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Abstract.
New applications that use AI planning to generate explanations

and hypotheses have given rise to a new class of planning problems,
requiring finding multiple alternative plans while minimizing the cost
of those plans. Hypotheses or explanations about a system, such as a
monitored network host that could be infected by malware, are gen-
erated as candidate plans given a planning problem definition de-
scribing the sequence of observations and a domain model capturing
the possible state transitions for the modeled system, as well as the
many-to-many correspondence between the states and the observa-
tions. The plans must minimize both the penalties for unexplained
observations and the cost of state transitions. Additionally, among
those candidate plans, a small number of the most diverse plans must
be selected as representatives for further analysis. To this end, we
have developed a planner that first efficiently solves the “top-k” cost-
optimal planning problem to find k best plans, followed by clustering
to produce diverse plans as cluster representatives. Experiments set
in hypothesis generation domains show that the top-k planning prob-
lem can be solved in time comparable to cost-optimal planning using
Fast-Downward. We further empirically evaluate multiple clustering
algorithms and similarity measures, and characterize the tradeoffs in
choosing parameters and similarity measures.

1 Introduction

In recent work a new class of AI planning formulations has been
developed for solving practical problems in plan recognition, diag-
nosis of discrete event systems, and explanation generation (e.g.,
[17, 21, 22]). In these problems, each valid plan can be interpreted as
a hypothesis meeting the constraints of the planing task, and provid-
ing a possible diagnosis or an explanation.

In prior work, these problems have been studied in satisficing or
optimal planning settings. More recently, however, Sohrabi et al. [25]
have shown that in malware detection applications, where observa-
tions can be noisy or the domain model can be imperfect, finding
multiple near-optimal plans makes a significant difference in discov-
ering ground truth scenarios, and therefore improves the overall util-
ity of generated explanations.

Consider the following example of an application where finding
multiple low-cost plans is desirable:

Example In automated malware detection in computer networks, the
goal is to provide assistance to network administrators in detecting
and predicting behaviors of malware or computer viruses. Obser-
vations come from network traffic, but they are unreliable. That is,
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they can be noisy, incomplete, or ambiguous (indicative of multiple
underlying causes). Moreover, the model description may be incom-
plete. Hence, it may not be possible to explain all observations and
some observations may need to be discarded. However, we can help
the administrators by providing top alternative hypotheses for fur-
ther investigation. For example, given an ambiguous observation that
could be both a result of normal activity or malware infection, we
can present at least two clusters, one that includes the normal ac-
tivity, and one that includes the possibility of infection. The infection
cluster itself can be a result of multiple causes, but we may want to
show only one representative per cluster at first, allowing the user
to request the remaining hypotheses from the clusters they are inter-
ested in. This diverse set of plans will not include unlikely or low-
plausibility hypotheses. Hence, it is required to find a set of plausible
hypotheses and then group these in some meaningful way before pre-
senting the results. These plans (or equivalently, hypotheses) can be
further evaluated automatically, by collecting and analyzing addi-
tional data.

The malware detection problem or more generally the hypothe-
sis generation problem can be encoded as an AI planning problem
[25, 19], where the generated plans correspond to the hypotheses, and
furthermore, the min-cost plans correspond to the plausible hypothe-
ses. Plausible hypotheses are those that the domain expert believes to
be more plausible compared to the other hypotheses. Plausibility can
be encoded as action cost, where higher costs indicate lower plausi-
bility. Hence, the notion of the top-k plans maps to finding k plans
with the lowest cost.

Computing a set of low-cost plans or the top-k plans has the fol-
lowing benefits:

1. one can find plans that satisfy constraints that are not known apri-
ori or are not easy to formalize;

2. by providing a list of alternative plans, one can explore the space
of alternatives and hence gain better understanding of the proper-
ties of the problem and its optimal solution; and

3. in the hypothesis generation problem, finding the set of top plans
is necessary to find the most accurate hypothesis, especially when
the observations are not reliable and the model is incomplete.

Furthermore, grouping the top plans or the top-k plans into clus-
ters adds the following benefits:

1. it helps users quickly navigate through the alternatives via cluster
hierarchies,

2. the automated system, if in place, can also benefit from exploring
cluster representatives rather than all plans.

In this paper, we propose an approach for finding a set of low-
cost diverse plans for hypothesis generation. To this end, we propose
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a modular framework, as shown in Figure 1, where we first find a
bounded set of low-cost plans, which we refer to as top-k plans, with
respect to the given cost metric. We then cluster these plans based
on their similarity and present the diverse plans by picking the rep-
resentative plans from each cluster. The framework allows the use
of different planning algorithms, similarity measures, and clustering
algorithms in different combinations.

The planning module takes as input the planning problem with
costs and produces a set of low cost plans. To solve the top-k plan-
ning problem, the problem of finding a set of k distinct plans with
lowest cost, we propose use of a k-shortest paths algorithm. In par-
ticular, we developed an approach that allows us to solve the top-k
planning problem by efficiently translating it into a k shortest path
problem, and then solving that problem using the K∗ algorithm [1].
We call the resulting top-k planner TK∗. Although K∗ was devel-
oped for the k shortest paths problem, and has not been previously
used in AI planning, it is efficient enough to be used in hypothesis
generation problems of practical size, as experiments show.

The similarity measure module takes as input a pair of plans and
decides whether the two are similar, by computing a similarity score
and applying a threshold. Multiple similarity measures can be used in
combination, and we evaluate a variety of domain-independent and
domain-dependent measures.

Finally, the clustering module works with the result of the similar-
ity measure module to produce the plan clusters. We evaluate the gen-
erated clusters for a set of hypothesis generation problem instances
using several domain-independent and domain-dependent evaluation
criteria including performance, number of clusters, and plan diver-
sity. We also compare the performance and quality of solutions pro-
duced by our top-k planning framework and diverse planners.

The contributions of this paper are:

1. the decomposition of the problem of finding diverse high-quality
plans into top-k planning and clustering stages, with configurable
similarity measures;

2. a new top-k planner, TK∗, that applies K∗ to planning problems;
3. efficient clustering algorithms for forming a set of diverse plans

from a larger set of high quality plans; and
4. the evaluation of solution quality and performance of individual

stages and overall framework on both manually crafted and ran-
dom hypothesis generation problems and comparison to existing
diverse planners. We find that our approach performs comparably
to diverse planners in planning time and diversity, while finding
solutions with consistently lower cost.

In what follows, we present the algorithms we use for finding the
top-k plans, then we describe several relevant approaches that can be
used for computing plan similarity, followed by an introduction of
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Figure 2. (a) shows a graph with source node s and terminal node t
with edge lengths specified on the edges; (b) shows the shortest path in

bold arrows and the second shortest path in dashed arrows.

several single-pass algorithms for clustering plans. The experimental
evaluation section includes separate subsections for top-k planning
and plan clustering, as well as the comparison of the overall frame-
work to diverse planners. We conclude with a discussion of related
work and outline new opportunities for future research.

2 Top-k Planning
In this section, we will first formally define the top-k planning prob-
lem and then give the necessary background on the k shortest paths
problem. We will then describe our top-k planning algorithm, TK∗,
that uses the K∗ algorithm.

Definition 1 We define the top-k planning problem as R =
(F,A, I,G, k), where F is a finite set of fluent symbols, A is a
set of actions with non-negative costs, I is a clause over F defin-
ing the initial state, G is a clause over F defining the goal state,
and k is the number of plans to find. Let R′ = (F,A, I,G) be the
cost optimal planning problem with n valid plans. The set of plans
Π = {α1, ..., αm}, where m = k if k ≤ n, m = n otherwise, is
the solution to R if an only if each αi ∈ Π is a plan for the cost-
optimal planning problem R′ and there does not exist a plan α′ for
R′, α′ /∈ Π, and a plan αi ∈ Π such that cost(α′) < cost(αi) .

When k > n, Π contains all n valid plans, otherwise it contains k
plans. Π can contain both optimal plans and sub-optimal plans, and
for each plan in Π all valid plans of lower cost are in Π. If Π 6= ∅, it
contains at least one optimal plan.

Note, while we indicated that the goal state, G, is in a form of a
final-state goal in the definition of R, our approach can be applied to
temporally extended goals as well. Temporally extended goals, such
as a sequence of observations of a system, either totally ordered or
partially ordered, can be compiled away to a final-state goal follow-
ing a compilation technique discussed in several papers (e.g., [21, 9]).

2.1 Background: K Shortest Path Problem
K shortest paths problem is an extension of the shortest path problem
where in addition to finding one shortest path, we need to find a set
of paths that represent the k shortest paths [12]. The following is a
formal definition taken from Eppstein [6].

Definition 2 (K Shortest Path Problem) k shortest path problem
is defined as 4-tuple Q = (G, s, t, k), where G = (V,E) is a graph
with a finite set of n nodes (or vertices) V and a finite set of m edges
E, s is the source node, t is the destination node, and k is the number
of shortest paths to find. Each edge e ∈ E has a length (or weight or
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Figure 3. (a) shows the shortest path tree T and distance to destination
t; (b) shows the side edges with their associated detour cost.

cost), which is denoted by l(e). The length of a path p, l(p), is con-
sequently defined by the sum of its edge lengths. The distance d(u, v)
for any pair of nodes u and v ∈ V is the length of the shortest path
between the two nodes. Hence, d(s, t) is the length of the shortest
path for the problem Q. Let n = size of the set of all s-t paths in
graph G. Then, the set of paths P = {p1, p2, ..., pm}, m = k if
k ≤ n, m = n otherwise, is the solution to the k shortest paths
problem Q if and only if each pi ∈ P , is a s-t path in graph G and
there does not exist a s-t path p′ in graph G, p′ /∈ P and a path
pi ∈ P such that l(p′) < l(pi) .

Note that if k > n, then P contains all s-t paths, otherwise P
contains k shortest paths from node s to node t. It follows from the
definition that at least one shortest path with length d(s, t) is in the
set P if m > 0.

Figure 2 shows an example from Eppstein [6] illustrating the ter-
minology. The distance d(s, t) = 55, is the length of the shortest
path shown in bold; the length of the second shortest path is 58.

2.2 Top-k Planning Using K∗

The K∗ algorithm [1] is an improved variant of the Eppstein’s k
shortest paths algorithm [6] and hence uses many of the same con-
cepts as in the Eppstein’s algorithm (which we refer to as EA). Here,
we first outline the EA algorithm, and then discuss K∗.

Given a k shortest paths problem Q = (G, s, t, k), the EA algo-
rithm first computes a single-destination shortest path tree with t as
the destination (or the reversed single-source shortest path tree) by
applying Dijkstra’s algorithm onG. The edges in the explored short-
est path tree T are called tree edges while all the missing edges (i.e.,
the edges in G − T ) are called sidetrack edges. Each edge in G is
assigned a number that measures the detour cost of taking that edge.
Consequently, the detour cost of the tree edges is 0, while the detour
cost of the sidetrack edges is greater than 0. Figure 3 shows the short-
est path tree T and the sidetrack edges along with their detour cost
of our earlier example.

The EA algorithm then constructs a complex data structure called
path graph P (G) that stores the all paths in G, where each node
in P (G) represents a sidetrack edge. This is followed by the use of
Dijkstra search in P (G) to extract the k shortest paths. An important
property is that given a sequence of sidetrack edges representing a
path in P (G) and the shortest path tree T , it is possible to uniquely
construct a s-t path in G. This can be done by using sub-paths from
T to connect the endpoints of sidetrack edges.

Given this property and the special structure of P (G), it is en-
sured that the i-th shortest path in P (G) results in a sidetrack se-
quence which can be mapped to the i-th shortest path in G. By con-
struction, P (G) provides a heap-ordered enumeration of all paths

0. Read planning problem R = (F , A, I, G, k).
1. Expand the state graph G by using A∗

and applying actions to compatible states
starting from I, and until G is reached.

2. Continue applying A∗ to expand G
until 20% increase in links or nodes.

3. Update P (G) based on new links in G.
4. Apply Dijkstra step

to extract the next path from P (G).
5. If k paths are found
6. Goto step 10.
7. If K∗ scheduling condition is reached
8. Goto step 2.
9. Goto step 4.
10. Return at most k plans (one plan per path).

Figure 4. TK∗ planning algorithm applies K∗ to search in planning state
space.

in G, and since every node of P (G) has limited out-degree (at most
4), the complexity of enumerating paths in increasing cost order is
bounded. The worst-case runtime complexity of the EA algorithm is
O(m+n logn+kn). This complexity bound depends on a compact
representation of the resulting k paths, and can be exceeded if the
paths are written by enumerating edges. For more details see [6].

The major bottleneck of the EA algorithm is the construction of
the complete state transition graph, which may include a huge num-
ber of states that are very far away from the goal. Planners commonly
deal with this challenge by relying on heuristic search algorithms like
A∗ to dynamically expand only the necessary portion of the state
graph during search, while being guided by a heuristic toward the
goal (e.g., Fast-Downward [11]). The K∗ algorithm combines the
best of both worlds: it allows constructing the graph G dynamically
using heuristic-guided A∗ search, while updating its equivalent of
P (G) to find k shortest paths.

In short, theK∗ algorithm works as follows. The first step is to ap-
ply a forward A∗ search to construct a portion of graph G. The sec-
ond step is suspending A∗ search, updating P (G) similarly to EA, to
include nodes and sidetracks discovered by A∗, applying Dijkstra to
P (G) to extract solution paths, and resuming the A∗ search. The use
of A∗ search to dynamically expand G enables the use of heuristic
search and also allows extraction of the solution paths before G is
fully explored. While K∗ algorithm has the same worst-case com-
plexity as the EA algorithm, it has better performance in practice
because unlike the EA algorithm, K∗ does not require the graph G
to be completely defined when the search starts.

Our planner, TK∗, applies K∗ to search in state space, with dy-
namic grounding of actions, similarly to how Fast-Downward and
other planners apply A∗, following the algorithm above.

The K∗ scheduling condition is evaluated by comparing the state
of A∗ and Dijkstra searches, as defined in K∗ algorithm. It deter-
mines whether new links must be added to G before resuming Dijk-
stra search on updated P (G). There is no separate grounding stage,
since actions are ground at the same time when they are applied
during A∗ search. The amount of A∗ expansion required before re-
suming Dijkstra (in our implementation, 20%) controls the efficiency
tradeoff, and 20% is the same value that was used in experiments in
the original K∗ paper [1]. Of course, step 2 may also terminate if no
new links can be added.

Soundness and completeness of TK∗ follows directly from the
soundness and completeness of the K∗ algorithm.



In our experiments, TK∗ with constant 0 heuristic performs very
well, and we have not experimented with other, potentially better
performing heuristics. This is an interesting direction for improve-
ment that could be explored in future work. Even though this is not
a requirement for K∗ in general, our implementation requires a con-
sistent heuristic, which did not allow us to experiment with, for ex-
ample, lookahead heuristics.

3 Finding Diverse Plans via Clustering
Given the set of top-k plans, in this section, we will discuss how
to group the similar plans using clustering techniques. In practice,
many of the generated top-k plans are only slightly different from
each other. That is, they do seem to be duplicates of each other, ex-
cept for one or more states or actions that are different. This may be
the result of the underlining AI planner which tries to generate all
alternative low-cost plans, and while this generates distinct low-cost
plans, it does not always mean that these plans are significantly dif-
ferent from each other. Hence, instead of presenting large number
of plans, some of which could be very similar to each other, with
the help of clustering, we can present clusters of plans, where each
cluster can be replaced by its representative plan.

Clustering has been a topic of interest in several areas of research
within several communities such as Information Retrieval (e.g, [2]),
machine learning, and Data Management as part of the data clean-
ing process (e.g., [10]). Many survey papers exist on clustering al-
gorithms (e.g, [28, 7]). While most, if not all, clustering algorithms
share a common goal of creating clusters that minimize the intra-
cluster distance (distance between members of the same clusters) and
maximize the inter-cluster distance (distance between members of
different clusters), the assumptions and inputs for these clustering al-
gorithm are often different. For example, several of these approaches
assume some given input parameters such as the number of clus-
ters or a cluster diameter. In this paper, we cluster the plans without
specifying input parameters such as the number of clusters. This is
because no prior knowledge on the number of clusters or the size
of the cluster is available. Depending on the domain, there could be
cases where many plans can be put into a single cluster due to high
similarity, and there are also cases that the plans are all different, and
the output must contain clusters of size 1.

To consolidate similar plans produced by the top-k planner, we
apply a clustering algorithm that must satisfy the requirements stated
below. One representative plan from each cluster is selected to be
included in the final set of diverse plans.

Definition 3 (Clustering Requirements) Given a set of k sorted
plans, Π, create clusters of plans C = {c1, ..., co} where the value of
o is unknown ahead of time. Further, for each two clusters c, c′ ∈ C,
c ∩ c′ = ∅ and ∀π ∈ Π, ∃c ∈ C such that π ∈ c. Hence, the clusters
are disjoint and each plan belongs to one cluster.

We then may choose to present only a subset of these clusters to
the user or to the automated system for further investigation.

3.1 Plan Similarity
Finding if two plans are similar has been studied mainly under two
categories: plan stability for replanning (e.g., [8]) and finding di-
verse plans (e.g., [16]). While some domain-dependent approaches
exist (e.g., [15]), majority of recent research has focused on domain-
independent measures. In this section, we first briefly discuss ways

of representing a plan, and then discuss several similarity measures
we consider.

Two plans can be compared based on their actions, states, or causal
links [16]. In this paper, we focus on actions and states considering
them as both sets and sequences. That is we consider both represent-
ing a plan by its set of actions as well as its set of states. We also
consider representing a plan by its sequence of actions as well as its
sequence of states. Our work is in line with prior work, except our
states are not planning states (or set of propositions), but rather a pos-
sibly hidden behavioral Finite State Machine (FSM) states. They can
be inferred from the semantics of the domain using machine learning
or process mining. For example, in the malware detection example,
a state can be “crawling”, “infectionByNeighbor”, or “infectionBy-
Download”. Further, we represent a sequence of actions or states as
a sequence of strings by treating each action or state as a symbol.
This allows us to use a string similarity measure to compare plans.
We also consider comparing plans solely based on their costs or their
final states, as it may be enough to group plans based on just their
costs (notion of plausibly) or the final state in the plan, a major factor
in deciding what to do next in order to detect or predict malware.

Next, we go over the similarity measures we consider. Each sim-
ilarity measure assigns a number between 0 (unrelated) or 1 (if they
are the same). Two plans are said to be similar if their similarity
score is above a predefined threshold θ. The similarity measures can
be used individually or be combined using a weighted average.

As we will see in the experiments, the choice of similarity measure
influences the quality of the clusters, and our framework allows the
users to choose any similarity measure or their combination.

3.1.1 Generalized Edit Similarity (GES)

GES [4] can be used to compare sequences of states (or actions)
by viewing each state (or action) as a “token” in a string, and the
sequence itself as a sequence of tokens. An important reason for
choosing GES is that it not only considers the similarity between
sequences, but also considers the similarity between tokens (i.e.,
states). Therefore, we are able to use any extra domain-dependent
knowledge at hand about the relationship between states (or actions)
to determine if two plans belong to the same cluster. This allows fur-
ther semantic information to be included in similarity calculations.

GES takes two strings r and r′, in our case the two strings rep-
resent sequence of states or actions, and computes their similarity
score as a minimum transformation cost required to convert string r
to r′. The two strings are first tokenized and then assigned a weight
w(t). We use a weight of 1 in our experiments. There are three kinds
of transformations: insertion, deletion, and replacement. The token
insertion cost is w(t) ·cins where t is the inserted token in r and cins
is the insertion factor which we set to 1. Token deletion has a cost
of w(t), where t is the deleted token from r. The replacement cost is
(1−similarity(t1, t2))·w(t). We can use state/action relationships to
determine the similarity between t1 and t2. For example, if one state
is a child or a parent of another state (or if the two states share a same
parent), similarity score is set to a higher number (for example, 0.5),
else it is either 0 (if they are unrelated) or 1 (if they are the same).

Let r, r′ be defined as the sequence of states (or actions) in plans
π and π′ respectively, then:

simGES(π, π′) = 1−min
(
mct(r, r′)

wt(r)
, 1.0

)
(1)

wheremct(r, r′) is the minimum cost of the transformation between



Gamer, top-1 Fast-Downward(A∗), top-1 TK ∗, top-50 TK ∗, top-1000
Problem (# st., # obs.) Min Avg Max Min Avg Max Min Avg Max Min Avg Max

random (10,10) 0.65 0.85 1.41 0.15 0.20 0.23 0.05 0.06 0.12 0.32 0.38 0.42
malware (25,10) 1.09 1.63 1.86 0.49 0.49 0.50 0.06 0.07 0.11 0.23 0.32 0.44
random (50,10) 2.03 2.70 3.90 1.20 1.36 1.59 0.09 0.11 0.13 0.43 0.48 0.53

random (100,10) 11.70 15.27 23.64 4.09 4.85 5.27 0.18 0.29 0.44 0.67 0.75 0.81
random (10,60) 2.65 3.30 4.30 0.64 0.79 0.99 0.16 0.19 0.22 1.98 2.10 2.24

malware (25,60) 7.22 12.48 22.80 2.57 2.60 2.62 0.08 0.15 0.23 1.08 1.62 2.27
random (50,60) 110.95 203.40 291.04 7.65 8.65 9.59 0.36 0.53 0.68 2.24 2.52 2.75

random (100,60) - - - 26.15 29.20 32.71 0.94 1.66 2.23 2.96 4.07 4.73
random (10,120) 6.22 10.82 17.22 1.25 1.60 2.01 0.32 0.36 0.40 4.07 4.24 4.44

malware (25,120) 39.58 83.25 164.48 5.48 5.51 5.56 0.14 0.23 0.40 2.04 2.86 4.19
random (50,120) - - - 15.67 18.10 19.55 0.80 1.27 1.83 4.67 5.40 6.01

random (100,120) - - - 69.96 75.25 79.57 2.31 4.27 6.04 6.55 9.13 11.37

Table 1. Top-k Planning Performance: minimum, average, and maximum planning time, in seconds, for 15 instances of each problem.

the two strings, and wt(r) is the total weight of the string r. Note,
this calculation normalizes the similarity score. This normalization is
helpful since it allows to choose similarity threshold independently
of the size of the plan.

Note that while simGES is asymetric, the effect of this is insignifi-
cant due to the use of single pass clustering algorithms that calculates
each similarity score only once and that each clustering algorithm it-
erates over the top-k plans starting with the lowest-cost plan. Clus-
tering algorithms will be described in the next section.

3.1.2 Jaccard Similarity

Jaccard similarity (inverse of the plan distance from [16]) measures
the ratio of the number of actions (or states) that appear in both plans
to the total number of actions (or states) appearing in one of them.
Let A(π) be the set of actions (or states) in π, then:

simJaccard(π, π
′) =

|A(π) ∩A(π′)|
|A(π) ∪A(π′)| (2)

3.1.3 Simple Equality

Let q and q′ be defined as the final state (or the total cost) of plans π
and π′, then:

simEquality(π, π
′) =

{
1 if q = q′

0 otherwise
(3)

3.2 Clustering Algorithms
We propose the use of the following three non-hierarchical clustering
algorithms. Each of these algorithms require visiting each plan only
once in order to decide to which cluster they belong to; hence, are
called single-pass algorithms. Note, when we refer to computation
of similarity between plans, it could be that one similarity measure
or a weighted combination of similarity measures is used.

3.2.1 Center-Link

Center-Link clustering algorithm iterates over the top-k plans start-
ing with the lowest-cost plan. For each plan, it computes the similar-
ity to a representative of each cluster created in previous iterations.
If there are no clusters that have a representative similar to the plan
(i.e., their similarity score is above the threshold θ), a new cluster
is created and the plan becomes the representative of that cluster.
Otherwise the plan is added to the first cluster whose cluster repre-
sentative is similar to this plan. Cluster representatives are chosen to
be the lowest-cost plans in each cluster. Due to the order of itera-
tion, stating from the lowest-cost plans, the cluster representative is
always the first added plan to the cluster. This algorithm is similar to
the CENTER algorithm [10], however, the sorted input is different
(i.e., plans, as opposed to records in a database). The Center-Link
algorithm could result in small number of similarity comparisons be-
cause each plan is only compared to the representative plan of each
cluster.

3.2.2 Single-Link

Single-Link clustering algorithm is an extension of the Center-Link
algorithm, where instead of comparing only with the representative
of a cluster, each plan is compared with all members of a cluster, and
if the plan is found to be similar to any of the members of that cluster,
then it is assigned to that cluster. Single-Link algorithm is a non-
hierarchical variation of single-linkage algorithm [28]; the node joins
a cluster as long as there is a single link with one of the members of
the clusters. This algorithm could result in the smallest number of
clusters.

3.2.3 Average-Link

Average-Link algorithm is a simple extension of the Single-Link al-
gorithm, where each plan is compared with all the members of a clus-
ter and the average similarity score is used to determine if the plan
belong to that cluster or not. This algorithm results in many similar-
ity comparisons, and could result in large number of clusters. Note,
Average-Link clustering is a non-hierarchical variant of hierarchical
average-linkage clustering [28].



4 Experimental Evaluation

We have four objectives in our experiments: (1) evaluate the perfor-
mance of top-k planning by comparing it to planners finding a single
cost-optimal plan, (2) evaluate the clustering algorithms and the sen-
sitivity of the results to the threshold, (3) evaluate the different sim-
ilarity measures we used, (4) evaluate against different diverse plan-
ners. In all experiments we used a dual 16-core 2.70 GHz Intel(R)
Xeon(R) E5-2680 processor with 256 GB RAM.

4.1 Planning Problems

We used both manually crafted and random problems to create our
evaluation benchmark. Our problems are based on the hypothesis
generation application described by Sohrabi et al. [25]. This applica-
tion is a good example of a challenging top-k planning problem, and
generated problems typically have a very large number of possible
plans with different costs. The planning problems were represented
in a STRIPS-like planning language recognized by our planner, as
well as in PDDL[14] for Gamer and Fast-Downward.

To generate a random problem instance, we generated a random
state transition system with a given number of states. In this setting
the states of the state transition system do not map directly to plan-
ning states, instead we apply a domain transformation [25], compil-
ing away temporary extended goals and adding penalty actions for
imperfect explanations to generate the planning problem from the
state transition system and the sequence of observations. As the re-
sult, the planning states combine the state of the state transition sys-
tem with position in observation trace and other context information
necessary to link observations to system state, generating a much
larger state space for the planner.

We varied the size of the problem by changing the number of the
states of the state transition system (for random systems) and the
number of observations (for both random and manually crafted sys-
tems). Further, in all problems we randomly introduced a small frac-
tion of random and missing observations in the generated observation
sequence, to better simulate the conditions where generating multiple
hypotheses is required, namely the presence of noise or incomplete-
ness of models.

In addition to randomly generated problems, we used the manually
crafted malware detection problem, described in [25] (also in Exam-
ple), and referred to as “malware” in results. The malware detection
problem requires generating hypotheses about the network hosts by
analyzing the network traffic data. To make that possible, the state
transition system includes the states of the host (e.g., infected with
malware due to downloading an executable file or the Command &
Control Rendezvous state via Internet Relay Chat (IRC)) and tran-
sitions between these states, as well as a many-to-many correspon-
dence between states and observations.

4.2 Top-k Planning Performance

In Table 1, we compare the performance of our top-k planner, TK∗,
with k=50 and k=1000. We compare to Gamer [13] (Gamer 2014
version, seq-opt-gamer-2.0) and Fast-Downward [11] (2015 version,
withA∗). Both find a single cost-optimal plan, which is equivalent to
k=1. Planning time was measured on the same randomly generated
problem instances for two different kinds of domains, “malware” and
“random”, and aggregated over 15 instances of each size, where size
was controlled by two domain-specific parameters (the number of

system states and observations). We enforced a time limit of 300 sec-
onds. Rows containing “-” are those where none of 15 instances were
solved within the time limit.

Overall, TK∗ is very efficient at finding top-k plans, and in our
implementation and our set of problems performs at least as fast or
faster than Fast-Downward and Gamer, which is essential for use
in applications. Due to soundness and completeness of K∗, TK∗ is
guaranteed to produce top-k plans and that was confirmed in our
experiments. Some of the larger instances proved too difficult for
Gamer, and it exceeded the time limit. We can also observe that
while the worst-case complexity of TK∗ includes O(kn) term, we
have observed relatively small relative differences in planning time
with increasing k, with absolute difference limited by a few seconds,
and with relative difference decreasing as problem size increased.

Since TK∗ performs A∗ search to find top-k plans when k=1, and
TK∗ top-50 performs similarly to top-1, TK∗ top-50 can be expected
to perform similarly to Fast-DownwardA∗, which we have observed.
Although TK∗ is not fully PPDL compliant, there is no significant
difference in language expressivity or knowledge provided to plan-
ners, and the difference in performance most likely is explained by
more efficient implementation and differences in preprocessing in
TK∗. We do not fully understand why Gamer performed relatively
poorly on large problem instances. It was natural to expect a cost-
optimal planner to find one optimal plan just as fast or faster than
a top-k planner would require to find k plans. Overall, these exper-
iment results support our claim that top-k problems can be solved
just efficiently as cost-optimal ones, at least within a certain class of
planning domains.

4.3 Evaluation of Clusters

We separate the evaluation of the clustering algorithms from the sim-
ilarity measures. However, we use the following sets of evaluation
measures in both cases: time, measured in second, number of simi-
larity comparisons (# Comp) in thousand, number of clusters (# C),
and the following six metrics:

• M1: percentage of clusters with the same final state,
• M2: percentage of clusters with the same last three states,
• M3: inter-cluster diversity via uniqueness,
• M4: inter-cluster diversity via stability,
• M5: intra-cluster diversity via uniqueness, and
• M6: intra-cluster diversity via stability.

M1 and M2 are examples of a domain-dependent metric while the
rest could be thought of as domain-independent measures. We mea-
sure stability and uniqueness using the following formula from [20].
Note, we modified these formula to make it a number between 0 and
1. Also for intra-cluster evaluations, Π is the set of plans within a
cluster and we take the average over all clusters. For inter-cluster
evaluations, Π is the set of all cluster representative plans which we
take to be the lowest-cost plan in each cluster. Let Π = {π1, ..., πm}
be the set of plans. If |Π| = 1, Diversitystability(Π) = 1, and
Diversityuniqueness(Π) = 1, otherwise for |Π| ≥ 1:

Diversitystability(Π) =

∑
πi,πj∈Π,i 6=j

[1− simJaccard(πi, πj)]

|Π| × (|Π| − 1)
(4)



Diversityuniqueness(Π) =

∑
πi,πj∈Π,i 6=j

{
0 if πi \ πj = ∅
1 otherwise

|Π| × (|Π| − 1)
(5)

θ Time # of # of Last state(s) Inter-cluster Intra-cluster
(sec) Comp C M1 M2 M3 M4 M5 M6

Center 0.65 0.66 10K 38 74% 45% 0.77 0.51 0.60 0.20
Link 0.75 0.82 17K 67 80% 56% 0.78 0.49 0.60 0.15

0.85 1.32 36K 142 89% 75% 0.77 0.46 0.64 0.09
Single 0.65 1.83 48K 26 72% 43% 0.76 0.54 0.62 0.20

Link 0.75 2.18 67K 48 77% 54% 0.77 0.52 0.62 0.16
0.85 3.28 106K 115 86% 71% 0.77 0.49 0.65 0.09

Avg- 0.65 14.27 356K 41 75% 47% 0.76 0.50 0.61 0.20
Link 0.75 12.14 329K 72 82% 60% 0.77 0.47 0.61 0.15

0.85 11.37 330K 152 91% 77% 0.77 0.46 0.64 0.09

Table 2. Comparisons of the clustering algorithms.

For both uniqueness and stability we compare plans while repre-
senting them by their set of states. We also tested with actions but the
results were comparable and not shown. M3-M6 are distance mea-
sures with values between 0 (the same) and 1 (different - farthest
apart). For M3 and M4, larger the number, more diverse the plans are
since we find the diverse plans by presenting only the representative
plans from each cluster. For M5 and M6, smaller the number, similar
the plans are within a cluster. Hence, the ideal algorithm or cluster-
ing measure maximizes M3 and M4 and minimizes M5 and M6. The
numbers shown in Table 2 and 3 are averages over all planning prob-
lems (5 instances of each size). The bold numbers indicate the best
numbers in each case.

Summary of our results with respect to the clustering algorithms
is shown in Table 2. Center-Link algorithm is the best algorithm
with respect to time as fewer number of similarity comparisons is
performed since each plan is only compared to the representatives.
Average-Link produces more clusters compared to the other two. As
the threshold increases, the number of clusters also increases for all
algorithms. With respect to the evaluation metrics, the results does
not show a superior clustering algorithm: Average-Link is slightly
better with respect to M1 and M2, Single-Link produces slightly
more diverse plans with respect to M4, and Center-Link also has
slightly better numbers with respect to M5. Hence, the clustering
algorithms alone do not seem to influence the metric evaluations.
However, Center-Link is the best performing algorithm with respect
to time. It also compares fewer plans and produces medium size clus-
ters.

Summary of our results with respect to the similarity measures is
shown in Table 3. The top part of the table shows the result where
a particular similarity measure is used: GES-S and GES-A indicate
that we used equation 1, representing the plan by its sequence of
states (or actions); Jaccard-S and Jaccard-A indicate that we used
equation 2, representing the plan by its set of states (or actions); and
“Last State” and “Cost” indicate we used equation 3. The middle part
of the table indicates that we used a combination of similarity mea-
sures: GES indicates that we used both GES-S and GES-A (assigning

First Second Time # of Last state(s) Inter-cluster Intra-cluster
(sec) C M1 M2 M3 M4 M5 M6

GES-S 4.04 26 52% 37% 0.87 0.68 0.61 0.23
GES-A 3.73 63 57% 47% 0.84 0.63 0.62 0.18
Jaccard-S 4.55 79 65% 58% 0.96 0.65 0.55 0.08
Jaccard-A 4.11 111 67% 61% 0.83 0.57 0.66 0.11
Last State 6.23 9 100% 33% 0.70 0.43 0.59 0.26
Cost 2.32 13 62% 40% 0.62 0.34 0.65 0.25

GES 3.87 37 54% 41% 0.87 0.67 0.60 0.20
Jaccard 4.28 92 66% 59% 0.90 0.61 0.58 0.09
All 2.95 63 82% 58% 0.76 0.47 0.61 0.17

Last State GES-S 9.08 33 100% 53% 0.71 0.46 0.60 0.20
Last State GES-A 8.81 74 100% 65% 0.70 0.43 0.62 0.15
Last State Jaccard-S 9.39 106 100% 76% 0.85 0.54 0.56 0.06
Last State Jaccard-A 9.06 131 100% 76% 0.73 0.43 0.66 0.09
Cost GES 3.55 63 73% 60% 0.69 0.41 0.64 0.17
Cost Jaccard 3.64 155 82% 76% 0.77 0.45 0.65 0.06

Table 3. Comparisons of the similarity measures.

equal weights to both); Jaccard indicates that we used both Jaccard-
S and Jaccard-A; and “All” indicates that we used all six similarity
measures assigning equal weights to each. The bottom part of the
table shows the results for when we first cluster all plans based on
the similarity measure shown under the “First” column, then within
each cluster, run the clustering algorithm again using the similarity
measure shown under the “Second” column.

The results show that grouping based on cost may be fastest and
grouping based on the last state satisfies M1 (it forces it to be true).
However, these similarity measures give the worst results with re-
spect to the nearly all other metrics. On the other hand, using just
Jaccard-S produces most diverse plans with respect to uniqueness
(best number for M3) and produces similar plans within a cluster
(best numbers for M5 and M6) but it suffers in the M1 and M2 cat-
egories. GES-S also produces most diverse plans with respect to sta-
bility (largest M4 value). While the time and number of clusters is
still reasonable, combining all of the metrics (middle part of the ta-
ble) do not provide better results. However, the best results are found
when we combine measures and run the clustering algorithm for the
second time. At the expense of time increase, M1, M2, and M6 re-
sults are best when we first group based on the last state and then use
Jaccard-S. The M3 and M5 numbers are also close to the best num-
bers. In conclusion, if time is most important then one can just group
based on cost. If having the best results for domain-dependent mea-
sures such as M1 and M2 is important, one can enforce these metrics
when clustering. To only find diverse plans, you can use either GES-
S or Jaccard-S. Finally, if satisfying both the domain-dependent and
domain-independent metrics is important then combining similarity
measures and using for example “last state” followed by “Jaccard-S”
will give the best results.

4.4 Comparison With Diverse Planners

We selected two representative diverse planners, LPG-d [16] (with
d=0.1) and Div (Multi-queue A∗ MQATD) [20], and compared to
our implementation that included top-k and Average-link clustering,



Top-k + Average Link LPG-d Div
T Cost M4 M3 T Cost M4 M3 T Cost M4 M3

(25, 5) 1 1502 0.51 1 1 3513 0.80 1 1 1789 0.36 0.37
(25, 10) 1 1586 0.41 0.99 59 8426 0.84 1 1 3861 0.44 0.54
(25, 20) 3 1492 0.20 0.99 384 16520 0.87 1 1 7262 0.46 0.53

Table 4. Comparison to diverse planners: planning time, T, in seconds,
average plan cost and plan diversity on the malware domain. M3 measures

plan diversity via uniqueness. M3 measures plan diversity via stability.

using measures M3 and M4 based on Jaccard similarity. The results
in Table 4 are averaged over 5 instances of each size, with 30 minutes
time limit. The top-k approach produced 50 plans while LPG-d and
Div produced at most 10.

Div places greater emphasis on plan cost, and indeed average plan
cost is lower than for LPG-d. However it sometimes produces multi-
ple copies of the same plan, resulting in poor diversity. As expected,
the top-k approach produces the lowest average cost with somewhat
lower diversity.

5 Related Work

In prior work, we have looked at several problems involving hypoth-
esis generation by planning, including a short version of the present
work [24], a study of planner-generated hypotheses in goal and plan
recognition settings [23], and applications in malware detection and
healthcare [25, 19, 18].

Generating a plan set rather than just one plan has been a subject of
interest in several recent papers in the context of generating diverse
plans (e.g., [20, 5, 5]). When no preferences or quality or cost metric
is provided, it is argued that generating a set of diverse plan is the
right approach [16]. Several plan distance measures most of which
are domain-independent have been proposed to both guide the search
and evaluate the set of diverse of plans (e.g., [26, 3]). On the other
hand, given some partial preferences or multiple dimensions of qual-
ity such as cost or time, the problem becomes a multi-objective opti-
mization problem where diverse plans should form a Pareto-optimal
set [16]. In particular, Sroka and Long [27] argue that the previ-
ous work will not find good-quality plans as they are more focused
on finding diverse plans since it is “easier to find diverse sets father
away from optimal”. The work we presented in this paper falls in
between. While we are given some notion of quality as measured by
cost, the cost function itself is imperfect, and we are not given other
objective functions besides costs. So finding one min-cost plan is not
enough, nor is finding a diverse set of plans without taking into con-
sideration the cost function. Hence, finding a set of diverse low-cost
plans is required.

6 Conclusions

The contributions of this paper are the following: 1) the planning
framework based on the decomposition of the problem of finding di-
verse high-quality plans into top-k planning and clustering stages,
with configurable similarity measures; 2) a new top-k planner, TK∗,
that applies K∗ algorithm to planning problems; 3) efficient clus-
tering algorithms for forming a set of diverse plans from a larger
set of high quality plans; and 4) the evaluation of solution quality
and performance of individual stages and overall framework on both

manually crafted and random hypothesis generation problems and
comparison to existing diverse planners.

Our framework allows plugging in different top-k planning tech-
niques, different clustering algorithms, and different similarity mea-
sures. We evaluate each of these components separately before car-
rying out the end-to-end evaluation. Our experiments show that plan-
ning time required for top-k planning is comparable to cost-optimal
planning that finds a single cost-optimal plan using, for example,
Fast-Downward. Our empirical evaluation of the three clustering al-
gorithms we proposed for this task show that Center-Link is the best
performing algorithm for our setting as it requires less time, com-
pares fewer plans, and produces medium size clusters, while per-
forming similarly to other algorithms in all evaluation metrics. Our
findings with respect to similarity measures show that depending on
what is most important, the user can choose the best similarity mea-
sure (or a combination). Finally, comparing the end-to-end perfor-
mance of our framework to diverse planners we find that our ap-
proach performs comparably to diverse planners in planning time and
diversity, while producing diverse plans with consistently lower cost.

While we considered clustering as a post-processing step to find-
ing top-k plans, it might be possible to both guide the search towards
diverse plans as well as towards min-cost plans. In future we plan to
study this problem and evaluate whether it provides any significant
improvements to our results.
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