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Abstract
In many applications of artificial intelligence, such
as intensive care delivery or malware detection, the
state of an entity of interest is only indirectly as-
sessed via observations, which can indicate mul-
tiple states. An observation is typically obtained
through analysis of data; however, it is usually im-
possible to obtain all observations due to limited
resources to analyze the data and its fast accumula-
tion. An agent’s goal is to direct the entity of inter-
est to a desired state with high probability with an
uncertain starting point and imperfect observational
capabilities. Thus, the agent’s plan must optimally
balance further analysis of data to reveal observa-
tions (reduce uncertainty) and actions that change
the entity’s state. In this paper we examine this
problem, which we call the investigation planning
in data analysis. We propose a novel hypothesis-
based formulation of the problem. To this end, we
use an AI planner that computes highly likely hy-
potheses from which we form a belief-state that
estimates the current state and then choose a set
of “promising” analyses. Due to the large space
of belief-states, we apply a limited look-ahead on-
line approach. We experimentally evaluate our ap-
proach over a large benchmark problem set.

1 Introduction
In many applications of artificial intelligence, the state of an
entity or a system of interest is not directly assessed. Instead,
we have available some indicators of one or more states asso-
ciated with the entity – we call these indicators observations.
In practice, an observation is obtained through data analysis
of data, e.g., comparing medical record of a patient to a large
database. It is usually impossible to analyze all available data
because of limited resources and time, and fast accumulation
of data. Hence, we must deal with partial observability of
possibly unreliable sequence of observations and may need
to revisit past data with more in-depth analyses to obtain ad-
ditional observations. Observations that are already obtained
by analyzing data are called revealed and the ones that could
be obtained from the data but are yet to be revealed are called
hidden. In this scenario, the agent’s goal is to move the entity

of interest to a desired state. To achieve this goal, the agent’s
plan must balance actions that reduce uncertainty with those
that directly affect the state of the entity of interest.

Let us consider the following example for intensive care
delivery. Suppose that we are given a simplified model of
a patient consisting of states, transitions between states, and
many-to-many correspondence between states and observ-
ables, shown in Fig. 1(a). This model can be specified by a
domain expert (i.e., doctors) or could be learned given enough
data (e.g., by process mining). The rounded rectangles are
states, the callouts are observations associated with these
states, and the arrows are possible transitions. For example,
from Highrisk state, the patient may get to the Lowrisk, In-
fection, Infarction, or the DCI (Delayed Cerebral Ischemia)
state. The observations are obtained based on the raw data
captured by sensors as well as other measurements and com-
putations provided by doctors and nurses. For example, given
the patient’s heart rate, blood pressure, and temperature, a
SIRS score is computed, producing an integer from 0 to 4.
Similarly, a result of CT Scan, or a lab test will indicate other
possible observations about the patient.

For the model of Fig. 1(a), consider the following sequence
of revealed observations: HH2, HRVL. This indicates the pa-
tient has a Hunt and Hess score of 2 (a score classifying the
severity of subarachnoid hemorrhage), followed by low heart
rate variability. We call a sequence of revealed observations a
trace. Based on the trace, the agent has to re-construct the
current state of the patient and determine whether to ana-
lyze past data to reveal more observations. For example, the
agent may check if HH3 is hidden between HH2 and HRVL,
which may indicate the patient went through the Highrisk
state. Once the agent has a good idea about the state of the
patient, it may then decide how to treat the patient – with the
goal of bringing the patient to a Discharged state. That is, it
must decide whether to intervene and change the current state
of the entity, and how. There is a natural trade-off between an-
alyzing more data to reveal more observations (called a test
action) in order to better understand the entity’s current state
and taking actions to change the entity’s state to a desired one
(called a preventive action). We call this problem investiga-
tion planning.

While the example in Fig. 1(a) is simplified, most real-
world problems face the issue of deciding on a course of ac-
tion with imperfect information. Finite resources typically
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Figure 1 (a): Intensive care model Figure 1 (b): Hypotheses for trace HH2, HRVL

prevent us from executing all possible analyses on all data
in real time. For example, in intensive care delivery, we
may execute simple electrocardiogram (ECG) analyses such
as computing the heart rate in real time, but we typically
run complex analyses such as computing the heart rate vari-
ability only during the course of an investigation into a spe-
cific suspected condition. Observations coming from non-
computational sources have similar characteristics – for ex-
ample, blood tests provide observations that are generally
useful, but specialized (retrospective) tests may be required to
look for markers of a suspected condition. The requirement
for revealing missed observations retrospectively before de-
ciding on a course of action is even more evident in domains
such as malware detection, where simple analyses such as
malware signature detection can be performed in real time for
all network traffic, but complex analyses such as deep con-
tent inspection are performed retrospectively only on a small
subset of traffic. However, existing approaches to partial ob-
servability cannot handle this requirement. In particular, a
newly obtained observation in Partially Observable Markov
Decision Processes (POMDPs) always indicates the current
state, but in our problem, it may indicate a past state and this
makes it impossible to update the belief-state as POMDPs do
(for other reasons, see the Related Work). As a further source
of complexity in certain domains such as cybersecurity, we
are often faced with adversarial behavior that adapts to our
real-time monitoring, in which case many possible analyses
are relegated to post-incident forensic investigations.

In this paper, we consider generating a number of se-
quences of states for a given trace, which we call hypotheses,
in order to re-construct the current state and determine which
observations to look for at which position. For the above ex-
ample, some possible hypotheses are given in Fig. 1(b). For
example, the hypothesis (4) suggests that HH2 was observed
at state Lowrisk and HRVL at Highrisk (in this case, for ex-
ample, we say HRVL is explained by Highrisk). Given this
hypothesis, for instance, the agent may consider checking if
PupilDilated is hidden in data between HH2 and HRVL to see
whether the patient went through Infarction.

We use an AI planner to compute a finite number of hy-
potheses that “explain the trace well”. Using these, we define
belief-state which approximates the entity’s current state. The
goal is to reach a belief-state where we “believe” the entity
is in a desired state, while minimizing the total cost of tests
and preventive actions taken. Since tests have different pos-
sible outcomes, we formulate this problem as finding an op-
timal conditional plan that reaches a desired belief-state with
the minimum cost. Note, the set of belief-states that can be
reached from an initial belief-state by simulating the effects

of test and preventive actions is exponential in the number of
actions that can be executed. To overcome this problem, we
propose a limited look-ahead online approach.

The main contributions of this paper are: (1) proposing a
novel hypothesis-based formulation of the investigation plan-
ning problem; (2) proposing a new scheme to generate hy-
potheses and their probabilities; (3) implementing a limited
look-ahead online approach; (4) evaluating the approach by
empirically analyzing how different ways to generate hy-
potheses and algorithm parameters impact its performance.
We evaluated the approach over a large benchmark problem
set and our experiments show that the plans generated by our
system lead to a good state in more than 90% of cases while
minimizing cost, and plans for complex problems can be con-
structed in seconds.

2 Problem Formulation
Let S be the set of states of an entity of interest. We assume
a classification of S into two sets, good and bad states de-
noted as Sg and Sb, respectively. State is only indirectly ob-
served via observations. Let O be the set of all observables.
Transition law τ : S × S → [0, 1] gives the probability dis-
tribution that governs the state transition and observation law
ω : S × O → [0, 1] governs which observation is observed
in a state. When the entity enters a state s, an observation
o is generated (but may be hidden) with probability ω(s, o)
and the entity makes a transition to a state t with probability
τ(s, t).

We assume that the entity already made a number of tran-
sitions, and only some of the observations are revealed. We
assume that the last observation in data is revealed and that
the agent does not know how many observations are hidden.
Let φ0 = [o1, ..., on], where oi ∈ O, denote the sequence of
initially revealed observations (also called initial trace).

For a trace φ, a test action is written as a pair (i, o) where
i is a natural number less than the length of φ and o ∈ O.
This means past data is analyzed to determine if the obser-
vation o is hidden between the ith and (i+ 1)st observations
in φ. If o is hidden in the data, outcome of the test is true
and o is added to φ between the two observations. Otherwise,
the outcome is false, which results in no change in the trace
but we know o is not hidden between the two observations.
The set of all test actions is determined by the trace φ and O.
A preventive action is a function from S to S, which means
we assume that their effects are deterministic and known. We
make this assumption to simplify the modeling aspects of the
problem definition; since our algorithms already take into ac-
count non-deterministic effects of test actions, an extension



to non-deterministic preventive actions is straightforward. In
our example, there can be a preventive action prescribing an
antibiotic, which moves a patient from Infection to Highrisk.
However, preventive actions may have side effects as they are
conditioned on the state of the entity. Let Ap denote the set
of preventive actions.

Each action has a positive cost. In applications, a clinical
action has an economic cost, and an analytical action can have
a computational cost. Let c denote the cost function that maps
an action to its cost. We assume the entity does not make a
transition while the agent plans and takes actions, thus, fur-
ther transitions are made only by the agent taking preventive
actions. The objective of our problem is to hypothesize the
state of the entity, refine the belief by performing test actions,
and create a plan of recovery (preventive actions). Because
the effect of a preventive action is conditioned on the current
state of the entity, it is important for the agent to get a better
understanding about the current state by using test actions to
reveal observations in data. Since the agent wants to mini-
mize the total cost of actions taken, there is a natural tradeoff
between test and preventive actions.

Next, we formally define a few terms.

Definition 1 (Belief-state) Given a set of states S, a belief-
state is defined as a probability distribution over S.

We compute belief-states by generating hypotheses simi-
lar to those in Fig. 1(b). Note that in Fig. 1(b), the state
sequences are aligned with the observations, representing
which observation is generated from which state. For a given
trace, we call a sequence of states along with a correspon-
dence between states in the sequence and observations in the
trace, a hypothesis. For the purpose of this paper, we assume
the existence of a hypothesis generator.

Definition 2 (Hypothesis Generator) Given S,O, τ , and ω,
hypothesis generator H receives a trace φ, and a number K
as an input and outputs at most K highly likely hypotheses
along with their probabilities, where S is the set of states, O
is the set of observables, and τ and ω are the transition and
observation laws.

Going back to our example, consider the following proba-
bilities for the four hypotheses: 0.4, 0.3, 0.2, 0.1. Then, the
belief-state has probabilities 0.5, 0.3, 0.2 on Highrisk, DCI,
Infection, respectively. Now, if a test action is taken and its
outcome is true, then the trace is updated to insert the new
observation. Hypotheses and their probabilities are then re-
computed for the new trace. In the case of false outcome,
the belief-state remains unchanged. If a preventive action is
taken, the belief-state is updated depending on its effect. For
example, consider a preventive action that prescribes an an-
tibiotic which moves a patient from Infection to Highrisk but
causes no change at other states. If the action is taken at the
belief-state {Highrisk:0.5, DCI:0.3, Infection:0.2}, then the
updated belief-state is {Highrisk:0.7, DCI:0.3}.

Definition 3 (Goal Belief-State) A goal belief-state is de-
fined as a belief-state whose probability of being in bad states
is less than a pre-specified threshold δ.

Definition 4 (Investigation Planning) An investigation
planning problem is defined as P = (Sg, Sb, O, τ, ω,A

p,
c, φ0,H), where Sg and Sb are the set of good and bad
states, O is the set of observables, τ and ω are the transition
and observation laws, Ap is the set of preventive actions,
c is the cost function, φ0 is the initial trace, and H is the
hypothesis generator. The solution to P is a conditional plan
that reaches a goal belief-state with minimum cost.

Note, the set of test actions is not included in the above
definition as it is constructed from O and the trace, and is not
known a priori, a major reason for why defining a classical
planning problem is difficult for this problem.

3 Investigation Planning
Our approach to investigation planning for data analysis is
modeled as a three component system (Fig. 2(a)) that in-
cludes: (1) Data analysis applications running on middleware
platforms transform input raw data into observation traces.
For instance, to obtain a HRVL (low heart rate variability) ob-
servation, a signal processing application has to analyze the
ECG signal from the patient, eliminate abnormal beats, and
determine the distance between peaks. (2) The hypothesis
generator produces a set of at most K highly likely hypothe-
ses and their probabilities. (3) The investigation planner pro-
duces test and preventive actions that change (submit, can-
cel or modify) the set of data analysis applications. In this
section, we describe the hypothesis generator and our online
algorithm for investigation planning.

3.1 Hypothesis Generation
We generate hypotheses by extending the work in [Sohrabi et
al., 2013]. Their approach generates a number of “high qual-
ity” hypotheses given a similar state transition and observa-
tion model (without probabilities) by formulating the hypoth-
esis generation problem as a planning problem. To evaluate
quality of a hypothesis, their approach assigns a heuristically
determined cost (not to be confused with the cost of actions,
in this subsection cost is only to evaluate hypotheses) to each
transition and each observation explained by a state. On the
other hand, in order to produce K highly likely hypotheses
and their probabilities, we assign costs based on the transi-
tion and observation laws τ and ω. For a hypothesis h for
a trace φ, our costs are defined as follows: −log(τ(s, s′))
for each state transition s → s’ in h; −log(ω(s, o)) for each
observation o in φ explained by a state s in h; a fixed cost
−log(Pnoisy) for each unexplained observation o in φ, where
Pnoisy is the estimated probability of having a noisy ob-
servation (in practice, observations resulting from analyses
may be unreliable due to missing or noisy data). With this
cost assignment, the sum of all costs for state transitions in
the hypothesis h is −log(P (h)), and the sum of all costs
for explained and unexplained observations in the trace is
−log(P (φ|h)). Therefore, the total cost of the hypothesis is
c(h) = −log(P (h))−log(P (φ|h)) = −log(P (h)×P (φ|h)).
Therefore, according to Bayes’ formula, P (h|φ) ∝ e−c(h).
Since we limit the set of hypotheses to K highly likely hy-
potheses, we re-normalize to obtain ∀i ∈ [1,K], P (hi|φ) ≈
e−c(hi)/(

∑K
i=1 e

−c(hi)).
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Figure 2 (a): System architecture Figure 2 (b): Example scenario tree

3.2 Online Planning Algorithm
Our algorithm constructs a scenario tree starting from the
belief-state computed over the initial trace φ0. Each node
in the scenario tree contains three elements: (i) the trace φ in
that node; (ii) the belief-state B ; and (iii) the list E of test
actions that have been previously considered on the path to
the node. Essentially, the scenario tree simulates the possible
effects of applying test and preventive actions, and the infor-
mation is used to determine the best action in the root node.

Algorithm 1 Construction of the scenario tree
Input: Root node R = (φ0,B0, {}), depth limit D, threshold δ,

hypothesis count K
Output: Scenario tree with the given root

1: add all leaf nodes in tree rooted at R to queue F
2: while F 6= ∅ do
3: remove first node n = (φ,B, E) from F
4: let An be the set of applicable actions in n (possibly heuris-

tically determined)
5: for all a ∈ An do
6: if a is preventive action then
7: B1 ← apply a to belief state B
8: create node (φ,B1, E) as a child of n and add to F
9: else

10: a = (i, o) {is a testing action}
11: φ′ ← insert o at position i in φ
12: B2 ← apply hypothesis generator H to φ′ for K hy-

potheses
13: create node (φ′,B2, E ∪ {a}) as child of n and add to

F {true outcome node}
14: create node (φ,B, E ∪{a}) as child of n and add to F

{false outcome node}
15: end if
16: end for
17: remove from F all nodes of depth D
18: remove from F all nodes with probability of being in a bad

state less than δ
19: end while
20: return scenario tree rooted at R

The scenario tree is constructed as follows (outlined in Al-
gorithm 1). We start by constructing the root (φ0,B0, {}),
where B0 is the belief-state obtained by applying the hypoth-
esis generator H to φ0, and add it to the frontier F . We
continue by iteratively extracting nodes from the frontier F
whose belief-state is not a goal belief-state and creating its
child nodes. Given a frontier node n = (φ,B, E), we first

select a set of applicable actions. In general, this set is com-
prised of all preventive and test actions not been previously
executed. Practically, since this is the branching factor of the
tree, it is desirable to heuristically restrict this set to actions
that are highly likely to lead to a goal belief-state.

We continue by creating child nodes of n for each action.
For each preventive action ap, we create a child node n′ =
(φ,B1, E), where the belief-state B1 is obtained by applying
ap to the belief-state B. For each test action at = (i, o),
we create two child nodes for its true and false outcomes,
respectively: the node nat

true = (φ′,B2, E∪{at}) where φ′ is
the trace φ with the observation o inserted between positions
i and i+ 1 and B2 is obtained by applying H to φ′; the node
nat

false = (φ,B, E∪{at}) where the trace and belief-state are
the same as the parent n, but we record that at has been tried
to avoid running it again.

Fig. 2(b) illustrates the trade-off between test and preven-
tive actions. Assume that the preventive action DCISurgery
transitions the patient from DCI to Highrisk, from Highrisk
to Icudeath, and keeps every other state the same; also as-
sume that Highrisk is a good state and every other state in
the example is bad. In addition, assume that the observa-
tion ClinicalObs+ can be obtained by a retrospective anal-
ysis of the data from patient monitors for a given time in-
terval. The root (node (1)) contains the initial trace {HH2,
HRVL} and an arbitrary belief-state is given. The test ac-
tion (1, ClinicalObs+) may have two outcomes (nodes (2) and
(3)). The true outcome inserts ClinicalObs+ in the trace and
correspondingly makes DCI the most likely state of the pa-
tient. From this state, applying DCISurgery leads us to a goal
belief-state (node (5)) if we assume a threshold δ = 0.1. On
the other hand, applying DCISurgery without disambiguating
the state of the patient shows a 0.67 probability of ending up
in Icudeath (node (4)).

To obtain the best action at the root, we start by computing
a cost for each leaf node that estimates how far we are from
a goal belief-state. A simple way is to assign a value propor-
tional to the total probability of being in a bad state according
to the belief-state of that node. Then we perform backward
induction, assuming for test actions that true and false out-
comes are equally likely. In the example in Fig. 2(b), let us
assume that the cost of the (1, ClinicalObs+) is 0.1, the cost
of DCISurgery is 1. We can compute the cost of node (5) as
0.05 – the probability of being in a bad state. The running
cost of the DCISurgery action in node (2) is 1+ 0.05 = 1.05.



The cost of node (3) is 0.33 and that of node (4) is 0.67.
As a result, the running cost of DCISurgery at the root is
1.67 and the running cost of (1, ClinicalObs+) at the root is
0.1+ 0.5× 0.33+ 0.5× 1.05 = 0.7675. As a result, the best
action at the root is the test action. Note that the execution
of DCISurgery as the second action is conditioned on the test
action (1, ClinicalObs+) having a true outcome. Also, note
that the subtree of the scenario tree that selects only the best
action in every node form a conditional investigation plan.
In the example, the conditional plan is the subtree formed of
nodes (1), (2), (3), (5).

Since we execute the hypothesis generator H in almost all
nodes (except false test action outcome nodes), in practice
we must limit the tree size and we do this by limiting both
the depth and the branching factor of the tree. To limit the
branching factor, we heuristically select a subset of actions
likely to lead to a goal belief-state in each node. Given a
hypothesis h, an example heuristic selects test actions associ-
ated with any state that does not explain any observation in φ.
For example, in hypothesis (2) in Fig. 1(b), it selects test ac-
tions for every observation associated with Highrisk between
positions 1 and 2 in the trace (e.g., (1, SIRS2)). If any such
test is successful, the probability of hypothesis (2) will in-
crease. We compared this heuristic with others and experi-
mentally determined that combining this heuristic with limit-
ing the number of testing and preventive actions considered
in each node yields the best trade-offs between performance
criteria discussed in the next section.

Algorithm 2 Online investigation planning algorithm
Input: Initial trace φ0, depth limitD, threshold δ, hypothesis count

K
1: B0 ← apply hypothesis generatorH to φ0 for K hypotheses
2: R← (φ0,B0, {})
3: construct and solve scenario tree rooted at R with depth D,

threshold δ, K hypotheses
4: execute the best action at R
5: loop
6: wait until trace φ0 is updated to new trace φ
7: if there exists child n of R with trace φ then
8: R← n
9: if probability of bad state in R less than δ then

10: exit {completed}
11: end if
12: construct and solve scenario tree rooted at R with D, δ,

K
13: execute the best action at R
14: else
15: restart online planning algorithm with φ, D, δ, K
16: end if
17: end loop

Limiting the depth of the tree is essentially a limited look-
ahead approach, since not all leaf nodes at a fixed depth will
be a goal belief-state. Thus, our algorithm is an online plan-
ning algorithm (Algorithm 2) that repeats these steps until
reaching a goal belief-state: (1) construct the scenario tree
to a fixed depth (2) execute the best action in the root node
(3) based on the outcome determine the new root (should be a
child of the current root) (4) expand the new tree an additional
level. Note that depending on how many ambiguous (associ-

ated with multiple states) observations there are, it may not
be possible to construct a complete scenario tree since we do
not know how many observations are hidden.

4 Experimental Evaluation
We had three main objectives: (i) show that our algorithm
takes the entity to a good state with high probability and has
good performance, (ii) examine how different ways to com-
pute belief-state affect the performance, and (iii) evaluate the
impact of parameters.

We generated a large benchmark set of problems with vary-
ing complexity and size, using a similar technique as de-
scribed in [Sohrabi et al., 2013]. We started with two do-
main models provided by domain experts for intensive care
delivery and malware detection. The intensive care delivery
model was highly connected and with a lot of ambiguous ob-
servations. In the malware detection model we could observe
distinct infection and exploitation stages, each consisting of
multiple states with distinct observations. We then generated
a number of finite state machines (FSMs) with similar con-
nectivity characteristics (as well as low connectivity) of var-
ied sizes. For each FSM, we generated a set of observables
and many-to-many correspondence between observables and
states like the example in the Introduction; only 40% of the
states are chosen to be good and the rest are bad. This per-
centage is based on the real-world models, for which domain
experts model the bad states in detail, and a few good states
that either lead into the bad states or exhibit similar sets of
observables with bad states and thus have to be distinguished
from the bad states (e.g., in malware detection a machine
crawling the Web has similar observables to an infected ma-
chine). We assigned uniform probabilities to possible state
transitions. For each state, we distributed probability 0.975
uniformly to the associated observables and the remaining
probability 0.025 was uniformly distributed to the other ob-
servables, in order to model noisy observations in applica-
tions. We generated one preventive action for each bad state
and randomly added side effects. We also randomly chose
costs of actions and cost of a test action only depends on
the observation it tests. For each FSM, we generated ground
truths by “walking” through the state transition model accord-
ing to the transition law τ . For each state, we generated ob-
servations according to the observation law ω. For each FSM,
we created 10 traces of length 5, 10, and 20, and in each trace
we randomly revealed 60% of the observations on start, a per-
centage based on the number of observations typically missed
in our real-world scenarios. In the end, we had more than a
thousand distinct problems.

Since there is no existing algorithm applicable to the inves-
tigation planning and in order to evaluate our method to com-
pute a belief-state based on probabilities of hypotheses, we
compared our approach to a version that does not use prob-
abilities. Specifically, this version, which we call the con-
servative approach, uses the hypothesis generator described
in [Sohrabi et al., 2013]; the belief-state is defined as a sub-
set of S, consisting of the last states of generated hypotheses.
We compare the conservative approach to our probabilistic
approach with the threshold δ = 0.1. The first evaluation
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Figure 3: Evaluation of the two approaches with varying number of hypotheses K

criterion is the success rate, i.e., the percentage of cases in
which the entity reached a good state through the investi-
gation plan. We also measured the construction time of the
scenario tree and the total cost of all test and preventive ac-
tions executed (the plan cost). We used a depth limit of 3
for both approaches (Fig. 3). All experiments discussed were
performed on a set of identical 16-core Intel(R) Xeon(R) E7-
8837 CPUs 2.67GHz with 512GB RAM.

Fig. 3 shows the three criteria for the two approaches with
varying number of hypotheses K, because we found that
among the parameters K has the greatest influence. In the
plots, cons and prob stand for the conservative and the prob-
abilistic approach, respectively. In Fig. 3(a), the success rate
of the two approaches are around 90% for all Ks considered,
indicating that when a goal belief-state is reached, the entity
reaches a good state with high probability. Also, the better
success rates of the prob approach imply that the suggested
method to compute belief-states better estimates the state of
the entity. In Fig. 3(b), the average construction time of the
prob approach is approximately 10 seconds for K = 10, im-
plying our algorithm finds a plan to get the entity to a good
state in a short time. Fig. 3 also shows that all criteria increase
withK for both approaches, because larger values ofK mean
more possibilities in the belief-state, hence a better expected
success rate, but also more actions to either narrow the possi-
bilities down (by test actions) or treat them (by preventive ac-
tions). Notice that construction time and plan cost of the cons
approach increase much faster as K increases. The differ-
ence in construction time can be explained by the fact that in
the probabilistic approach we can set a threshold δ, whereas
in the conservative approach the belief-state does not have
probabilities, therefore we have to avoid all bad states.

We also performed a set of experiments where we varied
the depth limit of the scenario tree (the look-ahead) from 2
to 7. We found that the average success rate for K = 10
grows from 87% to 91% from depth 2 to depth 3, but only to
92% for depth 4. Construction time is on average 4, 10, and
45 seconds for depths 2, 3, and 4, respectively. We did not
see a significant success rate improvement for depths larger
than 4, although the construction time was greatly increased.

5 Related Work

Planning under partial observability is commonly addressed
by probabilistic approaches through Hidden Markov Mod-
els (HMM) and Partially Observable Markov Decision Pro-
cesses (POMDP) (e.g.,[Hauskrecht and Fraser, 2000]) or non-
probabilistic approaches through contingent planning (e.g.,
[Maliah et al., 2014; Muise et al., 2014]). However, several
properties of the investigation planning problem present chal-
lenges. Observations linked to past states can arrive late and
out of order, and any number of state transitions or observa-
tions can be hidden between any two revealed observations.
The belief state following an execution of a test action is not
determined by computation applied to a previous belief-state,
and instead requires a call to an external hypothesis genera-
tor. Test actions are sensing actions, but describing the set of
test actions is challenging because it depends on the current
trace and the set of observations. Under these considerations,
applying existing methods becomes non-trivial.

From another perspective, the problem can be thought sim-
ilar in spirit to the problem of active diagnosis (e.g., [Sampath
et al., 1998; Haar et al., 2013]) as we need to decide how to
refine the set of hypotheses by running tests. However, the
work in active diagnosis is focused on the context of fault di-
agnosis and the problem of diagnosability. Moreover, preven-
tive actions are not considered, and our definition of test ac-
tions is most closely related to truth test in [McIlraith, 1994]
rather than test actions in dynamic observers [Cassez and Tri-
pakis, 2008]. Active probing is also relevant [Rish et al.,
2005], but we use heuristics to restrict the set of tests rather
than inferences in Baysian networks. The problem also has
similarities to plan recognition, but there are important dif-
ferences in definitions and formulations (our observations do
not uniquely identify state, we do not require plan libraries,
and the set of possible goals is not given as input).

Our hypotheses-based approach is similar to diagnosis
(e.g., [Sampath et al., 1995; Cordier and Thiébaux, 1994])
and plan recognition (e.g., [Sukthankar et al., 2014]). Plan-
ning has been applied to these problems (e.g., [Ramı́rez and
Geffner, 2009; Sohrabi et al., 2010]). We assume hypothe-
ses are generated following [Sohrabi et al., 2013], but our
framework allows alternatives that agree with our definitions.
In particular, previous work on diagnosis has some similar
features to the problem we discuss. [Sampath et al., 1995]



proposed a discrete-event system approach to the problem of
failure diagnosis where the system’s behavior was described
as a finite state machine. [Cordier and Thiébaux, 1994] con-
sidered event-based diagnosis of dynamic systems with am-
biguous observations.

In [Sohrabi et al., 2010], it was suggested that planning
could be used to deal with incomplete information and rich
preferences, and also for efficient generation of diagnoses.
[Sohrabi et al., 2011] identified a correspondence between
planning and generating preferred explanations for observed
behavior with respect to a model of a dynamic system, and
[Sohrabi et al., 2013] used the correspondence to generate
hypothesis for malware detection application. In this paper,
we use the planning approach in [Sohrabi et al., 2013] to gen-
erate diagnoses for a patient based on which we find optimal
tests and preventive actions.

[McIlraith, 1994] introduced a situation calculus frame-
work for a general diagnostic problem including testing and
repair and [McIlraith and Scherl, 2000] also defined a situ-
ation calculus that includes detailed definitions for different
kinds of testing actions. However, the applications motivat-
ing this work allow more specific definitions of testing and
repair (which we call prevention) than the ones in the situa-
tion calculus. Those definitions help us formulate a planning
problem that unifies diagnosis, testing, and prevention for the
applications, to which we can apply existing planning meth-
ods and heuristics. [Schumann et al., 2010] defined a notion
of definitely discriminating test (DDT) and discussed how to
find a DDT with the minimum cost using the techniques from
knowledge compilation and satisfiability (SAT), but did not
considered repairing.

6 Conclusion
In this paper we introduced the problem of investigation plan-
ning for data analysis inspired from real-world scenarios. We
proposed a novel hypothesis-based formulation of this prob-
lem, proposed a new way to generate hypotheses and their
probabilities, and provided an online limited look-ahead algo-
rithm to cost-optimally achieve a desired state with high like-
lihood. Our approach addresses the problem of planning with
hypotheses based on unreliable observations revealed by test-
ing actions, not previously studied in related work. Our ex-
periments over an extensive set of benchmark problems show
that our system achieves goals with a success rate around 90%
in seconds.

There are several directions to expand our approach to bet-
ter support real-world scenarios. First, we would like to con-
sider more expressive action definitions. For testing actions,
duration is a very important practical consideration; often we
do not have the luxury to execute testing actions for an ex-
tended period of time before we must decide on a preventive
action. Second, we would like to complement our online al-
gorithm with learning. In particular, in this paper we have
considered true and false outcomes of a testing action equally
likely; however, the true probability of a true or false out-
come can be learned over time, which is particularly useful
for actions that have low true outcome probability (e.g., med-
ical tests for very rare conditions). Finally, we would like to

expand the set of action types to include for instance actions
that suggest changes to the model to better explain observed
traces.
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