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Abstract
We present LTS++, an interactive development en-
vironment for planning-based hypothesis genera-
tion in applications with unreliable observations.

1 Introduction and Motivation
The set of planning-based tools, collectively called LTS++,
presented in this paper address the hypothesis generation
problem that arises in applications that require multiple hy-
potheses to be generated in order to reason about possibly in-
complete or inconsistent sequences of observations received
from external sources. For example, when analyzing obser-
vations derived from sensor data in intensive care, the goal
can be to generate plausible hypotheses about the condition
of the patient. The resulting hypotheses can then be further
refined and analyzed to create a recovery plan for the pa-
tient. In another application, decisions aimed to prevent mal-
ware spread in computer networks can be based on hypothe-
ses about change in behavior of individual hosts generated by
reasoning about observations of network traffic over time.

The core idea of the approach to planning-based hypothesis
generation we implement in LTS++ is the following. Mod-
eling the hypothesis generation problem as one of inferring
a sequence of state transitions from a sequence of observa-
tions, and transforming the sequence of observations together
with the state transition model into a planning task, we em-
ploy a planner to produce a set of multiple near-optimal plans,
to which we then apply an inverse transform, obtaining a set
of hypotheses where each hypothesis is a sequence of states
annotated with explained, missed or ignored observations.

Knowledge engineering requirements come to the forefront
in designing a system like LTS++, where domain knowledge
is encoded and maintained directly by the domain experts,
such as clinicians or network security engineers. To address
these requirements, we developed the LTS++ language that
allows the domain experts to easily describe the state transi-
tion models and observations specific to their domain, with-
out requiring the experts to learn about the underlying plan-
ning technologies or PDDL. The LTS++ browser-based in-
tegrated development environment (IDE) includes an editor
with syntax highlighting and static error checking, as well
as integrated tools for interactive model testing and debug-
ging, generating and visualizing multiple hypotheses for user-

provided observations. Models created in the IDE can then be
deployed to LTS++ servers to generate hypotheses automati-
cally as observations are received, generating alerts based on
hypotheses for further analysis by experts or other systems.

We build upon a significant body of prior research. While
expert judgment is the primary method used for generating
hypotheses and evaluating their plausibility, automated meth-
ods have been proposed, to assist the expert, and help improve
accuracy and scalability. However, most of the existing liter-
ature makes an assumption that the observations are reliable
and should all be explainable according to the model. But that
is not true in general; as a further complication, we cannot as-
sume the system model is complete. The hypothesis genera-
tion approach we propose handles the unreliable observations
and incomplete models by offering multiple alternative hy-
potheses explaining each given observation sequence, and the
LTS++ tools we developed automate the generation and eval-
uation of hypotheses in addition to addressing the knowledge
engineering challenges of encoding and maintaining models.

2 Key Ideas Implemented in LTS++
Planning Formulation We transform the hypothesis genera-
tion problem into a planning problem. In particular, we ex-
tend the work of Sohrabi et al. 2011 to address unreliable
observations and generate multiple near-optimal lowest-cost
plans, mapping the generated plans to hypotheses. This map-
ping ensures that lower cost plans are mapped to more plausi-
ble hypotheses, hence finding a number of lowest-cost plans
results in the same number of most plausible hypotheses. See
[Sohrabi et al., 2013; Riabov et al., 2015] for more details.
Top-k Planning Our LTS++ implementation uses an efficient
planner that finds top-k plans, i.e., k plans such that no valid
plans with lower cost exist. We have evaluated several algo-
rithms for this purpose, and currently use the k-shortest path
algorithm K∗ [Aljazzar and Leue, 2011].
Knowledge Engineering We have designed the LTS++ lan-
guage, derived from LTS (Labeled Transition System), for
defining a model. The LTS++ language allows specification
of the observations and the states of the entity (e.g., state of
the patient could be Delayed Cerebral Ischemia (DCI) or In-
fection). It also allows domain experts to describe the transi-
tions between states, as well as the association between states
and observations. The language is supported by the IDE.
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Figure 1: LTS++ IDE

3 LTS++ Development Environment
Model Editor The top part of the model editor screen (Fig-
ure 1) is the LTS++ language editor with syntax highlight-
ing and the bottom part is the automatically generated tran-
sition graph. In the editor, the states appear in blue. The
observations are specified within the curly brackets and ap-
pear in green. You can specify multiple observations by us-
ing space or comma between observations. The transitions
between states are specified using arrows. Multiple transi-
tions between states can be specified using a vertical bar. The
LTS++ model editor automatically detects errors in LTS++
language and shows them below the text editor.
Model Testing To test the model, a sequence of observa-
tions can be entered by clicking on “Next: edit trace” from
the LTS++ IDE main page. The tool automatically generates
planning problems from the LTS++ specification and entered
trace. The generated hypotheses are the result of running a
planner and finding the most plausible hypotheses ranked by
plausibility from highest to lowest. Figure 2 shows an exam-
ple of hypotheses generated for the critical care model; the
result is automatically generated by our tool. Each hypothe-
sis is shown as a sequence of states matched to an observed
event sequence. The observations that are explained by a state
are shown in green ovals, and unexplained observations are
shown in purple. The arrows between the observations show
the sequence of observations in the trace. Each hypothesis is
associated with a cost. The lower the cost value, the more
plausible is the hypothesis.
Model Discovery and Update Our tool uses a simple boot-
strapping technique to discover an initial model given a set of
historical observations. Several candidate models will be pre-
sented to the domain expert who can choose one as an initial
LTS++ model and further improve it. We also implement au-
tomated model updates to produce better quality hypotheses
as we do not assume the model will be accurate in perpetu-
ity. To do this, we use an aggregate measure of the plausi-

Figure 2: Sample Healthcare Example

bility of top-N hypotheses as our optimization criteria. Using
a genetic algorithm, we attempt small atomic changes to the
model (e.g., addition and deletion of states, observations and
transitions) and measure the increase in aggregate hypothesis
plausibility as a result. In subsequent generations, we com-
bine the promising atomic changes and repeat until we can no
longer increase hypothesis plausibility.
Model Composition A single LTS++ model describes a state
transition system for a single type of entity, such as a pa-
tient. Given multiple entities, each with their own associated
model, our tool also allows automated composition of mul-
tiple models. It does so by considering a cross product of
all possible joint states while paying special attention to the
association between observations and the combined states.
Hypothesis Clustering Many of the generated hypotheses
are only slightly different from each other. That is, they do
seem to be duplicates of each other, except for one or more
states or actions that are different. To consolidate similar
plans produced by the planner, we apply a clustering algo-
rithm to cluster similar plans and present clusters of plans,
where each cluster can be replaced by its representative plan.
To find similar plans, we leverage existing research in diverse
planning (e.g., [Nguyen et al., 2012]).
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