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Abstract
Recent work on plan recognition as planning has
shown great promise in the use of a domain the-
ory and general planning algorithms for the plan
recognition problem. In this paper, we propose to
extend previous work to (1) address observations
over fluents, (2) better address unreliable observa-
tions (i.e., noisy or missing observations), and (3)
recognize plans in addition to goals. To this end,
we introduce a relaxation of the plan-recognition-
as-planning formulation that allows unreliable ob-
servations. That is, in addition to the original costs
of the plan, we define two objectives that account
for missing and noisy observations, and optimize
for a linear combination of all objectives. We ap-
proximate the posterior probabilities of generated
plans by taking into account the combined costs
that include penalties for missing or noisy obser-
vations, and normalizing over a sample set of plans
generated by finding either diverse or high-quality
plans. Our experiments show that this approach
improves goal recognition in most domains when
observations are unreliable. In addition, we eval-
uate plan recognition performance and show that
the high-quality plan generation approach should
be preferred in most domains.

1 Introduction
Plan recognition is the problem of recognizing the plans and
the goals of an agent given a set of observations. There ex-
ists a number of different approaches to the plan recognition
problem including the use of SAT solvers and planning (e.g.,
[Ramı́rez and Geffner, 2009; Zhuo et al., 2012]) where the
domain theory is given as an input as well as the use of tech-
niques that assume a plan library is given as an input [Suk-
thankar et al., 2014]. Plan recognition continues to be an im-
portant problem to study as it has many practical applications
such as assisted cognition [Pentney et al., 2006], computer
games [Synnaeve and Bessière, 2011], and network monitor-
ing [Sohrabi et al., 2013; Riabov et al., 2015].

In this paper, we revisit the work on plan recognition as
planning by Ramı́rez and Geffner 2009; 2010, where the do-
main theory is given as an input and planning algorithms are

used to generate a solution to the plan recognition problem.
The advantage of using domain theory and planning is that
plan library is no longer required as input. In addition, AI
planning techniques can be exploited to compute the solu-
tion. Hence, use of domain theory and planning algorithms
for plan recognition is more flexible, general, and scalable.

While the use of planning for plan recognition by Ramı́rez
and Geffner 2009-2010 showed great promise and allowed
for some noisy behavior, it did not effectively deal with un-
reliable observations. Unreliable observations can be a re-
sult of a sensor malfunction, intentional obfuscation by mal-
ware, or simply a mistake that an agent makes [Thorsley et
al., 2008]. We consider two classes of unreliable observa-
tions: (1) observations that are noisy - cannot be explained
by the actions of a plan for a particular a goal; hence, need
to be discarded, and (2) observations that are missing - ob-
servations that should have been picked up but have not, pos-
sibly because the sensors malfunctioned. Unreliable obser-
vations present a challenge for the previous work due to the
way the posterior probability of a goal G given observations
O, P (G|O), is calculated. Even if we have a reasonable prior
estimate of P (G), P (G|O) as calculated by previous work,
will be underestimated when observations are unreliable, be-
cause the cost difference of achievingG andO, and achieving
G and not O will be large. This is because either the plan that
satisfies G and complies with O has a much higher cost than
the plan that satisfiesG and does not comply withO (or com-
plies to just part of the observations inO), or possibly no plan
satisfying both O and G, either optimal or suboptimal, exist.

The main contribution of this paper is to provide a relax-
ation of the plan-recognition-as-planning formulation that al-
lows for unreliable observations. That is, we provide a trans-
formation of the original plan recognition problem to a new
planning problem with action costs, where the costs now in-
clude penalties for missing or noisy observations. Hence, in
addition to the original costs of the plan, we define two ob-
jectives that account for missing and noisy observations, and
optimize for a linear combination of all objectives. We ap-
proximate the posterior probabilities of plans by taking into
account the cost of the plan in the transformed planning prob-
lem, and normalizing over a sample set of plans generated
by finding either diverse or high-quality plans. The posterior
probabilities of goals are then computed by a summation over
the posterior probabilities of the sampled set of plans that
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Figure 1: Goal Recognition Example

achieve this goal. In addition, unlike most plan recognition
approaches, we consider observations over fluents and argue
that in many applications the actual actions of an agent may
not be observable, instead, their effects through the change
in the states are observable.We use a diverse planner, LPG-d
[Nguyen et al., 2012], and a top-k planner, TK∗, [Riabov et
al., 2014] to generate a set of plans. Our experiments show
that our approach improves goal recognition in most domains
when observations are unreliable. In addition, we evaluate
plan recognition performance and show that the top-k plan
generation approach performed better in most domains.

2 Motivating Example
Consider the grid example shown in Figure 1 where an agent
initially at cell marked S heads to one of the goals A or B.
The agent can move diagonally, horizontally or vertically all
at a cost of 1. The arrows indicate the observations.

First, assume that the agent can move to any neighboring
cells including the grey cells. Using the previous approach’s
algorithm [Ramı́rez and Geffner, 2010] where P (G|O) is de-
fined by e−β∆

1+e−β∆ , P (G=B|O)=0.65, because the cost dif-
ference or ∆ is 0, while P (G=A|O)=0.35. Note, the num-
bers are normalized. However, the algorithm that we will de-
scribe in this paper concludes that P (G=A|O) is higher than
P (G=B|O) because pursing goal A will result in having less
number of missing observations. Hence, knowing that the
agent is pursuing goal A, our approach assigns a higher pos-
terior probability to the true goal. The previous approach fails
to assign a high probability to the true goal because it only pe-
nalizes for the agent not pursing the optimal plan and does not
take into account the higher number of missing observations
if the agent were to choose the optimal plan.

Now consider a modified version of the grid example
where we know that the agent cannot go to the same cell it
visited before, cannot move to the grey cells, and cannot go
diagonally to left and up (i.e., north west). Then using the
previous approach P (G=B|O)=0 because there is no plan
that would achieve both G and O, either optimally or sub-
optimally, and P (G=A|O)=1. However, it is possible that
the third observation is noisy, and that the agent was really
pursuing goal B. Hence, our algorithm does not prune goal B
and instead it assigns probabilities such that 0 < P (G=B|O)
<P (G=A|O). Therefore, in the case that the agent was purs-
ing goal B, our approach assigns a higher posterior probabil-
ity to the true goal compared to the previous approach.

3 Plan Recognition with Domain Theory
Before describing the plan recognition problem we highlight
a few key differences between our approach and that of prior
work: (1) unlike many plan recognition approaches we do not
require plan libraries as input. Instead we require a domain
theory; (2) we consider observations over fluents as we be-
lieve in many applications the actual actions of an agent may
not be observable, instead, their effects through the change
in the states are observable; (3) we consider unreliable obser-
vations (i.e., noisy or missing); (4) our approach can infer or
recognize both goals and plans. In the rest of this section, we
define the plan recognition problem and its solution. We will
also define how to compute the posterior probabilities of both
goals as well as plans given the unreliable observations.

Definition 1 (Planning Problem) A planning problem is a
tuple P = (F,A, I,G), where F is a finite set of fluent sym-
bols, A is a set of actions with preconditions, PRE(a), add
effects, ADD(a), delete effects, DEL(a), and non-negative ac-
tion costs, COST(a), I ⊆ F defines the initial state, and
G ⊆ F defines the goal state.

A state, s, is a set of fluents that are true. An action a is
executable in a state s if PRE(a) ⊆ s. We define the suc-
cessor state as δ(a, s) = ((s\DEL(a)) ∪ ADD(a)) for the ex-
ecutable actions. The sequence of actions π = [a0, ..., an] is
executable in s if state s′ = δ(an, δ(an−1, . . . , δ(a0, s))) is
defined. Moreover, π is the solution to the planning prob-
lem P if it is executable from the initial state and G ⊆
δ(an, δ(an−1, . . . , δ(a0, I))). Furthermore, π is said to be
optimal if it has minimal cost, where COST(π)=

∑
COST(ai).

Definition 2 (Plan Recognition Problem) A plan recogni-
tion problem is a tuple R = (F,A, I,O,G, PROB), where
(F,A, I) is the planning domain as defined above, O =
[o1, ..., om], where oi ∈ F , i ∈ [1,m] is the sequence of
observations, G is the set of possible goals G, G ⊆ F , and
PROB is the goal priors or a probability distribution over G.

In general, O can be expressed as a Linear Temporal
Logic (LTL) formula or Past LTL formula [Emerson, 1990;
Sohrabi et al., 2011]. In other words, each observation can
be a logical expression over the set of fluents. While it is
possible to address this general type of observations, our fo-
cus in this paper is on observations that are sequenced, or
are totally ordered, and that each observation is an observ-
able fluent. Observations over fluents are more general and
flexible than observations over actions, because often in prac-
tice, actions are not directly observable, and instead some of
their effects can be observed, for example, through sensors.
However, we can also deal with observations over actions by
assigning a unique fluent per action that is added only by that
action. This is how we are able to directly compare with the
prior work which focused on observations over actions.

Next, we define the satisfaction of an observation sequence
O by an action sequence. This definition is a relaxation over
the original “satisfaction” definition because it allows for ob-
servations to be left unexplained. This is necessary in order
to address the noisy observations.



Definition 3 (Satisfaction) Let σ = s0s1s2...sn+1 be an ex-
ecution trace of an action sequence π= [a0, ..., an] from the
initial state, where δ(ai, si) = si+1 is defined, for any i ∈
[0, n]. Given a planning domain (F,A, I), an observation se-
quence O = [o1, ..., om] is said to be satisfied by an action
sequence π = [a0, ..., an], and its execution trace σ if there
is a non-decreasing function f that maps the observation in-
dices j = 1, ...,m into the state indices i = 0, ..., n+ 1, such
that for all 1 ≤ j ≤m, either oj ∈ sf(j), or oj /∈ sf(j).

The above definition takes into account the observation or-
der through the mapping of the non-decreasing function. It
also allows for leaving some observations unexplained. In
one extreme, all observations can be explained by the se-
quence of states, and in the other extreme, all observations
are discarded as it may be possible that all observations are
noisy, but very unlikely. Hence, there may be many such non-
decreasing functions and that the definition holds as long as
at least one such mapping exists. Next, we formulate the def-
inition of noisy observation and missing observation.

Definition 4 (Noisy/Missing) let T ⊆ F be the set of observ-
able fluents, P = (F,A, I,G) be a planning problem, O be
an observation sequence, and π be a plan for G that satisfies
O. Then O is said to be noisy with respect to the given G and
π, if at least one of its observations, o ∈ O, is noisy. o is
said to be noisy, if o is never added to the state by any of the
actions ai ∈ π (i.e., o /∈ ADD(ai)). Further, O is said to have
missing observations with respect to the given G and π if at
least one of its observations is missing. o is said to be missing
if (1) o is observable or o ∈ T ; (2) o /∈ O; and (3) o is added
by at least one of the actions ai ∈ π (i.e., o ∈ ADD(ai)).

Hence, noisy observations are those that have not been
added to the state for that particular goal and plan, while miss-
ing observations are those that have been added but were not
observed. Going back to our example in Figure 1, o3 can
be a noisy observation for goal B, but not for goal A. Also
many observations were missing for goal B, but only two
were missing for goal A. Next, we define posterior goal prob-
abilities P (π|O) and posterior plan probabilities P (G|O).

P (π|O) = βP (O|π)P (π) = βP (O|π)P (π|G)P (G) (1)
where β is a normalizing constant that depends on P (O) only,
and P (G) is PROB(G). In this expression, we assume that the
agent is pursuing only one goal and P (π|G) is 0 for the action
sequences π that are not plans for G. Using Bayes rule, we
also have:

P (G|O) = βP (O|G)P (G) (2)
Assuming that the observations are independent of the goal

G given π, and π ranges over all plans that achieve G and
satisfy O, P (O|G) can be written as:

P (O|G) =
∑
π

P (O|π) · P (π|G) (3)

Note, unlike previous work we do not assume that P (O|π)
is 0 for plans that are inconsistent with the observation be-
cause observations can be noisy. However, P (O|π) is small

if O is noisy or has missing observations. Hence we define
P (G|O) as follows with π that now ranges over the set of
sampled found plans, Π, that achieve G and satisfy O.

P (G|O) =
∑
π∈Π

P (π|O) (4)

There are two important questions yet to be discussed: (1)
how to define P (O|π) and P (π|G), and (2) how to use plan-
ning to find the sampled set of plans.

To address the first question, we provide an approximation
that takes into account not only the original cost of the actions
but also the number of missing and noisy observations ac-
cording to Definition 4. Hence, we define a weighted factor,
VO,G(π), that combines all our three objectives as follows:

VO,G(π) = COST(π) + b1 ·MO,G(π) + b2 ·NO,G(π) (5)

where π is a plan that meets the goal G and satisfies
O, MO,G(π) is the number of missing observations in O,
NO,G(π) is the number of noisy observations in O, and b1
and b2 are the corresponding coefficients assigning weights
to the different objectives. Hence, we approximate the value
of P (O|π) · P (π|G) by taking into account the value of
VO,G(π′) for all other sampled plans π′ in addition to the
value of VO,G(π) for this plan π. We use a constant β′ to
offset large sums if necessary to get a better approximation.

P (O|π) · P (π|G) ≈ 1− β′ VO,G(π)∑
π′∈Π

VO,G(π′)
(6)

With β′ = 1, if there are 4 sampled plans, each with
the same V values, then equation 6 results in 0.75, and
once normalized P (π|O) = 0.25. On the other hand, if
a plan π1 has a higher V value than another plan π2, then
P (π1|O) < P (π2|O). Equation 6 allows us to compute
P (π|O) and P (G|O) given a set of sampled plans. In the
next section, we address the second question which is how to
use planning to find the sampled set of plans and also how
to calculate VO,G(π) from the cost of the plans in the trans-
formed planning problem.

4 Transformation to Planning
In this section, we will provide a general transformation of
the plan recognition problem into a planning problem with
action costs. This transformation allows use of AI planning,
in particular, the use of planners capable of finding a plan set.

To create the new planning problem, we augment the ex-
isting actions with a set of “discard” and “explain” actions
for each observation oi in the observation sequence O. These
actions ensure that the observations are considered while in
some cases they may need to be discarded. In particular,
the noisy observations can be skipped using the “discard” ac-
tions. We also ensure that the order of the observations is
preserved using a special predicates, loi , that is set to true if
the observation is either explained to discarded. We add o0

as a dummy initial observation and set lo0
to true initially.

Further, we ensure that at least one of the goals G ∈ G is
satisfied by the computed plans. We do so by creating an



action for each G ∈ G with a special add predicate we call
“done”. The goal state will be updated to include this “done”
predicate. This ensures that we restrict our search space and
consider only plans that meet at least one of the given goals
when generating the set of sampled plans.

Definition 5 For a plan recognition problem R =
(F,A, I,O,G, PROB) we create a new planning problem with
action costs P ′ = (F ′, A′, I ′, G′) such that:
• F ′ = F∪ {done, lo0} ∪{loi |oi ∈ O},
• I ′ = I ∪ {lo0},
• G′ = {done, lom}, where om is the last observation,

• A′ = Aorig ∪Agoal ∪Adiscard ∪Aexplain, where,

– Aorig = {ha| a ∈ A , COST(ha) = COST(a) +
b1 × |{oi|oi ∈ ADD(a) ∧ oi ∈ T ∧ oi /∈ O}|,
where T ⊆ F is the set of observable fluents},

– Agoal = {hg| g ∈ G, COST(hg) = 0, PRE(hg) = {g},
ADD(hg) = {done}},

– Adiscard = {hoi |oi ∈ O, COST(hoi) = b2, PRE(hoi) =
{¬oi, loi−1},ADD(hoi) = {loi}, DEL(hoi) = {loi−1}},

– Aexplain = {hoi | oi ∈ O, COST(hoi) = 0 , PRE(hoi) =
{oi, loi−1}, ADD(hoi) = {loi}, DEL(hoi) = {loi−1}}.

Note, the cost of the plan for P ′ now encodes a penalty for
the missing observations and unexplained observations. In
fact, it is not hard to see that the cost of the plan for P ′ is the
same as VO,G(π), according to Equation 5.

Theorem 1 (Soundness/Correctness) Given a plan recog-
nition problem R = (F,A, I,O,G, PROB), and the corre-
sponding planning problem P ′ = (F ′, A′, I ′, G′) as defined
above, for all G ∈ G, if π is a plan for R, then there exists
a plan π′ for P ′ such that π can be constructed straightfor-
wardly from π′ by removing the extra actions (i.e., discard,
explain, and goal actions) and more importantly, VO,G(π) =
COST(π′). On the other hand, if there is a plan π′ for P ′, then
there exists a plan π for P that can be constructed from π′ by
removing the extra actions such that VO,G(π) = COST(π′).

Proof is based on the fact that the extra actions do not
change any of the observable fluents while preserving the
ordering amongst the observations. Moreover, cost of the
plans now map to VO,G(π), hence, the posterior probabili-
ties, P (G|O) and P (π|O), can be computed using the cost
of the plans in the transformed planning problem. Note that
these probabilities will be different based on which method is
used to generate a sample set of plans.

5 Computation
We present two methods in finding a sampled set of plans.
The first method is based on top-k planning, and the second
method is based on finding a set of diverse plans.

5.1 Computation via Top-k Planning
We define top-k planning similar to its definition given in [Ri-
abov et al., 2014]. The top-k planning problem is a tuple
(P, k), where P is the planning problem with action costs as
defined in Definition 1, and k is the number of plans to find.

Let n be the number of valid plans for the planning prob-
lem P . The set of plans Π = {π1, ..., πm}, where m = k if
k ≤ n,m = n otherwise, is the solution to the top-k planning
problem (P, k) if and only if each πi ∈ Π is a plan for the
planning problem P ; and there does not exists a plan π′ for P ,
π′ /∈ Π, and a plan πi ∈ Π such that COST(π′) < COST(πi).
Hence, Π may contain just one optimal plan (i.e., k = 1), all
optimal plans, or all optimal plans and some suboptimal plans
if k is large enough.

There are several techniques that can be used to compute
the top-k plans as described by [Riabov et al., 2014]. In this
paper, we use the top-k planning planner, TK∗, that is based
on the use of a k shortest paths algorithm calledK∗ [Aljazzar
and Leue, 2011] because it has been shown that TK∗ outper-
forms other techniques for top-k planning. K shortest paths
problem is an extension of the shortest path problem where in
addition of finding one shortest path, a set of paths is found,
representing the k shortest paths [Hoffman and Pavley, 1959].
The K∗ algorithm is an improved variant of the Eppstein’s k
shortest paths algorithm [Eppstein, 1998] because it does not
require the complete graph of states and actions to be avail-
able in memory. TK∗, applies K∗ to search in state space,
with dynamic grounding of actions. For more details on the
TK∗ planner, please see [Riabov et al., 2014].

Note, while the the sample set of plans we are generating
is not required to be of high quality or low cost, use of the
top-k planning approach is guaranteed to find such a set. In
turn, the solution set will optimize for the value of VO,G(π).

5.2 Computation via Diverse Planning
In diverse planning the objective is find a set of plans m that
are at least d distance away from each other. The distance
between plans can be computed by considering the plans as
a set of actions, a sequence of states, or casual links. The
solution to the diverse planning problem, (m, d), is a set of
plans Π, such that |Π| = m and minπ,π′∈Π δ(π, π′) ≥ d,
where δ(π, π′) measures the distance between plans.

There are several techniques that can be used to compute
the diverse plans and there are several diverse planners that
exist [Srivastava et al., 2007; Coman and Muñoz-Avila, 2011;
Nguyen et al., 2012; Bryce, 2014]. In this paper, we use
LPG-d [Nguyen et al., 2012], which is an extension of a local
search-based planner, LPG [Gerevini et al., 2003], for two
reasons: (1) we were able to access and run it successfully,
and (2) it showed relatively better performance compared to
the other diverse planners [Roberts et al., 2014]. We use three
settings of LPG-d, (10, 0.75), (50, 0.5), and (100, 0.75), and
report on our experiments in the next section.

6 Experimental Evaluation
In this section, we evaluate our two proposed plan recog-
nition approaches, LPG-d [Nguyen et al., 2012] for diverse
planning, and TK∗ [Riabov et al., 2014] for top-k planning,
against previous work [Ramı́rez and Geffner, 2010]. We con-
figured the previous work so that it uses the LM-Cut1 [Pom-

1We used the most recent download of the fast downward plan-
ning system (http://www.fast-downward.org/) with the parameter set
to “–alias seq-opt-lmcut’ to obtain LM-Cut.



Ramı́rez & Geffner Proposed Approaches
LM-Cut TK∗, top-1000 LPG-d, (50, 0.5)

%O |E| S P Q S P Q S P Q

In
tr

us
io

n
|G
|=

20

25 0 1.2/1.1 0.27 40/2 0.7/0 0.21 21/0 1/3.2 0.17 26/26
50 0 1/0.5 0.37 40/0 0.5/0 0.25 25/0 1/4.3 0.25 45/30
75 0 1/0.1 0.39 40/0 0.2/0 0.15 15/0 1/4.2 0.30 62/23

100 0 1/0 0.39 40/0 0.0/0 0.02 2/0 1/3.8 0.31 58/23
25 2 1.9/1.2 0.18 23/15 0.6/0 0.17 17/0 1/4.0 0.15 26/32
50 2 2.8/0.4 0.27 30/0 0.3/0 0.13 13/0 1/4.5 0.20 32/45
75 2 5.3/0.2 0.29 30/0 0.1/0 0.02 2/0 1/3.9 0.26 45/28

100 2 8.2/0 0.24 25/0 0.1/0 0.02 2/0 1/3.5 0.29 51/23

C
am

pu
s
|G
|=

2

25 0 1.2/0.8 0.72 95/5 1/0.1 0.65 65/7 1/0.8 0.46 42/44
50 0 1.1/0.5 0.81 95/5 1/0.3 0.87 91/7 1/0.8 0.48 53/35
75 0 1/0.5 0.88 100/0 1/0.1 0.98 100/0 1/0.8 0.53 53/37

100 0 1/0.5 0.91 100/0 1/0.1 0.99 100/0 1/0.8 0.56 56/40
25 2 1.3/0.6 0.62 81/19 1/0.1 0.59 58/7 1/0.8 0.50 56/30
50 2 1.2/0.4 0.75 91/9 1/0.3 0.75 74/16 1/0.8 0.50 56/33
75 2 1.2/0.4 0.81 100/0 1/0.2 0.92 95/2 1/0.8 0.54 58/40

100 2 1.2/0.3 0.79 98/2 1/0.3 0.89 93/7 1/0.9 0.52 53/40

K
itc

he
n
|G
|=

3

25 0 1.1/0.4 0.67 57/43 1/0 0.99 100/0 1/0.7 0.79 86/14
50 0 1/0.4 0.78 71/29 1/0.1 0.84 86/0 1/0 0.71 71/0
75 0 1/0.3 0.86 86/14 1/0.1 0.91 86/14 1/0.4 0.69 71/14

100 0 1/0.1 0.88 86/14 0.9/0.1 0.77 71/14 1/0 0.85 86/0
25 2 2.4/0 0.14 14/0 0.4/0 0.14 14/0 1/0.3 0.59 57/14
50 2 2.4/0 0.00 0/0 0.6/0 0.57 57/0 1/0.1 0.48 43/14
75 2 3.0/0 0.00 0/0 0.3/0 0.29 29/0 1/0 0.71 71/0

100 2 2.7/0 0.14 14/0 0.6/0 0.43 43/0 1/0.1 0.83 86/0

IP
C

-G
ri

d
|G
|=

5

25 0 1.2/0.4 0.82 100/0 1/0.4 0.85 90/10 1/1.6 0.51 67/29
50 0 1.4/0.1 0.82 86/0 1/0.1 0.93 95/0 1/2.1 0.38 48/48
75 0 1.6/0.1 0.85 86/0 1/0 1.00 100/0 1/2.2 0.33 38/52

100 0 1.8/0 0.80 81/0 1/0 1.00 100/0 1/2.2 0.36 38/57
25 2 4.5/0.1 0.05 5/5 1/1.2 0.32 33/24 1/2.2 0.25 19/67
50 2 4.8/0 0.00 0/0 1/0.8 0.38 43/14 1/2.6 0.31 43/43
75 2 5.0/0 0.00 0/0 1/0.6 0.18 14/19 1/2.2 0.38 48/33

100 2 5.0/0 0.00 0/0 1/1.0 0.34 38/19 1/2.2 0.30 33/52

Table 1: Comparison of our two proposed plan recognition ap-
proaches for recognizing a goal, top-k planning using TK∗, and di-
verse planning using LPG-d against previous work by Ramı́rez and
Geffner 2010, using LM-Cut. The columns stand for % of obser-
vations selected, number of extra observations, |E|, average number
of most/less likely goals, S, posterior probability of the goal given
the observations, P, and average percentage of problems where the
ground truth goal is among the most/less likely goals, Q. The overall
value of Q indicates the coverage for that method (i.e., sum of the
most and less likely goals). The bold numbers indicate better results.

merening and Helmert, 2012] planner. We selected the LM-
Cut planner because it was shown to perform well in the
planning competition and it performs better than the original
planners used for the configuration of the previous approach.
Note, using a more efficient optimal planner or even choos-
ing a sub-optimal planner will not improve the presented re-
sults for the previous approach because LM-Cut was able to
solve all problems optimally within the time limit. We used a
timeout of 30 minutes and ran all our experiments on a dual
16-core 2.70 GHz Intel(R) Xeon(R) E5-2680 processor with
256 GB RAM. Note, while we obtained the results by run-
ning the top-k planner and the diverse planner once for each
problem, LM-Cut was run 2× |G| times.

6.1 Planning Problems
In our experimental evaluation we used four domains and
had over 1000 problems. We used the Kitchen, Intrusion,
Campus, and IPC-Grid domain from the previous approach
[Ramı́rez and Geffner, 2010] but modified the kitchen do-
main to disallow the extra “take” actions that are not towards
achieving the goal in order to evaluate the approaches in the
case of noisy observations that need to be discarded. We did
not run the other domains reported by the previous approach
such as the blocks words because of the use of equality which
is not supported by the top-k planner. To construct the plan-
ning problems, for each domain we use a fixed given possi-
ble goal set G and for each goal set G we generate a set of
optimal and suboptimal plans. From these plans, we select
the observable actions in order to construct O, keeping track
of the goal used in the planning problem (i.e., ground truth
goal). To evaluate how well the approaches address missing
observations, we create several problems that do not have the
full observation sequence (i.e., some observation are miss-
ing). We do so by randomly selecting 25%, 50%, and 75%
of the observations in O. Therefore, the 100% case indicates
that the full observation sequence, O, is given. Furthermore,
to evaluate how these approaches address noise, we randomly
add extra observations to the original observation sequence.
While some domains such as the IPC-Grid domain can still
explain these extra observations using the extra “move” ac-
tions, a plan for G that fully explains O may not exist in
other domains. In the special case that no plan is found for G
and O, we assign a high cost to that plan which can lead to
P (G|O) ' 0 for that goal for the previous approach.

For the LPG-d planner we used three settings of (m, d),
(10, 0.75), (50, 0.5), and (100, 0.75), but report only on the
(50, 0.5) case; 50 plans that are at least 0.5 distance away
from each other. This is because this setting performed better
than the other two both with respect to recognizing a goal and
recognizing a plan. For the top-k planner, we set k = 1000 in
order to obtain a large set of high-quality plans that are also
diverse. Lower values of k might help improve the posterior
probabilities but will likely result in lower converge. For the
coefficients, we set b1 = 2, and b2 = 4 in the experiments
meaning that we assign a higher penalty for the unexplained
observations, and a lower penalty for the missing observa-
tions. We also experimented with different values for these
coefficients but the results were not significantly different.

6.2 Goal Recognition
Table 1 shows the summary of the results when evaluating our
two proposed plan recognition approaches for recognizing a
goal with the previous work [Ramı́rez and Geffner, 2010].
The number of extra observations, |E|, indicates the amount
of noise introduced to the problem; we added two extra ob-
servations resulting in about 12% noise on average relative
to the total number of observations that was close to 16 on
average. To evaluate the coverage and accuracy of the differ-
ent approaches, in addition to the actual posterior probabil-
ity of the goal given observations, P (G|O), shown in the P
column, we measure the average number of the most likely
goals and the average number of less likely goals found by



that method, shown in the S column separated by “/” and av-
erage percentage of problems where the ground truth goal is
among the most and less likely goals also separated by “/”
shown in the Q column. The overall value of Q, sum of the
most and less likely, indicates the goal recognition coverage
for that method. The most likely goals are chosen relative
to that particular approach (i.e., goals with the highest pos-
terior probability) and the less likely goals are those goals
with greater than 0.05 posterior probability. Hence, value of
“1/3.2” in the S column indicates that, on average, one of the
goals in G was found to be most likely, while 3.2 of the goals
were found to be less likely. Also value of “56/40” in the Q
column indicates that, on average, the ground truth goal was
among the goals found to be most likely 56% of the time,
while the ground truth goal was among goals found to be be
less likely 40% of the time, and that that approach had on
average 96% goal recognition coverage for this problem.

The results in Table 1 show that our approach, diverse plan-
ning and top-k planning, helped improve the percentage of
finding the ground truth goal in many domains or the cov-
erage, when observations are unreliable. In particular, in
Kitchen and IPC-grid domain, it helped improve the percent-
age of finding the ground truth goal even with high probabil-
ity, when the observations are unreliable. Note that there are a
few cases such as in the Intrusion domain that TK∗ performed
worse. This is mainly because the TK∗ ran out of time and
was not able to find the top-k plans. However, we expect to
obtain better performance in domains that have smaller search
space, and/or use a more efficient top-k planner.

Comparing the results of the problems where %O=25 ver-
sus %O=100 (i.e., no missing observations), LGP-d and TK∗
performed better in recognizing the goal; LGP-d’s coverage
increased from the average of 79% to 87% and TK∗’s cover-
age increased from the average of 56% to 61%. However,
goal recognition coverage went down from the average of
63% to 57% for the previous approach in our problem sets.
This can be caused by the general poor performance of the
previous approach on long observation sequences since the
observations may not all be from an optimal plan.

On average, over all our problems, LPG-d had 83% cover-
age, TK∗ had 60% coverage, and LM-Cut had 59% coverage.
Moreover, when observations are unreliable, problems where
|E| = 2 or %O is not 100, the coverage stayed the same for
LPG-d and TK∗ but it went down to 55% for LM-Cut. How-
ever, when observations are noisy, problems where |E| = 2,
the coverage went down to 79% for LPG-d, to 46% for TK∗,
and to 35% for LM-Cut. This indicates that the previous ap-
proach performed worse when observations are unreliable,
even more so when observations are noisy. Also note that the
posterior probabilities of goals, when observations are noisy,
is on average 0.26 for LM-Cut, versus on average 0.42 for
LPG-d. Also, the size of the most likely goals is largest for
LM-Cut and lowest for the top-k approach, indicating that the
top-k approach has a higher precision in detecting the ground
truth goal than the previous approach.

6.3 Plan Recognition
We evaluate our two proposed plan recognition methods for
recognizing a plan, top-k planning and diverse planning, and

we did not compare with the previous work [Ramı́rez and
Geffner, 2010] since their focus was on goal recognition.
Also, in our benchmark problems, recognizing the full plan is
often very challenging. This is because of the combinatorial
property of these domains (i.e., there is often no particular or-
der among the actions). Hence, instead of recognizing the full
plan, we find a random subset of actions in the full plan and
we evaluate our techniques in recognizing this partial plan.

The results we obtained show that while LPG-d performed
better in some domains, TK∗ performed better on average
over all domains with respect to finding the ground truth par-
tial plan with high probability; TK∗ found the partial plan
with high probability in 43% of the time, while LPG-d found
the partial plan with high probability in 25% of the time. This
can be because the top-k planning approach focuses on find-
ing a set of high-quality plans, while LPG-d finds diverse
plans instead and this is helpful in some domains but not
all. However, both approaches were able to find the ground
truth partial plan in about only 50% of the time on average as
this problem was much more difficult for the two approaches.
Also the posterior probability of partial plans for the top-k
planning approach is on average 0.48 compared to 0.41 for
the LPG-d approach. In summary, while the previous work as
it stands is not able to recognize plans, our experiments show
that our approach is able to recognize ground truth (partial)
plans. Moreover, top-k planning approach performed bet-
ter in plan recognition coverage and found a higher posterior
probability for the partial plan.

7 Discussion and Summary
There exist a body of work on the plan recognition prob-
lem with several different approaches including the use of AI
planning and other techniques such as the use of SAT [Zhuo
et al., 2012]. While most existing work assumes that the ob-
servations are reliable, a recent work by Vattam et al. 2015
addresses missing and noisy observations. However, they re-
quire plan libraries and use case-based plan recognition al-
gorithms, whereas, we use AI planning instead. Generating
a plan set rather than just one plan has gained its popularity
in recent years in the context of diverse planning. There ex-
ist several diverse planners including LPG-d which we use in
this paper. Using a more efficient diverse planner, specially if
it accounts for cost, such as a recent approach by Vadlamudi
et al. 2016, can improve the performance of our approach.

In this paper, we proposed to extend previous work to
address observations over fluents, better address unreliable
observations, and recognize plans in addition to goals. To
this end, we provide a relaxation of the plan-recognition-as-
planning formulation that allows unreliable observations. We
also defined the posterior probabilities of goals and plans. We
evaluate our solution using two approaches, diverse planning,
and top-k planning. Our experiments showed that using our
approach improves goal recognition in most domains when
observations are unreliable. We also reported on the exten-
sion of our approach for recognizing plans. In the future, we
would like to tackle the plan recognition problem where ac-
tions can have durations. This is a difficult problem especially
in the presence of concurrency.
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