0&1 indirect access
   return
"addsec": Add One Second Function
                 Add one second to the second byte of a timer,!!!!!!!!!!!!
;
                 increase minute and hour bytes if necessary,
;
                 carry out if day increment occur
                 W = Address of the second byte, min byte and hour byte
;
       Input:
                 should be at address W-1 and W-2, respectively
                 set STATUS C for day carry out
      Output:
                 W, FSR
      Affect:
                 3.6us/6.4us/9.2us/10.0us
       Runtime:
addsec
   movwf
             FSR
   incf
             INDF, f
                           ; +1sec
   mov1w
              .60
                           ; W = INDF - 60, test if 60s
   subwf
             INDF, w
   btfss
             STATUS, C
   return
                           ; INDF < 60, C==0, function done
   clrf
              INDF
                           ; >=60s, clear sec
             FSR, f
   decf
                           ; now FSR has address of min byte
   incf
             INDF, f
                           ; +1min
   movlw
              .60
                           ; W = INDF - 60, test if 60min
   subwf
             INDF, w
   btfss
             STATUS, C
   return
                           ; INDF < 60, C==0, function done
             INDF
   clrf
                           ; >=60min, clear min
             FSR, f
                           ; now FSR has address of hour byte
   decf
             INDF, f
   incf
                           ; +1hour
   movlw
              .24
   subwf
              INDF, w
                           ; W = INDF - 24, test if 24hour
   btfss
              STATUS, C
                           ; INDF < 24, C==0, function done
   return
              INDF
   clrf
                           ; >=24h, clear hour
   return
                           ; C has been set
   ********************************
       "addday": Add One Day Function
                 Add one day to the day byte of a timer,
       Func:
;
                 increase month and year bytes if necessary, !!!!unfinish
;
       Input:
                 W = Address of the day byte, month byte and year byte
                 should be at address W-1 and W-2, respectively
      Output:
                 None
                 W, STATUS, FSR
      Affect:
       Runtime:
                 3.6us/6.4us/8.0us
```

```
addday
   movwf
            FSR
            INDF, f
   incf
                        ; +1day
                        ; assume 1 month always= 30 days !!!!
   movlw
            .31
            INDF, w
   subwf
                       ; W = INDF - 31, test if over 30days
            STATUS, C
   btfss
   return
                        ; INDF < 31, C==0, function done
                       ; >=31s, clear day
            INDF
   clrf
                       ; day default at 1
   incf
            INDF
            FSR, f
   decf
                       ; now FSR has address of month byte
            INDF, f
   incf
                       ; +1month
   movlw
            .13
            INDF, w
                        ; W = INDF - 13, test if over 12month
   subwf
   btfss
            STATUS, C
   return
                        ; INDF < 13, C==0, function done
            INDF
                        ; >=13month, clear month
   clrf
                       ; month default at 1
   incf
            INDF
            FSR, f
   decf
                       ; now FSR has address of year byte
            INDF, f
   incf
                       ; +1year
   return
"divfn":
              Byte Integer Division Function
               Devide temp by W and store result in W, not efficient
;
               Temp = Dividend, W = Dividor
;
      Input:
              W = Quotient, arith_temp = reminder,
      Output:
              set STATUS Z for zero quotient, C for error
      Affect:
              arith temp2
divfn
   addlw
           0x00
   bsf
            STATUS, C
                        ; set carry in case of error
   btfsc
            STATUS, Z
                       ; if zero
   return
                          return (error C,Z)
   clrf
            arith temp2
divfn loop
   subwf
            arith_temp, f
   btfss
            STATUS, C
            divfn next
   goto
            arith temp2, f
   incf
            divfn_loop
   goto
divfn next
   addwf
            arith_temp, f
   movf
            arith_temp2, w
   return
"mulfn": Byte Integer Multiplication Function
      Func:
               Multiple W by temp and return result in W, not efficient
;
              Temp, W
      Input:
;
              W = Result, set STATUS Z for zero, C for overflow
      Output:
      Affect:
               arith_temp, arith_temp2
mulfn
  bcf
            STATUS, C
                        ; clr C bit for arith_temp == 0
                          ; store W in arith temp2
   movwf
            arith_temp2
   movlw
            0x00
                        ; W = 0 + arith_tempp * arith_temp2
   movf
            arith_temp, f
   btfsc
            STATUS, Z
   return
                        ; arith_temp == 0, return 0
mulfn_loop
   addwf
            arith_temp2, w
   btfsc
            STATUS, C
```

end

```
; for LCD series 162A
  #include <p16f877.inc>
  #include <common.inc>
  extern delay50us, delay5ms, delayX5msm, delay1sl
  ;Only these functions are visible to other asm files
  global LCD_init, LCD_clear, LCD_line2, LCD_out, LCD_wt
   ;Declare unbanked variables (at 0x70 and on)
  UDATA_SHR
lcd_tmp
        res 1
"ClkLCD": LCD Enable Click Function
             Pulse the E line low
     Func:
     Input:
     Output:
             None
             STATUS, delaytemp, delaycount
     Affect:
     Runtime:
            102.4 us
C1kLCD
        macro
  call
        delay50us
  bcf
        LCD E
        delay50us
  call
  bsf
        LCD_E
  endm
;
     "MovMSB": Most Significant Bits Move Function
             Move MSB of W to LCD PORT<4:7>, without disturbing LSB
;
     Input:
             W
;
             LCD_PORT
     Output:
     Affect:
             STATUS
     Runtime:
             3.2 us
MovMSB
        macro
   andlw
        0xF0
   iorwf LCD PORT,f
   iorlw
       0x0F
   andwf LCD_PORT,f
  endm
  code
"LCD_init":
             LCD Initialization Function
             Initialize LCD after reset
     Func:
;
     Input:
             None
;
     Output:
             None
     Affect:
             delaytemp, delaycount, delaytemp2, delaycount2,
             37,074.8 us
     Runtime:
LCD_init
  BANK0
  bsf
        LCD_E
                  ; E default high
  ; Wait for more than 15ms after VDD rises to 4.5V (20ms)
  call
        delay5ms
  call
        delay5ms
  call
        delay5ms
        delay5ms
  call
  ; Ensure 8-bit mode first (no way to immediately guarantee 4-bit mode)
```

```
; -> Send b'0011' 3 times
                    ; Instruction mode
  bcf
         LCD RS
         B'00110000'
  movlw
  MovMSB
   ; Finish last 4-bit send (if reset occurred in middle of a send)
  C1kLCD
  call
         delay5ms
                    ; Wait for more than max instruction time 4.1ms(5ms)
  C1kLCD
             ; Assuming 4-bit mode, set 8-bit mode
                    ; Wait for more than 100us
  call
         delay50us
  call
         delay50us
  C1kLCD
   ; (note: if it's in 8-bit mode already, it will stay in 8-bit mode)
   ; Now that we know for sure it's in 8-bit mode, set 4-bit mode.
  movlw
         B'00100000'
  MovMSB
  C1kLCD
   ; Give LCD init instructions
  movlw B'00101000' ; 4 bits, 2 lines,5X8 dot
  call
         LCD wt
  movlw B'00001111'
                    ; display on, cursor, blink
  call
         LCD wt
  movlw
        B'00000110'
                    ; Increment, no shift
  call
        LCD wt
   ; Ready to display characters
        LCD_clear
  call
  bsf
         LCD RS
                     ; Character mode
  return
LCD Clear Function
     Func:
               Clear the LCD display using clear command
     Input:
               None
     Output:
               None
               W, STATUS, delaytemp, delaycount, lcd_temp
     Affect:
      Runtime:
              2,264.8 us
LCD clear
  bcf
        LCD RS
                     ;Instruction mode
  movlw B'0000001'
  call
        LCD_wt
  ; expected excution time: 1.64ms (~2ms)
  movlw
         .40
  movwf
         1cd_tmp
  call
         delay50us
  decfsz lcd_tmp, f
  goto
         $-2
  bsf
         LCD_RS
                    ; Character mode
  return
"LCD line2":
               LCD Move to Seocnd Line Function
               Move the LCD cursor to second Line
     Func:
      Input:
               None
     Output:
               None
               \hbox{W, STATUS, delay temp, delay count}\\
     Affect:
     Runtime:
               216.4 us
LCD_line2
  bcf
         LCD_RS
                    ; Instruction mode
  movlw
         B'11000000'
                    ; shift position to 40h : second line
  call
         LCD_wt
  bsf
         LCD_RS
                    ; Character mode
```

;

;

;

;

```
"LCD_out": LCD Move Out of Screen Function
;
    Func: Move the LCD cursor out of screen (to 50h)
;
    Input:
            None
;
            None
    Output:
    Affect: W, STATUS, delaytemp, delaycount Runtime: 216.4 us
    Affect:
LCD_out
  bcf LCD_RS ; Instruction mode
movlw B'11010000' ; shift position to 50h : out of screen
  call LCD wt
  bsf
       LCD_RS
                ; Character mode
  return
"LCD_wt": LCD Write Function
;
    Func: Clock MSB and LSB of W to LCD_PORT<7:4> in two cycles
;
    Input:
            M
;
            None
    Output:
     Affect: W, STATUS, delaytemp, delaycount Runtime: 213.6 us
    Affect:
*****************************
LCD_wt
  movwf
        lcd_tmp
               ; store original value
  MovMSB
            ; move MSB to PORTD
  C1kLCD
                 ; Swap LSB of value into MSB of W
  swapf
        lcd tmp,w
  MovMSB
            ; move to PORTD
  C1kLCD
  return
  end
```

```
#include <p16f877.inc>
   #include <common.inc>
   cblock
            0xA0
   delaytemp
   delaycount
   delaytemp2
   delaycount2
   delaytemp3
   delaycount3
   endc
   code
   global delay50us, delay5ms, delayX5msm, delay100ms, delayX100msm, delay1sl
"dalay50us":
                50us Delay Function
                Precisely dalay 50 microsecond for 10Mz (125cycles*4)
;
      Func:
                including the time this function being called
      Input:
                None
      Output:
               None
      Affect:
                STATUS, delaytemp, delaycount
      Runtime:
                50.0 us
delay50us
   ; call function cost 2 cycles
   ;BANK1
                         ; 2 cycles
            STATUS, RP1
   bcf
   bsf
            STATUS, RP0
                         ; protect the data in w, 1 cycle
   movwf
            delaytemp
            0x26
   movlw
                         ; 38, 1 cycle
   movwf
            delaycount
                         ; 1 cycle
delay50us_loop
                         ; ((1+2)*38)-1 = 113 \text{ cycles}
   decfsz
            delaycount, f
            delay50us_loop
   goto
            delaytemp, w
                         ; resume w, 1 cycle
   movf
   ;BANK0
                         ; 2 cycles
   bcf
            STATUS, RP0
   nop
   return
                         ; 2 cycles
  ***********************
   "dalay5ms":
                5ms Delay Function
                Precisely dalay 5 millisecond for 10Mz (100*125cycles*4)
      Func:
;
                including the time this function being called
;
      Input:
                None
      Output:
               None
      Affect:
                STATUS, delaytemp, delaycount, delaytemp2, delaycount2
      Runtime:
                5,000.0 us
delay5ms
   ; call function cost 2 cycles
   ;BANK1
                         ; 2 cycles
            STATUS, RP1
   bcf
   bsf
            STATUS, RP0
   movwf
                         ; protect the data in w, 1 cycle
            delaytemp2
   ; 5 cycles to this point
   movlw
            0x60
                         ; 96, 1 cycle
   movwf
            delaycount2
                         ; 1 cycle
                         ; (130*96)-1 = 12479 cycles
delay5ms_loop
            delay50us
   ;call
                         ; (125 cycles)
   nop
```

```
;BANK1
                            ; 2 cycles
              STATUS, RP1
   bcf
   bsf
              STATUS, RP0
   movwf
              delaytemp
                            ; protect the data in w, 1 cycle
   movlw
              0x27
                            ; 39, 1 cycle
   movwf
              delaycount
                            ; 1 cycle
delay5ms_50us_loop
                            ; ((1+2)*39)-1 = 116 \text{ cycles}
   decfsz
              delaycount, f
   goto
              delay5ms_50us_loop
                            ; resume w, 1 cycle
   movf
              delaytemp, w
   ;BANK0
                            ; 2 cycles
              STATUS, RP0
   bcf
   nop
   ;BANK1
                            ; delay50us will reset Bank to 0, (2 cycles)
   bcf
              STATUS, RP1
              STATUS, RP0
   bsf
   decfsz
              delaycount2, f; (1(2) cycle)
              delay5ms_loop ; (2 cycle)
   ; 12486 cycles to this point
              0x02
                            ; 2, 1 cycle
   movlw
   movwf
              delaycount2
                            ; 1 cycle
                            ; (3*2)-1 = 5 \text{ cycles}
delay5ms loop2
   decfsz
              delaycount2, f
              delay5ms loop2
   goto
   ; 12493 cycles to this point
                            ; 1 cycle
   nop
                            ; 1 cycle
   nop
   movf
                            ; resume w, 1 cycle
              delaytemp2, w
   ;BANK0
                            ; 2 cycles
   bcf
              STATUS, RP0
   nop
   return
                            ; 2 cycles
"dalayX5msm":
                 Multiple of 5ms More Delay Function (less than 0.1% error)
;
       Func:
                  Delay slightly more than 5*W millisecond for 10Mz
;
                  precisely dalay (5.002*W+0.0032) ms ((12,505*W+8) cycles)
;
                  including the time this function being called
;
                 W = numbers of 5ms to delay
       Input:
;
       Output:
                 None
                  STATUS, delaytemp, delaycount, delaytemp2, delaycount2,
       Affect:
                  delaycount3
       Runtime:
                  (5,002.0*W + 3.2) us
delayX5msm
   ; call function cost 2 cycles
   ;BANK1
                            ; 2 cycles
              STATUS, RP1
   bcf
              STATUS, RP0
   bsf
   movwf
              delaycount3
                            ; 1 cycle
delayX5msm_loop
                            ; (12505*W-1) cycles
              delay5ms
   call
   ;BANK1
                            ; delay5ms will reset Bank to 0
   bcf
              STATUS, RP1
              STATUS, RP0
   decfsz
              delaycount3, f
   goto
              delayX5msm_loop
   ;BANK0
                            ; 2 cycles
   bcf
              STATUS, RP0
```

```
nop
   return
                            ; 2 cycles
"dalay100ms": 100ms Delay Function
                 Precisely dalay 100 millisecond for 10Mz (250,004cycles)
       Func:
                 including the time this function being called
       Input:
                 None
       Output:
                 None
                 STATUS, delaytemp, delaycount, delaytemp2, delaycount2
       Affect:
       Runtime:
                 100,001.6 us
                              ***************
delay100ms
   ; call function cost 2 cycles
   ;BANK1
                            ; 2 cycles
              STATUS, RP1
   bcf
              STATUS, RP0
   hsf
                            ; protect the data in w, 1 cycle
   movwf
              delaytemp2
   ; 5 cycles to this point
                            ; 249, 1 cycle
              0xF9
   mov1w
                            ; 1 cycle
   movwf
              delaycount2
delay100ms loop
                            ; (1004*250)-1 = 249,995 cycles
   movlw
              0xFA
                            ; 250, 1 cycle
   movwf
              delaycount
                            ; 1 cycle
                            (4*250)-1 = 999 cycles
delay100ms_loop2
   nop
              delaycount, f
   decfsz
              delay100ms_loop2
   goto
             delaycount2, f; (1(2) cycle)
   decfsz
              delay100ms loop; (2 cycle)
   ; 250,000 cycles to this point
   movf
              delaytemp2, w ; resume w, 1 cycle
   ;BANK0
                            ; 1 cycles
              STATUS, RP0
   bcf
                            ; 2 cycles
   return
"dalayX100msm": Multiple of 100ms More Delay Function(less than 0.01% error)
                 Delay slightly more than 100*W millisecond for 10Mz
      Func:
;
                 precisely dalay (0.100002*W+0.0000032) s
                 ((250,009*W+8) \text{ cycles})
                 including the time this function being called
       Input:
                 W = numbers of 100ms to delay
       Output:
                 None
       Affect:
                 STATUS, delaytemp, delaycount, delaytemp2, delaycount2,
                 delaycount3
       Runtime:
                 (100,003.6*W + 3.2) us
delayX100msm
   ; call function cost 2 cycles
   ;BANK1
                           ; 2 cycles
              STATUS, RP1
   bcf
              STATUS, RP0
   bsf
   movwf
              delaycount3
                           ; 1 cycle
delayX100msm_loop
                           ; (250,009*W-1) cycles
   call
              delay100ms
   ;BANK1
                            ; delay100ms will reset Bank to 0
   bcf
              STATUS, RP1
   hsf
             STATUS, RP0
   decfsz
             delaycount3, f
```

```
delayX100msm_loop
   goto
   ;BANK0
                            ; 2 cycles
              STATUS, RP0
   bcf
   nop
   return
                            ; 2 cycles
"dalav1sl":
                 1s Less Delay Function
       Func:
                  Dalay slightly less than 1 second for 10Mz,
                  precisely delay 999.0428ms (2,497,607 cycles)
;
                  including the time this function being called
       Input:
                 None
       Output:
                  None
       Affect:
                  STATUS, delaytemp, delaycount, delaytemp2, delaycount2,
                  delaytemp3, delaycount3
       Runtime:
                 999,042.8 us
*******************************
delay1sl
   ; call function cost 2 cycles
   ;BANK1
                            ; 2 cycles
              STATUS, RP1
   bcf
   bsf
              STATUS, RP0
   movwf
              delaytemp3
                            ; protect the data in w, 1 cycle
   ; 5 cycles to this point
                            ; 199, 1 cycle
              0xC7
   movlw
   movwf
              delaycount3
                            ; 1 cycle
                            ; (12505*199)-1 = 2,488,494 cycles
delay1sl_loop
              delay5ms
                            ; (12500 cycles)
   call
   ;BANK1
                            ; delay5ms will reset Bank to 0, (2 cycles)
   bcf
              STATUS, RP1
   bsf
              STATUS, RP0
   decfsz
              delaycount3, f ; (1(2) cycle)
              delay1sl_loop ; (2 cycle)
   goto
   ; 2,488,501 cycles to this point
   movlw
              0x46
                            ; 70, 1 cycle
   movwf
              delaycount3
                            ; 1 cycle
delay1sl_loop2
                            ; (130*69)-1 = 9099 \text{ cycles}
              delay50us
                            ; (125 cycles)
   call
   ;BANK1
                            ; delay50us will reset Bank to 0, (2 cycles)
              STATUS, RP1
   bcf
              STATUS, RP0
   bsf
   decfsz
              delaycount3, f
   goto
              delay1sl_loop2
   ; 2,497,602 cycles to this point
   movf
              delaytemp3, w ; resume w, 1 cycle
   ;BANK0
                            ; 2 cycles
              STATUS, RP0
   bcf
   nop
   return
                            ; 2 cycles
   end
```

```
#define DEBUG
   #define NULL
                         0x00
                                 ; must not change
   #define FALSE
                         0x00
                               ; must not change
   #define TRUE
                         0xFF
                                 ; must not change
                         PORTB, 1
   #define KEYPAD DA
   #define SMOTOR S0
                         PORTD, 0
   #define SMOTOR S1
                          PORTD, 1
   #define SMOTOR S2
                          PORTE, 0
   #define SMOTOR_S3
                         PORTE, 1
   #define SMOTOR EN
                          PORTE, 2
   #define VMOTOR_C0
                          PORTC, 0
   #define VMOTOR C1
                          PORTC, 1
   #define IRLED
                         PORTC, 2
                          PORTC, 5
   #define FB TOP
   #define FB BOT
                          PORTC, 6
   #define FB ROW4
                          PORTC, 7
                         PORTD, 2
   #define LCD RS
   #define LCD_E
                         PORTD, 3
                         PORTD
   #define LCD PORT
   #define CL_POS_BIT
   #define CL_FN_BIT
                         1
   #define CL ERR BIT
                          2
   #define STOP BUT
                          0x0B
                                     ; stop buttom
   #define PHASE HDINIT
                                 ; Phase 0: Hardware Initialization/Reset
                          0
   #define PHASE_RTCINIT 1
                                 ; Phase 1: RTC Initialization/Reset
   #define PHASE_REALTIME 2
                                 ; Phase 2: Real Time
                                 ; Phase 3: No Report
   #define PHASE NOREPORT 3
   #define PHASE REPORT
                                 ; Phase 4: Report Review
   #define PHASE RUN
                                 ; Phase 5: Inspection Run
   #define PHASE FINISH
                         6
                                 ; Phase 6: Inspection Finish
    ; pull-up diable, Timer0 internal clk, pos edge, 1:64
   #define INITVAL OPTREG B'10000101'
   #define INITVAL_TRISA B'00101111'
   #define INITVAL_TRISB B'11110010'
   #define INITVAL_TRISC
                         B'10100000';B'11100000'!!!!
   #define INITVAL_TRISD
                         B'00000000'
   #define INITVAL_TRISE B'00000000'
   #define INITVAL_ADCONO B'10000001'; 32Tosc, ANO, ADC on
   #define INITVAL ADCON1 B'00000010'; left justified, 5 channel, 0 Vref
; (max "line_num" - 1) in report phase
              EQU .9
MAXLINE
                         ; total positions = ROWS*COLS
MAXPOS
              EQU .20
ROWS
              EQU .4
                         ; total 4 rows to move
              EQU .5
                         ; total 5 cols in a row
COLS
              EQU .3
                         ; max number of CLs possible in a row
MAXCLINROW
                         ; * 0.1s == elapse time for DC motor to drive down
DCDOWNDELAY
              EQU .30
                         ; * 4 == # of steps that stepper motor need to turn
SMOTOR STEPS
              EQU .28
                         ; speed fact: speed = 1 step / (SMOTOR_SPD_F * 5ms)
              EQU .6
SMOTOR_SPD_F
                          ; threshold to distinguish between 2 LEDs and 3LEDS
              EQU .80
THD CL3LED
THD_IRLED
              EQU .28
                         ; threshold for infrared reflected light
THD_BG
              EQU .5
                         ; threshold for background variation (add to light_bg)
                         ; max number of log
              EQU .12
MAXLOG
                         ; max number of log per bank = MAXLOG/2
MAXLOGBANK
              EQU .6
              EQU .16
                          ; length of each log entry
LOGLENGTH
```

```
BANK0
  macro
   STATUS, RP0
```

; number of sample light sensor reading to be averaged

hcf

EQU .4

endm

LIGHTAVGX

```
BANK1 macro
bsf ST
          STATUS, RP0
   endm
BANK00
        macro
   bcf
             STATUS, IRP
             STATUS, RP1
STATUS, RP0
   bcf
   bcf
   endm
;BANK02
        macro
           STATUS, IRP
  bsf
   bsf
             STATUS, RP1
  bcf
             STATUS, RP0
  endm
;BANK03 macro
  bsf STATUS, IRP
 bsf
           STATUS, RP1
STATUS, RP0
; bsf
; endm
; Affect W!
MOVFF macro dest, orig
   movf
          orig, w
   movwf
             dest
   endm
; Affect W!
MOVLF macro dest, literal
   movlw
         literal
   movwf
             dest
   endm
```