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Abstract

Scenario planning is a commonly used method by compa-
nies to develop their long-term plans. Scenario planning for
risk management puts an added emphasis on identifying and
managing emerging risk. While a variety of methods have
been proposed for this purpose, we show that applying AI
planning techniques to devise possible scenarios provides a
unique advantage for scenario planning. Our system, the Sce-
nario Planning Advisor (SPA), takes as input the relevant in-
formation from news and social media, representing key risk
drivers, as well as the domain knowledge and generates sce-
narios that explain the key risk drivers and describe the alter-
native futures. To this end, we provide a characterization of
the problem, knowledge engineering methodology, and trans-
formation to planning. Furthermore, we describe the compu-
tation of the scenarios, lessons learned, and the feedback re-
ceived from the pilot deployment of the SPA system in IBM.

1 Introduction
Scenario planning is a commonly used method for strategic
planning (Schoemaker 1995). A major benefit to scenario
planning is that it helps businesses or policy-makers to lay-
out the possible alternative futures and anticipate them (Pe-
terson, Cumming, and Carpenter 2003). Risk management is
a set of principles that focus on the outcome for risk-taking
(Stulz 1996). In this paper, we introduce Scenario Planning
Advisor (SPA), a decision support system to assist organi-
zations in generating future scenarios, identifying, and man-
aging emerging risk, a category of risks associated with the
changes in the global or local economies, politics, technol-
ogy, society, and others. For example, prior to the Brexit ref-
erendum in 2016, an international company operating in the
United Kingdom could consider alternative future scenarios
for changes in trade and employment treaties assuming the
majority voted to leave the European Union. The scenarios
will include the implications for the company’s finances and
its ability to hire; hence, enabling the company to act imme-
diately to minimize the negative impacts.

A variety of (manual) methods and standards for risk
management under different assumptions have been devel-
oped (Avanesov 2009). The approach we take in this paper
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is different from previous work in that we reason about cur-
rently emerging risks based on observations from the news
and social media trends, and automatically produce scenar-
ios that both describe the current situation and summarize
the future possible effects of these observations or key risk
drivers. Our objective is to compute multiple alternate sce-
narios, informing the decision-makers of the breadth of pos-
sibilities that may need consideration. This is different from
a narrow focus on predicting the most likely outcome.

Each scenario we produce highlights: (1) the potential
leading indicators, the set of facts that are likely to lead to a
scenario; (2) the scenario and emerging risk, the combined
set of consequences in that scenario; and (3) the business
implications, a subset of potential effects of that scenario
that the decision-makers care about. For example, given a
high inflation risk driver, economic decline followed by a de-
crease in government spending can be the consequences in a
scenario, while decreased client investment in the company
offerings is an example of a business implication. Further-
more, an increase in the cost of transportation could have
been the leading indicator for that scenario. To the best of
our knowledge, we are the first to apply AI planning in ad-
dressing scenario planning for enterprise risk management.
We believe that AI planning provides a very natural formu-
lation for the efficient exploration of possible outcomes re-
quired for scenario planning.

Our system, SPA, is currently in a pilot deployment in
IBM. The system is used to continuously monitor news and
social media to identify current trends relevant to the com-
pany, and then generate three to six scenarios. These sce-
narios are then used to start a risk conversation between
the analysts and decision makers. Major advantages of SPA
are: (1) capturing observations from news and social media;
(2) capturing the domain knowledge about the risk drivers
quickly and efficiently through our knowledge engineering
efforts, transferable to many other domains and applications;
(3) reasoning with incomplete and biased input while miti-
gating the bias in generated scenarios.

The main contributions of this paper are (i) characteri-
zation of the scenario planning problem for enterprise risk
management through its corresponding plan recognition
problem, (ii) transformation of the domain knowledge as
captured by Mind Maps into an AI planning task, (iii) com-
putation of scenarios by applying the plan-recognition-as-



planning technique generating multiple high-quality plans,
and clustering them into scenarios, and (iv) evaluation of our
system through its performance and the user feedback.

2 Scenario Planning Adviser (SPA)
The architecture for our system, Scenario Planning Adviser
(SPA), is shown in Figure 1. There are three major compo-
nents. The planning engine, shown under the Scenario Gen-
eration and Presentation component, takes as input the out-
put of the other two components: the News Aggregation and
the Domain Knowledge. The News Aggregation component
deals with analyzing the raw data coming from the news and
social media feeds. To this end, several text analytics are im-
plemented in order to find the information that is relevant for
a particular domain as filtered by the provided Topic Model.
The Topic Model, provided by the domain expert, includes
the list of important people, organization, and keywords. The
result of the News Aggregation component is a set of rele-
vant key risk drivers, a subset of which can be selected by
the business user and is fed into the Scenario Generation
and Presentation component.

The Domain Knowledge component captures the neces-
sary domain knowledge in two forms, Forces Model and
Forces Impact. The Forces Model is a description of the
causes and consequences for a certain force, such as social,
technical, economic, environmental, and political trends,
and is provided by a domain expert who have little or no AI
planning background. Forces Model are captured by a set
of Mind Maps (https://en.wikipedia.org/wiki/Mind map), a
graphical representation that encodes concepts and relations.

An example of a Mind Map for the currency depreciation
force is shown in Figure 2. The Forces Impact, describes po-
tential likelihoods and impact of a cause (i.e., concepts with
an edge going into the main force) or a consequence (e.g.,
concepts with an edge going from the main force and all
other cascading concepts). Forces Impact also describes the
level of importance of a main force. Business implications is
a set of predefined concepts (e.g., the concepts that mention
the name of the company). The Scenario Generation com-
ponent takes the domain knowledge and the key risk drivers
and automatically generates a planning problem whose so-
lutions, when clustered in the post-processing step induce a
set of alternative scenarios.

Hence, we define the scenario planning problem for en-
terprise risk management as a tuple SP = 〈Forces Model,
Forces Impact, Key Risk Drivers〉. Key Risk Drivers are a
subset of forces describing the current situation as suggested
by the News Aggregation component. Any force described
by the Forces Model can be selected as a risk driver. The so-
lution to the SP problem is a set of alternative scenarios that
consider the key risk drivers and describe a range of possible
futures considering the likelihood, impact and importance
values based on the Forces Model and Forces Impact.

3 Preliminaries
In this section, we briefly review the necessary background
on AI planning and Plan Recognition. We consider plan-
ning tasks Π = 〈F,A, I,G, COST〉 in the STRIPS formalism
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Figure 1: The SPA system architecture

extended with operator costs. In such a task, F is a set of
Boolean fluents. Each subset s ⊆ F is called a state, and
S(Π) = 2F is the state space of Π. The state I is the ini-
tial state of Π. The goal G ⊆ F is a set of fluents, where a
state s is a goal state if G ⊆ s. A is a finite set of actions,
each having an associated set of preconditions pre(a) ⊆ F ,
add effects add(a) ⊆ F and delete effects del(a) ⊆ F , and
COST : A→ R0+ being a non-negative action cost function.

The semantics of STRIPS planning is as follows. An action
a is applicable in the state s if pre(a) ⊆ s. Applying a in s
results in the state sJaK := (s\del(a))∪add(a). A sequence
of actions π = 〈a1, . . . , ak〉 is applicable in s if there exists
a sequence of states 〈s0, . . . , sk〉 such that s0 = s, action ai
is applicable in state si−1, and si = si−1JaiK. If it exists,
such a path is uniquely defined, and its end state is denoted
by sJπK. An applicable action sequence is a plan for s if sJπK
is a goal state. Its cost is the cumulative cost of actions in the
sequence: COST(π) =

∑k
i=1 COST(ai). A plan for s with

minimal cost is called optimal. The objective of (optimal)
planning is to find an (optimal) plan for I .

A Plan Recognition (PR) problem over a domain the-
ory is a tuple R = 〈Π, O,G, PROB〉, where Π =
〈F,A, I,G, COST〉 is a planning task, O = {o1, . . . , om},
oi ∈ F , i ∈ [1,m] is a set of observations, G ⊆ S(Π) is the
set of possible goals, and PROB is a probability distribution
over the goals G. Note, this definition includes a minor mod-
ification from previous work (Ramı́rez and Geffner 2009;
Sohrabi, Riabov, and Udrea 2016) as it includes the plan-
ning task Π as the input to the plan recognition problem.

The solution to the PR problem is the posterior probabil-
ities of plans that traverse the possible goals and the possi-
ble goals given observations. Plan recognition problem can
be transformed to an AI planning problem and the poste-
rior probabilities can be approximated using AI planning
(e.g., (Ramı́rez and Geffner 2010)). Following the work of
Sohrabi, Riabov, and Udrea (2016), we say that the observa-
tion is satisfied by an action sequence if it is either explained
or discarded. This allows for some observations to be left un-
explained, in particular if they are out of context with respect
to the rest of the observations.

4 Domain Knowledge
The domain knowledge in the scenario planning problem
comes in two forms: Forces Model and Forces Impact. There
could be many different forms and representations of these



two forms of knowledge. In particular, domain experts with
expertise in AI planning could use a planning language, e.g.,
the Planning Domain Description Language (PDDL) (Mc-
Dermott 1998) to encode the Forces Model, exploiting the
Forces Impact to derive costs or preferences over the ac-
tions in the domain. It is also possible to use the existing
knowledge engineering tools to aid the domain experts (e.g.,
(Muise 2016; Simpson, Kitchin, and McCluskey 2007)).

However, as such domain experts are exceptionally rare,
we anticipate the lack of proper AI planning expertise in
writing the domain knowledge and the unwillingness to
learn a planning language. Instead, the domain expert may
choose to express her knowledge in a light-weight graphical
tool such as a Mind Map and answer some simple questions
that would lead to the identification of the weights of the
Mind Maps edges. This knowledge can then be translated
automatically to a planning language.

4.1 Forces Model as Structured Mind Map
We represent the Forces Model as a set of Mind Maps. Mind
Maps can be created in a graphical tool such as FreeMind
(freemind.sourceforge.net). Two example Mind Maps are
shown in Figure 2. The main forces in these Mind Maps
are the “currency depreciation against US dollar” and the
“decrease in price of commodity”. The forces with an edge
going towards the main force, are the possible causes, and
the forces with an outgoing edge from another force, are the
possible consequences. The causes and effects can appear
in chains, and cascade to other causes, and effects, with a
leaf node of either a business implication, or another force,
with its own separate Mind Map that describes it. For exam-
ple, the leaf node “IBM workforce capital available at better
rates” is an example of a business implication, and the leaf
node “Decrease in price of commodity” is itself a main force
described in the Mind Map in Figure 2(b).

Next, we define Mind Maps formally. LetB andC be two
disjoint sets, where B is a set of symbols of type business
implications and C is a set of symbols of type force.

Definition 1 A set of structured Mind Maps M is a set of
tuples M = 〈Γ, σ,Θ〉, where Γ is a causal structure for M ,
σ ∈ C is the main force, and Θ is a consequence structure
for M . A causal structure Γ is defined as a set of causal se-
quences such that each sequence takes one of the following
forms:

• [c1, . . . , cm, σ], where ci ∈ C, 1 ≤ i ≤ m, or
• [c1, . . . , ci, ci+1, . . . , cm, σ], where [c1, . . . , ci] ∈ Γ′, for

some structured Mind Map M ′ = 〈Γ′, ci,Θ′〉, M ′ ∈ M,
and ci+1, . . . , cm ∈ C, for some 1 ≤ i ≤ m

Further, a consequence structure Θ is defined as a set of con-
sequence sequences such that each consequence sequence
takes one of the following forms:

• [σ, c1, . . . , cn−1, cn], where ci ∈ C, 1 ≤ i < n, cn ∈ B
• [σ, c1, . . . , ci, ci+1, . . . , cn], where c1, . . . , ci ∈ C,

[ci+1, . . . , cn] ∈ Θ′′ for some structured Mind Map
M ′′ = 〈Γ′′, ci+1,Θ

′′〉, M ′′ ∈M, for some 0 ≤ i < n.
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Figure 2: Part of the Mind Maps for (a) currency deprecia-
tion against US dollar (b) decrease in price of commodity.

We can now define the notion of a path in Mind Maps.

Definition 2 Given a set of structured Mind Maps, M, a
valid path ϕ is a sequence of symbols [c1, . . . , ci−1, ci,
ci+1 . . . , cn−1, cn], c1, . . . cn−1 ∈ C, cn ∈ B, such that
there exists a Mind Map M = 〈Γ, ci,Θ〉, M ∈ M, where
[c1, . . . , ci−1] ∈ Γ, and [ci+1 . . . , cn−1, cn] ∈ Θ.

Informally, a valid path through the set of Mind Maps
starts from the causal structure, goes through at least one
main force, and ends in a business implication symbol. Note,
Mind Maps can be connected through both cause and con-
sequence sequences; that is, many main concepts can appear
on a valid path. Also, many valid paths exist for a given set of
structured Mind Maps. The additional information provided
by the Forces Impact allows us to rank these paths.

4.2 Forces Impact via Questionnaire
Additional information on the Mind Maps is encoded
through the Forces Impact. One way to capture this informa-
tion, and the approach we take, is to ask the domain experts
a series of automatically generated questions based on the
Mind Maps. For example, the system will ask the following
question in order to understand which of the causes are more
likely: “How likely are any of the following to lead to cur-
rency depreciation against US dollar.” The system will also
ask the following question in order to understand which con-
sequences are more likely and would have a higher impact:
“Assuming currency depreciation against US dollar occurs,
please evaluate the likelihood and impact of the following
effects.” In addition, the system will ask the domain expert
to specify the relative importance of the main forces in their
particular situation (i.e., company). Importance, impact, and
likelihood can take one of the values: low, medium, or high.
This can be easily extended to any finite number of values.

More formally, given a set of Mind Maps M, let Σ be
the set of all possible pairs of symbols, where for each pair
r ∈ Σ, there exists a Mind Map M = 〈Γ, σ,Θ〉, such that
r appears in Γ or Θ. We denote rimpact and rlikelihood to
denote the impact and likelihood of that pair (i.e., edge in a
Mind Map). Also, we denote, M importance, to be the level
of importance for a given structured Mind Map M ∈M.



Given this additional information on the Mind Maps, we
can define a ranking among valid paths. Informally, valid
paths that go through Mind Maps with high importance
value, causes and consequences with high impact and likeli-
hood have a higher quality. In the next section, we describe
how these values can be encoded with action costs such that
a high-quality valid path would map to a low-cost plan.

5 Transformation to Planning
The scenario planning problem, as described in Section 2, is
NP-hard. This can be shown by a reduction from, e.g., the
Hamiltonian Path problem. In this section, we describe our
solution using planning. Given a scenario planning problem,
we define its corresponding plan recognition problem, which
allows us to apply the previous work on plan-recognition-
as-planning to generate many plans. In addition, we will de-
scribe our method of translating the domain knowledge (i.e.,
Forces Impact and Forces Model) into the planning task.

Definition 3 Given a scenario planning problem, SP, as de-
scribed in Section 2, a corresponding plan recognition prob-
lem is defined as a tuple SPPR = 〈Π, O,G〉, for a planning
task Π = 〈F,A, I,G, COST〉 described by the Forces Model
and Forces Impact, with the set of observations that consists
of the selected Key Risk Drivers, the set of possible goals G
that consists of the business implications as specified in the
Forces Model, and uniform probability distribution over the
possible goals.

Given the corresponding plan recognition problem
SPPR, we follow the plan-recognition-as-planning approach
(Sohrabi, Riabov, and Udrea 2016) that approximates the
posterior probabilities of goals and plans by computing a set
of plans. However, instead of computing the posterior prob-
abilities of goals and plans, which is not the objective of the
scenario planning problem, we group the set of computed
plans and present the grouping as scenarios to the users.

Definition 4 Given a scenario planning problem, SP, and
its corresponding plan recognition problem, SPPR, as de-
fined above, solutions to SPPR problem are sets of scenar-
ios, where each scenario is a collection of plans such that
each plan π: (i) traverses a state that meets at least one of
the possible goals (i.e., ∃G′ ∈ G, where G′ ⊆ s) and (ii)
satisfies the set of observations (i.e., observations are either
explained or discarded).

Informally, scenarios group plans by a certain similarity
criteria, e.g., sets of facts that are true in the end state. We
further elaborate on that in Section 6. Note that a set of sce-
narios or a solution to the SPPR problem also formally de-
fines a solution to the scenario planning problem, SP, as de-
scribed in Section 2.

Next, we will describe how to translate the set of Mind
Maps M together with their importance level, impact and
likelihoods into a planning task. We will also show that a
valid path maps directly to a plan for the planning task. Note
that the (is-true) predicate ensures that only one indicator
action is executed for each valid path.

Definition 5 Given a set of Mind Maps M, their impor-
tance level M importance, M ∈ M, set of all possible
pairs of symbols Σ, and their impact and likelihood lev-
els, rimpact, rlikelihood, r ∈ Σ, we define a planning task
Π = 〈F,A, I,G, COST〉 as follows:

• F is a set of fluents that appear in A:
– (is-true), (achieved),
– (bis c) for all c ∈ B, (at c) for all c ∈ C,
– (low c1 c2), (med c1 c2) , (high c1 c2) for all c1, c2 ∈
C, corresponding to the combined values of rimpact,
rlikelihood for the pair r = (c1, c2), and

– (f-low c), (f-med c), (f-high c), for all c ∈ C, where
c is a main force for one of the Mind Maps M ∈ M,
corresponding to M importance.

• A is the union of the following action sets:
– Anext−low, for each pair (c1, c2) ∈ Σ, with precondi-

tion (low c1 c2) and (at c1), add effects (at c2), delete
effects (at c1), and cost corresponding to the combined
values of rimpact, rlikelihood,

– Anext−med, Anext−high, similar to Anext−low, where
low is replaced with med and high respectively,

– Anextbis, for each pair (c1, c2) ∈ Σ, where c2 ∈ B,
with precondition (at c1), add effects (bis c2), delete ef-
fects (at c1), and a cost corresponding to the combined
values of rimpact, rlikelihood,

– Aindicator−low, for each causal sequence [c1, . . . , cn]
as defined inM ∈M, with precondition (f-low cn) and
(is-true), add effects (at c1), delete effects (is-true),
and a cost corresponding to M importance,

– Aindicator−med,Aindicator−high where low is replaced
with med and high respectively, and

– Aachieve−goal for each c ∈ B, with precondition (bis
c), add effect (achieved), no delete effect, and 0 cost.

• I = {(is-true), (low c1 c2), (med c1 c2) , (high c1 c2),
(f-low c), (f-med c), (f-high c) }, as defined by F .

• G = {(achieved)}.

Theorem 1 (Soundness/Correctness) Given a set of Mind
MapsM and the corresponding planning task Π as defined
above, if ϕ is a valid path forM, then we can construct a
sequence of actions π, such that π is a plan for the planning
task Π. On the other hand, if π is a plan for the planning
task Π, then there exists a valid path ϕ forM, where ϕ can
be constructed from π. Furthermore, a valid path ϕ1 has a
higher quality than a valid path ϕ2 if and only if COST(π1)
< COST(π2) for the corresponding plans π1 and π2.

Proof Sketch: (⇒) Given a valid path ϕ = 〈c1, . . . , ci−1, ci,
ci+1 . . . , cn−1, cn〉, we construct a plan π for the planning
task Π starting with an indicator action for 〈c1, . . . , ci−1,
ci〉, followed by a sequence of next actions one for each pair
of symbols in the path, followed by a nextbis action for the
pair (cn−1, cn), and then an achieve-goal action for the busi-
ness implication cn ∈ B.
(⇐) Given a plan π for the planning task Π, we construct a
valid path forM, considering the arguments of the actions.
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Figure 3: The screenshot of a sample generated scenario.

We also must make sure that the cost of the actions corre-
sponds to the importance, impact and likelihood values. �

The translation method described above could have dif-
ferent implementations. In particular, to determine the costs
associated with the combined values for likelihood and im-
pact, different methods can be used. For example, to com-
bine likelihood and impact, one can consider a high value,
if both the likelihood or impact are high, a medium value if
either values are high, or both are medium, and a low value
otherwise. The low/medium/high can also map to any num-
bers in the cost of the action. However, as long as their rel-
ative difference adheres to the three levels, where low maps
to a higher cost and vice versa, the theorem holds.

We can directly represent the transformed planning task
in a “lifted” planning language such as PDDL (McDermott
1998) where we would define one general and “lifted” set
of actions in the domain file, defining problem files based
on the given Mind Maps. As a generic grounding algorithm
may take a substantial amount of time, we also experiment
with creating directly a (partially) grounded planning task.
We evaluate the performance of both methods in the experi-
mental evaluation section.

6 Computation of Scenarios
In the previous section we discussed a sound and complete
translation of Forces Models and Forces Impact into a plan-
ning task. In this section, we discuss how to compute a solu-
tion to the plan recognition problem SPPR = 〈Π, O,G〉.

To compute a set of scenarios (see Figure 3 for an exam-
ple of a scenario) we perform the following steps: (i) fol-
low previous work on plan-recognition-as-planning to com-
pile away the observations and ensure that at least one goal
is satisfied, (ii) compute a set of high-quality plans on the
transformed planning problem, and (iii) cluster the result-
ing plans into scenarios so that similar plans are grouped
together. Next, we briefly discuss each step.

To transform the plan recognition problem SPPR into a
planning task, we follow the work of Sohrabi, Riabov, and
Udrea (2016), which adds a set of “explain” and “discard”
actions for each observation. It is important to note that the
domain knowledge can be incomplete and the observations

Figure 4: Screenshot of part of an explanation graph.

can be unreliable and not all of them explainable. Hence, the
ability to discard some observations may be crucial to the
solvability of the planning task. To encourage the planner to
generate plans that explain as many observations as possi-
ble, a penalty is set for the “discard” action in the form of
a higher cost. The penalty is relative to the cost of the other
actions in the domain. Note, a high discard cost may cause
a planner to consider many long and unlikely paths, while
a low discard may cause a planner to discard observations
without trying to explain them. Hence, we pick a middle-
ground, a penalty that is five times the cost of the next-med
action. The resulting planning task captures both the do-
main knowledge that is encoded in the Mind Maps and its
associated weights of the edges as well as the given set of
observations, and the set of possible goals, associated with
the plan recognition aspect of the problem.

To compute a large set of high-quality plans on the trans-
formed planning task, we use a top-k planner (Riabov,
Sohrabi, and Udrea 2014). We elaborate on the top-k plan-
ner in the next section. To cluster the plans, we apply a hier-
archical clustering algorithm on the resulting plans (Defays
1977). To compare plans with each other, we consider the
union of the set of states traversed by that plan. That is, we
consider the set of all predicates that were true at some point
along the plan. Given that the number of ground predicates
(i.e., F ) is finite, we first represent each plan through a bit
array of the same size such that 1 indicates the predicate was
true at some point during the execution of that plan, and 0,
otherwise. To determine the Euclidean distance between two
plans, we compute an exlusive or of the corresponding bit
arrays and take the square root of the sum of 1 bits. Given
this distance function for each pair of plans, we compute
a dendrogram bottom-up using the complete-linkage clus-
tering method (Defays 1977). The user can specify a mini-
mum and maximum consumable number of scenarios. These
settings are used to perform a cut through the dendrogram
that yields the number of plans in the specified interval with
the optimal Dunn index (Dunn 1973), a metric for evaluat-



Blind Heuristic LM-cut Heuristic
Lifted Grounded Lifted Grounded

PGE PGD PGE PGD PGE PGD PGE PGD
Solved 123 123 123 123 76 115 81 112
Time 109.95 0.90 1.19 2.11 284.13 3.58 63.05 13.90
NE 51,625 51,625 51,625 51,625 8,199 17,173 8,186 17,165

Table 1: Performance comparison in terms of coverage,
time, and node expansion. NE is the average number of
nodes expanded. Time is measured in seconds. PGE/PGD
is planner grounding enabled/disabled.

ing clustering algorithms that favors tightly compact sets of
clusters that are well separated.

After we compute the set of scenarios, we automatically
perform several tasks to prepare the scenarios for presen-
tation. First, we separate the predicates in each cluster into
business implications and regular predicates (i.e., the sce-
nario and emerging risk). Second, we identify the leading in-
dicators or the discriminative predicates, i.e., predicates that
appear early on the plans that are part of one scenario but not
other scenarios (i.e., they tend to lead to this scenario and
not others); these are useful to monitor in order to determine
early on whether a scenario is likely to occur. Third, we com-
pute a summary of all plans that are part of the scenario and
present this as a graph to the user. This serves as an explana-
tory tool for the predicates that are presented in each sce-
nario. This graph also shows how the different Mind Maps
are connected with each other through their shared forces.
Figure 3 shows a sample generated scenario and Figure 4 is
the explanation graph for this scenario.

7 Experimental Evaluation
In this section, we evaluate the performance of the planner,
quality of the clusters measured by the size of the cluster,
and how informative each cluster is, measured by number of
predicates and business implications. In the next section, we
provide details on the pilot deployment of the Scenario Plan-
ning Adviser (SPA) tool, feedback and the lessons learned in
interacting with the domain experts as well as the business
users. All our experiments were run on a 16-core 2.93 GHz
Intel(R) Xeon(R) ES-2680 processor with 264 GB RAM.

As mentioned above, we use the top-k planner (Riabov,
Sohrabi, and Udrea 2014). To the best of our knowledge, it
is the only available planner for the top-k planning problem,
the problem of finding many top-quality plans. The planner
is based on a heuristic search algorithm K∗ (Aljazzar and
Leue 2011) and implements the LM-cut heuristic (Helmert
and Domshlak 2009). It can also be run with the planner
grounding step being disabled. However, this has a negative
effect on the informativeness of the heuristic in use.

We create four sets of planning tasks. The first one is cre-
ated using the full set of available Mind Maps (670 transi-
tions overall) and a full set of 112 possible goals. The sec-
ond one is created by taking a subset of Mind Maps, result-
ing in 403 overall transitions and 65 possible goals. To es-
timate the grounding influence on the overall performance,
the last two sets mirror the first two, but are (partially) pre-

grounded. We refer to these four sets as “lifted all”, “lifted
small”, “grounded all”, and “grounded small”, respectively.
To control the task difficulty, we vary the number of obser-
vations that are chosen randomly from the set of possible
observations. For each number of observations chosen, we
create 10 instances with that number of observations.

To explore the best planner configuration, we compare
the planning performance of the two methods of translating
the Mind Maps as well as the use of a heuristic and plan-
ner grounding. We use “lifted small” and “grounded small”
with both the blind and the LM-cut heuristic (Helmert and
Domshlak 2009), and with and without planner grounding.
We use 10 problems of each observation set size, up to 45
observations, resulting in 150 problems overall. The timeout
was set to 30 minutes. The summary of the result is shown
in Table 1. Average time and node expansion are computed
only on problems solved by all eight configurations.

The results show that while the use of LM-cut leads to
exploring fewer nodes in search, especially with planner
grounding enabled, the reduction in search effort does not
compensate for the high computation time. Thus, the plan-
ner performance worsened, leading to solving fewer prob-
lems. Comparing the “lifted” to the “grounded” formulation,
the heuristic informativeness does not sufficiently improve
when shifting to a partially grounded representation and not
enforcing a full grounding by the planner. When a grounding
is enforced by the planner, the heuristic greatly reduces the
number of node expansions, but even such dramatic reduc-
tion is not sufficient to compensate for the considerably in-
creased computation time. Thus, in what follows, we restrict
our attention to the lifted representation and to the blind
heuristic, without enforcing full grounding by the planner.

Next, we present the evaluation of SPA performance on
“lifted small” and “lifted all”. The results is shown in Ta-
ble 2. The objective of this experiment is to show how the
planning task size influences the performance and the re-
sulting clusters. All entries show averages over 10 tasks of
the same size. We use the same numbers of observations for
both methods. The columns present the planner performance
in seconds, number of observations, “Obs”, number of unex-
plained/discarded observations in the optimal plan, “Disc”,
number of actions in the optimal plan, “Act”, and number
of scenarios generated “Scen”. We also show the average
and standard deviation for the number of members of each
cluster, number of predicates, and number of business impli-
cations, “Bis goals”, in each scenario. The timeout was set
to 30 minutes. Problems with 30 or more observations had
timeouts and are not reported here.

The results show that planner performance depends not
only on the Mind Maps size, but also on the number of ob-
servations. Further, as the number of observations grow, not
only the planner’s run-time performance worsens, but also
the number of scenarios increase, and the number of plans
in the scenario decrease. On the other hand, as the number
of observations increase, the number of predicates in a sce-
nario and the number of business implications decrease, but
not consistently; moreover, the low standard deviation in-
dicates that the clusters are balanced and informative. Also
note that, given the number of plans to cluster, cluster sizes



#Obs
Lifted Small Lifted All

Time Average Number of Members Predicates Bis goals Time Average Number of Members Predicates Bis goals
(sec) Disc Act Scen Avg Std Avg Std Avg Std (sec) Disc Act Scen Avg Std Avg Std Avg Std

1 0.01 0.0 4.7 2.70 105.10 92.6 12.00 2.9 4.70 1.1 0.02 0.0 4.7 2.00 125.00 80.9 11.10 2.4 4.80 1.5
2 0.01 0.5 6.7 3.00 102.40 90.9 11.70 3.0 3.70 1.3 0.02 0.3 7.0 2.70 100.00 68.4 11.30 2.7 5.00 1.6
4 0.02 1.6 10.7 2.90 99.60 88.0 12.50 3.2 3.40 1.3 0.04 1.5 10.8 2.30 114.60 87.7 10.60 1.9 4.90 1.0
8 0.10 4.4 16.7 4.20 75.50 64.0 10.80 2.6 2.60 1.0 0.15 3.7 18.0 3.40 85.40 75.4 9.90 2.1 4.60 1.4

10 0.22 5.0 22.5 5.10 56.90 63.3 8.50 2.0 2.70 1.0 0.37 5.1 20.7 4.40 70.00 60.4 8.10 2.2 3.70 1.3
12 0.48 5.9 27.4 5.20 55.60 50.9 9.80 1.5 2.10 0.9 1.09 5.4 27.7 5.20 52.90 57.5 8.70 1.6 3.40 0.6
15 1.41 8.6 30.1 5.10 56.20 53.6 11.00 1.6 2.00 0.8 2.63 8.1 30.4 4.50 67.30 54.5 10.50 1.8 4.10 1.4
18 2.59 9.9 35.1 5.20 56.30 65.3 8.70 1.3 2.00 0.9 5.44 9.4 34.9 4.90 62.30 71.6 7.70 1.6 4.10 0.8
20 22.24 11.4 39.9 5.30 55.70 54.4 9.40 1.4 1.80 0.7 65.62 10.7 40.6 4.56 63.22 43.6 11.22 1.4 3.22 0.4
23 74.66 14.5 40.2 4.80 64.10 50.3 9.30 1.4 2.00 0.6 198.28 14.4 40.8 4.63 63.00 51.9 9.25 1.6 4.63 0.9
26 88.85 16.9 46.1 5.25 57.88 58.5 9.38 1.1 2.13 1.0 236.34 17.0 43.8 5.17 51.83 39.2 7.83 1.2 3.50 1.0

Table 2: Performance comparison as we increase the number of observations and the number of Mind Maps.

depend on the requested maximal number of clusters, a pa-
rameter of the clustering algorithm. This parameter was set
to find between two and seven clusters. Decreasing the max
cluster limit, increases the member size, as well as the num-
ber of predicates and bis implications in each scenario.

8 Pilot Deployment and User Feedback
The SPA tool was evaluated in a pilot deployment with sev-
eral teams of business users at IBM, whose responsibilities
included risk management within their business area. For
those teams, SPA was introduced together with the new sce-
nario planning process; hence, there was no pre-automation
baseline available to compare against. In addition, the func-
tionality provided by the overall tool is not easily repro-
ducible, due to the broad news analysis the tool performs.

The Mind Maps were developed over the course of three
months by one enterprise risk management expert work-
ing with an assistant and in consultation with other ex-
perts. While Mind Maps in general can be in any form, we
briefly educated the domain experts to provide structured
Mind Maps as defined in Definition 1. The pilot deployment
featured the set we referred to above as “lifted all”. Addi-
tionally, the end users (i.e., the analysts) provided us with a
list of possible keywords, organizations of interest, key peo-
ple, key topics, and were able to pick the relevant key risk
drivers when we presented them with the summary of rele-
vant news and RSS publications. Note that while the Q&A
process takes some time, the domain experts had received
education and guidance and were aware of the process. We
also actively work on enhancing their experience by provid-
ing several tools to assist them. For example, we recently
proposed an approach to suggest a list of important people,
organizations and sources to the domain experts using the
Wikidata Query Service (Sohrabi et al. 2017).

The tool was configured with the help of end users. In
particular, configuration values were identified based on the
generated results quality and the assessment by end users.
Specifically, the number of plans to find, minimum and max-
imum number of clusters, and action costs were assigned by
exploring various values. In addition, we have tried various
syntax-based distance metrics, the one presented in the paper
produced the best scenarios according to the domain experts.

The teams have universally found the tool easy to use and
navigate. Although no detailed feedback was collected for

each scenario, the teams have reported that approximately
80% of generated scenarios had identified the implications
that directly or indirectly affect the business. By design, the
tool aims at helping the business users to think outside the
box and is expected to generate some irrelevant scenarios,
among others. Judging by the provided comments, the teams
whose business is affected by frequent political, regulatory,
and economic change have found the tool more useful than
those operating under relatively stable conditions. In addi-
tion, the teams found the explanation graph, a visualization
of a set of plans, essential to the adoption of the tool. They
believe that the explanation graph “demystifies” the tool by
providing them with an explanation of why they are pre-
sented with a particular scenario. This is critical for the busi-
ness users or policy-makers who would be basing their de-
cisions on the generated scenarios.

In working with the domain experts and users from the
start of the pilot deployment, we learned several lessons,
which can be applicable to other settings: (1) the users are
interested in using AI planning techniques, but expressing
their problems in PDDL or another existing formal planning
language is a barrier. To overcome this, we asked the experts
to provide their knowledge in the form of structured Mind
Maps, which we then translated to the planning task. Fur-
ther, different experts may want to work on different parts
of the problem; hence, rather than having one huge Mind
Map, we allow them to provide a set of Mind Maps, each of
which can be developed separately, by different experts; (2)
the users are interested in being presented with several sce-
narios rather than one, along with the explanation of each
scenario. This captures the possible alternatives rather than
a precise prediction, analogous to a generation of a multiple
plans rather than a single (optimal) plan; (3) the users are
interested in personalized scenarios, specific to their partic-
ular use case. To address that we consider the Mind Maps
as a template and allow personalization of the scenarios by
incorporating additional information provided by the Force
Impact. Hence, computing a set of high-quality plans for dif-
ferent use cases results in different set of plans, which in turn
results in different scenarios.

9 Related Work and Summary
There exist a body of work on the plan recognition prob-
lem (e.g., (Ramı́rez and Geffner 2009; Zhuo, Yang, and



Kambhampati 2012)). However, most approaches assume
that the observations are perfect, mainly because raw data
is not taken as input, but analyzed and transformed into ob-
servations in pre-processing (Sukthankar et al. 2014). Also,
plan libraries as input are mostly assumed (e.g., (Gold-
man, Geib, and Miller 1999)), whereas we use planning
tools. Furthermore, there is a body of work on learning
the domain knowledge (e.g., (Yang, Wu, and Jiang 2007;
Zhuo, Nguyen, and Kambhampati 2013)). Our focus in ad-
dressing knowledge engineering challenges was to trans-
form one form of knowledge, expressed in Mind Maps, into
another form that is accessible by automated planners, sim-
ilarly to the work of Sohrabi, Riabov, and Udrea (2017),
adapting it to scenario planning. However, learning can be
beneficial in domains in which plan traces are available.

In this paper, we applied AI planning techniques to a
novel application, scenario planning for enterprise risk man-
agement. We addressed knowledge engineering challenges
of encoding the domain knowledge from domain experts.
To this end, we designed a tool, Scenario Planning Adviser
(SPA), that takes as input raw data, news and social media
posts, and interacts with the business user to obtain observa-
tions. SPA also allows uploading Mind Maps, a way of ex-
pressing the domain knowledge by the domain experts, and
obtains additional information based on these Mind Maps
from an automatically generated questionnaire. SPA then
generates scenarios by first finding a many quality plans and
then clustering the found plans into a small set of clusters,
to be consumable by a human user. The SPA system is in pi-
lot deployment with business users. The feedback received
so far has been positive and confirms the benefits of our ap-
proach to the scenario generation application.

In the future, we intend to support durations on Mind Map
transitions. Another aspect is conjunctions and disjunctions
between outgoing transitions, that might correspond to mul-
tiple effects and non-deterministic effects, respectively.
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