
Efficient High Quality Plan Exploration for Network Security

Anton V. Riabov and Shirin Sohrabi and Octavian Udrea and Oktie Hassanzadeh
IBM T.J. Watson Research Center

1101 Kitchawan Rd, Yorktown Heights, NY 10598, USA
{riabov, ssohrab, udrea, hassanzadeh}@us.ibm.com

Abstract
We consider the application of planning in network
security. In this application, plans represent possi-
ble attacks on the network, and network administra-
tors need tools that would allow them to explore the
plan space quickly and efficiently. Multiple aspects
of this problem require generating and inspecting
more than one plan, primarily due to limited infor-
mation about the possible actions of the attacker,
and a variety of possible attacks. This problem can
be modeled as diverse planning, with the caveat that
high quality (or, equivalently, low cost) plans must
be prioritized, since those plans typically represent
the most efficient attacks that are of highest impor-
tance to the administrators. Hence, there is a need
for a systematic approach to finding such plans. We
propose a new technique based on a top-k planner
that finds k optimal or near-optimal plans, followed
by plan consolidation, for generating diverse high
quality plans. Comparing to existing diverse plan-
ners, we show that it is able to meet the high qual-
ity and plan diversity requirements efficiently, and
therefore we can recommend it for this application.

1 Introduction
Multiple security-related challenges arising in administration
and management of computer networks have been success-
fully tackled using classical planning in prototypes and pro-
duction systems. In this paper, we propose to address a spe-
cific requirement of finding relevant but sufficiently differ-
ent attacks, which we believe to be common for all proposed
planning-based systems, by developing an efficient technique
that allowsA∗-based planners to produce a diverse set of high
quality plans.

In network security applications of planning, domain mod-
els are developed by capturing and formalizing expert knowl-
edge. Domain models include the actions of attacker, such as
network scans and exploitation of vulnerabilities to infect net-
work hosts with malware, possibly complemented by actions
representing actions of users that expose new vulnerabilities,
actions that help account for network connectivity, installed
software, operating system and other configuration [Boddy et
al., 2005; Roberts et al., 2011; Lucngeli et al., 2010]. The

individual valid plans then represent possible attacks, and the
space of valid plans represents attack graphs, therefore allow-
ing network administrators to explore and analyze the space
of possible attacks, for example, by altering goals or initial
state configuration.

Another class of domain models, which uses planning-
based diagnosis techniques [Sohrabi et al., 2010], allows aug-
menting the planning problem with a sequence of ambiguous
and unreliable observations from network monitoring sys-
tems to generate plans of attacks that may be in progress
[Sohrabi et al., 2013].

Planners can indeed be very effective in network secu-
rity applications, even compared to more traditional pene-
tration testing tools and analysis techniques based on attack
graphs, because planning provides efficient search in huge at-
tack graphs induced by domain models that are exceedingly
small by comparison, and therefore are significantly easier to
design and maintain [Lucngeli et al., 2010].

Nevertheless, this still leaves open the question of selecting
the relevant portions of attack graphs to bring to the atten-
tion of the network administrators (or automated penetration
testing tools). One of the planning systems discussed above
proposed generating top high quality plans to address this is-
sue [Sohrabi et al., 2013]. While finding multiple high quality
plans is beneficial and necessary in order to focus the inves-
tigation on the efficient and hence relevant attacks, by itself
it is not sufficient. If generated attack plans are too similar to
each other in actions and states, administrators can be easily
overwhelmed with small variations of the same pattern. In ad-
dition, planner performance is important for timely response
to ongoing attacks.

We believe this combination of requirements has not been
addressed in prior work. The problem we are considering is
closely related to diverse planning, but plans found by the di-
verse planners are not necessarily all of high quality [Nguyen
et al., 2012; Sroka and Long, 2012]. On the other hand, top-k
planning [Riabov et al., 2014] provides an efficient technique
for finding a set of top quality plans, by applying K∗ algo-
rithm [Aljazzar and Leue, 2011] to augment A∗ search, but it
does not guarantee plan diversity.

We propose to address these challenges by using a top-k
planner to create a large set of high-quality plans, followed by
clustering based on a similarity metric, and finally outputting
a set of cluster representatives that are both high quality and

diverse. In the rest of the paper, we briefly describe the top-
k planning and clustering techniques we use, and evaluate
the end-to-end performance of our approach, comparing to
existing diverse planners and a top-k planner.

2 Network Security: Domain Models
Rather than develop a new domain model for the network se-
curity application, our goal is to show via experiments how
our approach can benefit previously proposed models. We
generated planning task instances for two classes of domain
models: attack graphs, as discussed in [Boddy et al., 2005;
Roberts et al., 2011; Lucngeli et al., 2010] and hypothesis
exploration based on unreliable observations and a model of
a dynamical system, as described in [Sohrabi et al., 2013].

For the attack graph model, we followed an approach sim-
ilar to [Lucngeli et al., 2010]. We obtained a list of products
and known vulnerabilities from The U.S. National Vulnera-
bility Database, allowing us to define up to 3554 network ex-
ploit actions, each annotated with low, medium or high com-
plexity, and configure the hosts with a selection from 21107
products. We also generated a random hierarchical network
topology of up to 2000 nodes on up to 150 networks separated
by firewalls, with several VPN connections cutting across
the hierarchy. We defined the following actions: connect-tcp,
which checked network connectivity between hosts, exploit-
net-V, which represented remote exploitation of a known vul-
nerability V for a compatible product, with higher costs for
more complex attacks, and exploit-local-V, with similarly as-
signed costs, which was invoked after the remote exploita-
tion succeeded, to achieve escalation of privilege and fully
compromise the host and use it for subsequent attacks. All
network hosts, including gateway nodes between networks,
were configured to have at least one locally exploitable prod-
uct and one remotely exploitable product, which ensured a
large number of possible attacks, and therefore a large space
of plans for exploration.

Our hypothesis exploration domain model, following
[Sohrabi et al., 2013], uses two manually defined state tran-
sition systems: a malware detection system with 25 states de-
scribed in that work, and an extended version of it represent-
ing two hosts and interactions between them, with 221 states
total. To generate problem instances, we generated random
observation sequences of varying length, and combined them
with the transition systems. In this case, the planning task
models the states of the host, transitions between states, and
the corresponding observations from network traffic monitor-
ing sensors, with the goal of generating hypotheses explain-
ing the observations. For example, a malware infection state
of a host can have a corresponding observation of download-
ing an executable file, and a possible transition to a command-
and-control rendezvous state which has a new Internet Re-
lay Chat (IRC) session observation. The executable download
may also be observable in other states, such as remote soft-
ware installation by administrator, which makes this observa-
tion ambiguous, also making multiple hypotheses necessary.
Note that due to this structure of the model, and since the
same transition system state can be reached through differ-
ent explanation paths, one state of the modeled system corre-

2 20 14
s

t
18 8 11

9 10 25

 15 20 12 7

 13 27 14 15

t

s

 (a) (b)

Figure 1: (a) shows a graph with source node s and terminal node t
with edge lengths specified on the edges; (b) shows the shortest path in
bold arrows and the second shortest path in dashed arrows.

sponds to many possible planning states. Consequently, this
model generates a very large space of plans, as in the attack
graph domain.

3 Finding Diverse High Quality Plans
To measure plan quality, we assume that action costs can be
assigned such that cost of a plan is the sum of costs of actions
included in the plan, and the lower the cost of the plan, the
higher its quality. The first step of our approach is to generate
a fixed number k of lowest-cost plans, and then cluster similar
plans based on a plan similarity metric. We require k to be
sufficiently large, so that when similar plans are clustered, we
obtain the necessary number of clusters. Finally, one lowest-
cost representative plan from each cluster is selected to form
the resulting set of diverse high quality plans.

In this section, we first introduce what we call a top-k plan-
ning problem. Then, we describe how to compute top-k plans
using a k shortest paths algorithm. Finally we describe the
clustering algorithm and the plan similarity metric used for
clustering.

3.1 Tok-k Planning Problem
Definition 1 We define the top-k planning problem as R =
(F,A, I,G, k), where F is a finite set of fluent symbols, A
is a set of actions with non-negative costs, I ⊆ F defines
the initial state, G ⊆ F defines the goal state, and k is the
number of plans to find. LetR′ = (F,A, I,G) be the planning
problem with action costs that has n plans (n can be infinite).
The set of plans Π = {π1, ..., πm}, where m = k if k ≤ n,
m = n otherwise, is a solution to R if an only if each πi ∈ Π
is a plan for R′ and there does not exists a plan π′ for R′,
π′ /∈ Π, and a plan πi ∈ Π such that cost(π′) < cost(πi) .

The solution to the top-k planning problem is a set of low-
cost plans, and are not necessary all optimal. If k is less than
the number of optimal plans for R′, then Π will contain all
of the optimal plans. However, if k is larger than the number
of optimal plans for R′ then Π will contain some suboptimal
plans in addition to all optimal plans. Also note that if k > n,
Π contains all n valid plans, otherwise it contains k plans

3.2 Background: K Shortest Paths Problem
K shortest paths problem is an extension of the shortest path
problem where in addition of finding one shortest path, we
need to find a set of paths that represent the k shortest paths
[Hoffman and Pavley, 1959].

42 33 23 7

t

s55 56 36 22

 (a) (b)
 37 19 11 0

3

4 1

10 6

9

Figure 2: (a) shows the shortest path tree T and distance to destination
t; (b) shows the side edges with their associated detour cost.

The following is a formal definition taken from Eppstein
[Eppstein, 1998].

Definition 2 (K Shortest Path Problem) k shortest path
problem is defined as 4-tuple Q = (G, s, t, k), where G =
(V,E) is a graph with a finite set of n nodes (or vertices)
V and a finite set of m edges E, s is the source node, t is
the destination node, and k is the number of shortest paths
to find. Each edge e ∈ E has a length (or weight or cost),
which is denoted by l(e). The length of a path p, l(p), is con-
sequently defined by the sum of its edge lengths. The distance
d(u, v) for any pair of nodes u and v ∈ V is the length of
the shortest path between the two nodes. Hence, d(s, t) is the
length of the shortest path for the problem Q. Let n = size
of the set of all s-t paths in graph G. Then, the set of paths
P = {p1, p2, ..., pm}, m = k if k ≤ n, m = n otherwise, is
the solution to the k shortest paths problem Q if and only if
each pi ∈ P , is a s-t path in graph G and there does not exist
a s-t path p′ in graph G, p′ /∈ P and a path pi ∈ P such that
l(p′) < l(pi) .

Note that if k > n, then P contains all s-t paths, otherwise
P contains k shortest paths from node s to node t. It follows
from the definition that at least one shortest path with length
d(s, t) is in the set P if m > 0. Figure 1 shows an example
from [Eppstein, 1998] to illustrate the terminology. The dis-
tance d(s, t) = 55, is the length of the shortest path shown in
bold; the length of the second shortest path is 58.

The K∗ algorithm [Aljazzar and Leue, 2011] is an im-
proved variant of the Eppstein’s k shortest paths algo-
rithm [Eppstein, 1998] and hence uses many of the same con-
cepts as in the Eppstein’s algorithm (which we refer to as EA).
Here, we first outline the EA algorithm, and then discuss K∗.

Given a k shortest paths problem Q, the EA algorithm first
computes a single-destination shortest path tree with t as the
destination (or the reversed single-source shortest path tree)
by applying Dijkstra’s algorithm on G. The edges in the re-
sulting shortest path tree, T are called the tree edges while
all the missing edges (i.e., the edges in G− T) are called the
sidetrack edges. Each edge in G is assigned a number that
measure the detour cost of taking that edge. Consequently,
the detour cost of the tree edges is 0, while the detour cost
of the sidetrack edges is greater than 0. Figure 2 shows the
shortest path tree T and the sidetrack edges along with their
detour cost of our earlier example.

The EA algorithm then constructs a complex data structure
called path graph P (G) that stores the all paths in G, where

each node in represents a sidetrack edge. This is followed by
the use of Dijkstra search on P (G) to extract the k shortest
paths. An important property is that given a sequence of side-
track edges representing a path in P (G) and the shortest path
tree T , it is possible to uniquely construct a s-t path in G.
This can be done by using sub-paths from T to connect the
endpoints of sidetrack edges. Given this property and the spe-
cial structure of P (G), it is ensured that the i-th shortest path
in P (G) results in a sidetrack sequence which can be mapped
to the i-th shortest path in G. By construction, P (G) pro-
vides a heap-ordered enumeration of all paths in G, and since
every node of P (G) has limited out-degree (at most 4), the
complexity of enumerating paths in increasing cost order is
bounded. The worst-case runtime complexity of the EA algo-
rithm isO(m+n log n+kn). This complexity bound depends
on a compact representation of the resulting k paths, and can
be exceeded if the paths are written by enumerating edges.

Although EA could be used for top-k planning, the K∗
algorithm is preferable, because it does not require the com-
plete state transition graph G. Instead, K∗ can create G dy-
namically using A∗ search, driven by a heuristic toward the
goal, an approach commonly used in planners (e.g., Fast-
Downward [Helmert, 2006]). In short, the K∗ algorithm
works as follows. The first step is to apply a forward A∗
search to construct a portion of graph G. The second step
is suspending A∗ search, updating P (G) similarly to EA, to
include nodes and sidetracks discovered by A∗, applying Di-
jkstra to P (G) to extract solution paths, and resuming the A∗
search. The use of A∗ search to dynamically expand G en-
ables the use of heuristic search and also allows extraction
of the solution paths before G is fully explored. While K∗
algorithm has the same worst-case complexity as the EA al-
gorithm, it has better performance in practice because unlike
the EA algorithm, K∗ does not require the graph G to be
completely defined when the search starts.

3.3 Top-k Planning Using K∗

In the implementation of the planning algorithm we follow
the algorithm structure imposed by K∗, as follows.

0. Read planning problem R = (F , A, I, G, k).
1. Expand the state graph G by using A∗

and applying actions to compatible states
starting from I, and until G is reached.

2. Continue applying A∗ to expand G
until 20% increase in links or nodes.

3. Update P (G) based on new links in G.
4. Apply Dijkstra step

to extract the next path from P (G).
5. If k paths are found
6. Goto step 10.
7. If K∗ scheduling condition is reached
8. Goto step 2.
9. Goto step 4.
10. Return at most k plans (one plan per path).

We expect that with some work this approach can be in-
tegrated into planners that use A∗ search, enabling those
planners to solve top-k problems. Also note that the sound-
ness and completeness of planning follows directly from the
soundness and completeness of the K∗ algorithm.

3.4 Clustering Algorithm
Given the set of top-k plans, in this section, we will discuss
how to group the similar plans using clustering techniques. In
practice, many of the generated top-k plans are only slightly
different from each other. That is, they do seem to be du-
plicates of each other, except for one or more states or ac-
tions that are different. This may be the result of the underlin-
ing AI planner which tries to generate all alternative low-cost
plans, and while this generates distinct low-cost plans, it does
not always mean that these plans are significantly different
from each other. Hence, instead of presenting large number
of plans, some of which could be very similar to each other,
with the help of clustering, we can present clusters of plans,
where each cluster can be replaced by its representative plan.

Clustering has been a topic of interest in several areas
of research within several communities such as Information
Retrieval (e.g, [Aslam et al., 2004]), machine learning, and
Data Management as part of the data cleaning process (e.g.,
[Hassanzadeh and Miller, 2009]). Many survey papers ex-
ist on clustering algorithms (e.g, [Xu and Wunsch, 2005;
Filippone et al., 2008]). While most, if not all, clustering al-
gorithms share a common goal of creating clusters that min-
imize the intra-cluster distance (distance between members
of the same clusters) and maximize the inter-cluster distance
(distance between members of different clusters), the assump-
tions and inputs for these clustering algorithm are often dif-
ferent. For example, several of these approaches assume some
given input parameters such as the number of clusters or a
cluster diameter. To consolidate similar plans produced by the
top-k planner, we apply a clustering algorithm that must sat-
isfy the requirements stated below. One representative plan
from each cluster is selected to be included in the final set of
diverse plans.

Definition 3 (Clustering Requirements) Given a set of
k sorted plans, Π, create clusters of plans C = {c1, ..., co}
where the value of o is unknown ahead of time. Further, for
each two clusters c, c′ ∈ C, c ∩ c′ = ∅ and ∀π ∈ Π, ∃c ∈ C
such that π ∈ c. Hence, the clusters are disjoint and each
plan belongs to one cluster.

We propose the use of the following three non-hierarchical
clustering algorithms. Each of these algorithms require visit-
ing each plan only once in order to decide to which cluster
they belong to; hence, are called single-pass algorithms.

Center-Link
Center-Link clustering algorithm iterates over the top-k plans
starting with the lowest-cost plan. For each plan, it computes
the similarity to a representative of each cluster created in pre-
vious iterations. If there are no clusters that have a representa-
tive similar to the plan (i.e., their similarity score is above the
threshold θ), a new cluster is created and the plan becomes the
representative of that cluster. Otherwise the plan is added to
the first cluster whose cluster representative is similar to this
plan. Cluster representatives are chosen to be the lowest-cost
plans in each cluster. Due to the order of iteration, stating
from the lowest-cost plans, the cluster representative is al-
ways the first added plan to the cluster. This algorithm is sim-
ilar to the CENTER algorithm in [Hassanzadeh and Miller,

2009], however, the sorted input is different (i.e., plans, as
opposed to records in a database). The Center-Link algorithm
could result in small number of similarity comparisons be-
cause each plan is only compared to the representative plan
of each cluster.

Single-Link
Single-Link clustering algorithm is an extension of the
Center-Link algorithm, where instead of comparing only with
the representative of a cluster, each plan is compared with all
members of a cluster, and if the plan is found to be similar to
any of the members of that cluster, then it is assigned to that
cluster. Single-Link algorithm is a non-hierarchical variation
of single-linkage algorithm [Xu and Wunsch, 2005]; the node
joins a cluster as long as there is a single link with one of the
members of the clusters. This algorithm could result in the
smallest number of clusters.

Average-Link
Average-Link algorithm is a simple extension of the Single-
Link algorithm, where each plan is compared with all the
members of a cluster and the average similarity score is used
to determine if the plan belong to that cluster or not. This
algorithm results in many similarity comparisons, and could
result in large number of clusters. Note, Average-Link clus-
tering is a non-hierarchical variant of hierarchical average-
linkage clustering [Xu and Wunsch, 2005]. In the experi-
ments we show we have used this algorithm because it pro-
duced more clusters and more diverse plans.

3.5 Plan Similarity Metric
Finding if two plans are similar has been studied mainly under
two categories: plan stability for replanning (e.g., [Fox et al.,
2006]) and finding diverse plans (e.g., [Nguyen et al., 2012]).
We follow prior work on diverse planning and compute plan
similarity during clustering as Jaccard similarity between ac-
tions of the plan, thereby grouping similar plans together and
increasing the diversity between the clusters.

Jaccard similarity is a score between 0 and 1, which mea-
sures the ratio of the number of actions that appear in both
plans to the total number of actions appearing in at least one
plan. Let A(π) be the set of actions in π, then:

simJaccard(π, π
′) =

|A(π) ∩A(π′)|
|A(π) ∪A(π′)| (1)

We note that Jaccard similarity is the inverse of the plan
distance defined in [Nguyen et al., 2012].

4 Experimental Evaluation
To compare planner performance, we configure the planners
so that approximately 50 diverse plans are generated. We
measure plan diversity using stability and uniqueness metrics.
We also compare plan cost and planning time.

We measure stability and uniqueness using the follow-
ing formula from [Roberts et al., 2014]. Note, we modi-
fied these formula to make it a number between 0 and 1.
Let Π = {π1, ..., πm} be the set of plans. If |Π| = 1,
Diversitystability(Π) = 1, and Diversityuniqueness(Π) = 1, oth-
erwise for |Π| ≥ 1:

Domain Top-k + clustering LPG-d Div
Time #Plans Cost D U Time #Plans Cost D U Time #Plans Cost D U

Malware-5 1 50 1502 0.51 1 1 10 3513 0.80 1 1 9 1789 0.36 0.37
Malware-10 1 50 1586 0.41 0.99 59 10 8426 0.84 1 1 5 3861 0.44 0.54
Malware-20 3 50 1492 0.20 0.99 384 10 16520 0.87 1 1 6 7262 0.46 0.53
Malware2-5 1 50 2005 0.66 0.96 - - - - - 1 3.2 1454 0.40 0.98
Malware2-10 2 50 2441 0.47 1 - - - - - 5 6 6092 0.68 0.97
Malware2-20 5 50 2105 0.28 1 - - - - - 3 6.8 4910 0.35 0.95
AttackGraph-1 3 50 54 0.59 1 1.89 2 59 0.95 0.43 - - - - -
AttackGraph-2 194 50 65 0.30 1 - - - - - - - - - -

Table 1: Comparisons of planning time, plan diversity and average plan cost.

Diversitystability(Π) =

∑
πi,πj∈Π,i 6=j

[1− simJaccard(πi, πj)]

|Π| × (|Π| − 1)
(2)

Diversityuniqueness(Π) =

∑
πi,πj∈Π,i 6=j

{
0 if πi \ πj = ∅
1 otherwise

|Π| × (|Π| − 1)
(3)

4.1 Experiment Results
We use a family of malware detection planning problems de-
scribed in [Sohrabi et al., 2013]. We varied the size of the
problem by changing the number of observations, with Mal-
ware2 problem also supporting more system states. All plan-
ning problems share a planning domain description contain-
ing 6 actions and 8 predicates. In this domain, low costs were
assigned to actions used in perfect explanations of observa-
tions, and high costs to actions representing exceptions, such
as unexplained observations or state transitions without ob-
servations. For the attack graph model we are using the ap-
proach discussed in domain model section.

Table 1 summarizes the experiment results with two do-
main models. In all experiments we used a dual 16-core
2.70 GHz Intel(R) Xeon(R) E5-2680 processor with 256 GB
RAM.The results presented in each row, corresponding to a
planning domain. For Malware domains, the results are aver-
ages over 5 instances of each size. We have terminated plan-
ners after the time limit of 30 minutes was reached.

We compare the performance to two planning systems,
LPG-d [Nguyen et al., 2012] and Div [Roberts et al., 2014],
with our system that combines top-k and clustering.For both
planners we have set the number of plans to 10, with the intent
to produce a small number of attack scenarios to review.

The column Time in Table 1 contains planning time in sec-
onds. The #Plans column contains the number of plans pro-
duced. The Cost column is the average cost of those plans.
The D column is the average Diversitystability(Π), and the U
column is the average Diversityuniqueness(Π). The closer these
two diversity metrics are to 1, the more different are the plans.

We have selected LPG-d because it creates plans that max-
imize diversity, and that was confirmed by our experiments.
Even though we have set parameter d to 0.1, to be equal to θ
for our clustering algorithm, Diversitystability(Π) is above 0.8
in all experiments for this planner.

Div places greater emphasis on plan cost, and indeed aver-
age plan cost is lower than for LPG-d. However it sometimes
produces multiple copies of the same plan, resulting in very
poor diversity metrics. There are no AttackGraph results for
Div, due to a crash without an error message.

The Top-k planner produced 1000 plans, which were later
clustered. The number of clusters is determined by the sim-
ilarity threshold θ, which was set to a low value 0.1 to en-
sure sufficient number of clusters, further bounded at maxi-
mum 50. It was the only planner that could solve the largest
AttackGraph-2 instance with 4000 vulnerabilities and 1950
hosts. Overall this simple approach performs well in these
domains in terms of planning time, and plan quality, but gen-
erally has lower plan stability metric that measures plan diver-
sity. This is expected since we are trading off plan diversity
for plan quality. In the network application, prioritizing cost is
a desirable property because it eliminates from consideration
attacks that are different from previously considered, but too
inefficient to be carried out in practice. Of course, the qual-
ity and the applicability of the obtained solutions ultimately
depends on knowledge engineering, and specifically on how
action costs map to relevant attacks.

5 Related Work

Generating a plan set rather than just one plan has been
a subject of interest in several recent papers in the con-
text of generating diverse plans (e.g., [Roberts et al., 2014;
Coman and Muñoz-Avila, 2011]). Several plan distance mea-
sures most of which are domain-independent have been pro-
posed to both guide the search and evaluate the set of di-
verse of plans (e.g., [Srivastava et al., 2007; Bryce, 2014]).
Given some partial preferences or multiple dimensions of
quality, such as cost or time, the problem becomes a multi-
objective optimization problem where diverse plans should
form a Pareto-optimal set [Nguyen et al., 2012]. Sroka and
Long 2012 argue that the previous work will not find good-
quality plans as they are more focused on finding diverse
plans since it is “easier to find diverse sets father away from
optimal”. The work we presented in this paper falls in be-
tween. While we are given some notion of quality as mea-
sured by cost, the cost function itself is imperfect, and we are
not given other objective functions besides costs. So finding
one min-cost plan is not enough, nor is finding a diverse set
of plans without taking into consideration the cost function.
Hence, finding a set of diverse low-cost plans is required.

6 Conclusions and Future Work
In this paper we propose to address the plan space explo-
ration problem arising in network security applications by
generating high-quality diverse plans. We find that the exist-
ing work on diverse planning does not address this problem
directly, and we propose a new approach specifically for this
task, by combining top-k planning and plan clustering. Ex-
perimental evaluation shows that our new technique provides
significant improvements in both plan quality and planning
time. Although the primary focus of this work is to facilitate
planning-assisted attack graph exploration carried out by net-
work administrators, the techniques we are using are domain-
independent, and future work may involve studying the ap-
plicability and the potential benefits of this approach in other
applications, as well as integration with network security sys-
tems and evaluation via user studies.

References
[Aljazzar and Leue, 2011] Husain Aljazzar and Stefan Leue.

K*: A heuristic search algorithm for finding the k shortest
paths. Artificial Intelligence, 175(18):2129–2154, Decem-
ber 2011.

[Aslam et al., 2004] J. A. Aslam, E. Pelekhov, and D. Rus.
The Star Clustering Algorithm For Static And Dynamic
Information Organization. Journal of Graph Algorithms
and Applications, 8(1):95–129, 2004.

[Boddy et al., 2005] Mark S. Boddy, Johnathan Gohde,
Thomas Haigh, and Steven A. Harp. Course of action
generation for cyber security using classical planning. In
Proceedings of the 15th International Conference on Au-
tomated Planning and Scheduling (ICAPS), pages 12–21,
2005.

[Bryce, 2014] Daniel Bryce. Landmark-based plan distance
measures for diverse planning. In Proceedings of the
24th International Conference on Automated Planning
and Scheduling (ICAPS), pages 56–64, 2014.

[Coman and Muñoz-Avila, 2011] Alexandra Coman and
Hector Muñoz-Avila. Generating diverse plans using
quantitative and qualitative plan distance metrics. In
Proceedings of the 25th National Conference on Artificial
Intelligence (AAAI), pages 946–951, 2011.

[Eppstein, 1998] David Eppstein. Finding the k shortest
paths. SIAM Journal on Computing, 28(2):652–673, 1998.

[Filippone et al., 2008] M. Filippone, F. Camastra, F. Ma-
sulli, and S. Rovetta. A Survey of Kernel and Spectral
Methods for Clustering. Pattern Recognition, 41(1):176–
190, 2008.

[Fox et al., 2006] Maria Fox, Alfonso Gerevini, Derek Long,
and Ivan Serina. Plan stability: Replanning versus plan re-
pair. In Proceedings of the 16th International Conference
on Automated Planning and Scheduling (ICAPS), pages
212–221, 2006.

[Hassanzadeh and Miller, 2009] Oktie Hassanzadeh and
Renée J. Miller. Creating Probabilistic Databases from
Duplicated Data. VLDB Journal, 18(5):1141–1166, 2009.

[Helmert, 2006] Malte Helmert. The Fast Downward plan-
ning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[Hoffman and Pavley, 1959] Walter Hoffman and Richard
Pavley. A method for the solution of the nth best path
problem. Journal of the ACM, 6(4):506–514, 1959.

[Lucngeli et al., 2010] Jorge Lucngeli, Carlos Sarraute, and
Gerardo Richarte. Attack planning in the real world. In
Workshop on Intelligent Security (SecArt 2010), 2010.

[Nguyen et al., 2012] Tuan Anh Nguyen, Minh Binh Do, Al-
fonso Gerevini, Ivan Serina, Biplav Srivastava, and Sub-
barao Kambhampati. Generating diverse plans to handle
unknown and partially known user preferences. Artificial
Intelligence, 190:1–31, 2012.

[Riabov et al., 2014] Anton Riabov, Shirin Sohrabi, and Oc-
tavian Udrea. New algorithms for the top-k planning prob-
lem. In Proceedings of the Scheduling and Planning Appli-
cations woRKshop (SPARK) at the 24th International Con-
ference on Automated Planning and Scheduling (ICAPS),
pages 10–16, 2014.

[Roberts et al., 2011] M. Roberts, A. Howe, I. Ray, M. Ur-
banska, Z. S. Byrne, and J. M. Weidert. Personalized vul-
nerability analysis through automated planning. In Work-
ing Notes of IJCAI 2011, Workshop Security and Artificial
Intelligence (SecArt-11), 2011.

[Roberts et al., 2014] Mark Roberts, Adele E. Howe, and In-
drajit Ray. Evaluating diversity in classical planning. In
Proceedings of the 24th International Conference on Auto-
mated Planning and Scheduling (ICAPS), pages 253–261,
2014.

[Sohrabi et al., 2010] Shirin Sohrabi, Jorge Baier, and Sheila
McIlraith. Diagnosis as planning revisited. In Proceed-
ings of the 12th International Conference on the Principles
of Knowledge Representation and Reasoning (KR), pages
26–36, 2010.

[Sohrabi et al., 2013] Shirin Sohrabi, Octavian Udrea, and
Anton Riabov. Hypothesis exploration for malware detec-
tion using planning. In Proceedings of the 27th National
Conference on Artificial Intelligence (AAAI), pages 883–
889, 2013.

[Srivastava et al., 2007] Biplav Srivastava, Tuan Anh
Nguyen, Alfonso Gerevini, Subbarao Kambhampati,
Minh Binh Do, and Ivan Serina. Domain independent
approaches for finding diverse plans. In Proceedings
of the 20th International Joint Conference on Artificial
Intelligence (IJCAI), pages 2016–2022, 2007.

[Sroka and Long, 2012] Michal Sroka and Derek Long. Ex-
ploring metric sensitivity of planners for generation of
pareto frontiers. In Proceedings of the 6th Starting AI Re-
searchers’ Symposium (STAIRS), pages 306–317, 2012.

[Xu and Wunsch, 2005] R. Xu and I. Wunsch. Survey of
Clustering Algorithms. IEEE Transactions on Neural Net-
works, 16(3):645–678, 2005.

