
The 25th International Joint Conference on 
Artificial Intelligence 

 

 

 

 

 

 

 

 

	

	

Proceedings of the IJCAI 2016 Workshop - Closing the 
Cognitive Loop: 3rd Workshop on Knowledge, Data, and 

Systems for Cognitive Computing  
 

 

Edited by: 
Kartik Talamadupula, Shirin Sohrabi, Murray S. Campbell  

 

New York, USA, July 11, 2016  



 

Organising Committee 
Kartik Talamadupula,  IBM, USA 

Shirin Sohrabi, IBM, USA 

Murray S. Campbell, IBM, USA 

 

Program Committee 
J. Benton, NASA Ames Research Center 

Gordon Briggs, Naval Research Laboratory 

Minh Do, NASA Ames Research Center 

Scott Friedman, SIFT 

Robert Goldman, SIFT 

Yuheng Hu, Univ. of Illinois Chicago 

Udayan Khurana, IBM Research 

Andrey Kolobov, Microsoft Research 

Janusz Marecki, Google DeepMind 

Martin Michalowski, Adventium Labs 

Srinivasan Parthasarathy, IBM Research 

Anton V. Riabov, IBM Research 

Stephanie Rosenthal, Carnegie Mellon University 

Francesca Rossi, Univ. of Padova / IBM Research 

Siddharth Srivastava, United Technologies Research Center 

Reza Zafarani, Syracuse University 

Yu Zhang, Arizona State University 



 

Foreword 
As AI techniques are increasingly employed in real world applications 
and scenarios, their contact with humans is ever-increasing. 
Traditionally, most AI systems have tended to exclude humans and the 
problems that accompany interaction with them. This has enabled the 
development of algorithms and even end-to-end systems that produce 
“optimal” artifacts that cut humans completely out of the loop, while 
still operating in a world where the assumption is that humans will be 
the end-consumers of the artifacts produced by such systems. Cognitive 
computing is a new paradigm that seeks to replace that diffidence and 
sometimes even mistrust of humans with a vision of successful 
cooperation and teaming between humans and AI systems and agents. 
The key idea is that human-machine teams can often achieve better 
performance than either alone. To enable this, AI techniques must not 
only accommodate humans in the decision-making loop, but to go to 
great lengths to make such participation as natural and simple as 
possible. Building such cognitive computing systems and agents will 
thus require contributions from many areas of AI as well as related 
fields. We call this process the “closing of the cognitive loop”, and all 
contributions to the workshop are evaluated on their ability to 
demonstrate the successful closing of this loop, or technical extensions 
to existing work that can close it. The aim of this workshop is to bring 
together the work of researchers who are interested in advancing the 
state-of-the-art not merely in their specific sub-field of AI, but are also 
willing to engage in technically directed discussions on what is missing 
currently from their work that is needed to turn it into a deployed service 
that can gainfully interact with humans and the world at large.  
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Abstract

Intelligence analysts gather information from diverse sources
and integrate it into a product that adheres to standards of
quality and provenance, often under time pressures and in-
formation overload. The STRIDER system, which we de-
scribe in this paper, enables collaborative exploration, hy-
pothesis formation, and information fusion from open-source
text. STRIDER presents relevant information to the human an-
alyst in an intuitive fashion and allows various forms of feed-
back through a diagrammatic interface to enhance its under-
standing of shared problem-solving objectives. The human
analyst supports STRIDER’s collaborative workflow by pos-
tulating new entities, events, associations, and hypotheses,
to improve STRIDER’s information extraction and relevance
judgments. STRIDER models the analyst’s objectives and fo-
cus in order to avoid presenting information to the analyst at
the wrong time or in the wrong context, which could be dis-
tracting, or worse, misleading. The technology in STRIDER
is motivated by known human cognitive biases and limita-
tions, and compensates for these to improve the breadth, ef-
ficiency, and objectivity of intelligence analysis. We focus
on two pillars of collaborative cognitive computing: (1) in-
terfacing for bi-directional human-computer interaction that
encodes the analyst’s objectives and presents relevant infor-
mation, and (2) support for mutual decision-making by the
analyst and the system. We present preliminary empirical ev-
idence to demonstrate STRIDER’s effectiveness in extracting
and identifying relevant information.

Introduction
This paper describes progress toward closing the cognitive
loop in an intelligence analysis setting, where analysts face
an information overload and require up-to-date informa-
tion relevant to their intelligence objectives. We describe
our progress toward this goal with our integrated system
STRIDER (Semantic Targeting of Relevant Individuals, Dis-
positions, Events, & Relationships). STRIDER diagram-
matically elicits the intelligence objectives of the analyst,
automatically gathers relevant information from multiple
sources of unstructured text, encodes necessary metadata,
and presents information to analysts when relevant. This
will facilitate compliance with quality and provenance poli-
cies and make analysts more efficient and effective. We de-
scribe STRIDER with respect to two primary pillars of cog-
nitive computing: interfacing and decision support.

Figure 1: STRIDER’s web-based interface.

Interfacing. STRIDER uses link diagrams to display indi-
viduals, events, organizations, and other entities as nodes in
a network, connected by directed semantic links, as shown
in the Figure 1 screenshot. Link diagrams are intuitive in-
telligence analysis interfaces: they do not require technical
expertise with ontologies or knowledge representation, and
other software systems use these representations for intelli-
gence analysis (e.g., Carley et al., 2012, Stasko, Gorg, and
Liu, 2008) and education. STRIDER exploits link diagrams
as an interface for two purposes:

• Soliciting objectives and queries from the analyst.
STRIDER’s link diagrams have unambiguous semantics.
This allows the analyst to extend and manipulate link di-
agrams to perform high-level fusion, specify objectives,
and issue unambiguous directives to STRIDER.

• Presenting relevant information to the analyst when
appropriate. While the analyst reads an article, STRIDER
presents semantic information from that article— as well
as semantically-related information from other sources—
in a link diagram.

STRIDER uses the same diagrammatic interface to present
information and to elicit objectives and feedback. This pro-
vides a shared workspace for the analyst and the machine
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to collaborate and share progress toward the explicit— and
potentially changing— objectives.

Decision support. Just as human collaborators mutually
influence and support each others’ decisions, the analyst’s
actions support STRIDER’s decisions, and STRIDER’s ac-
tions are designed to support the analyst’s decisions. The
influence is bi-directional:

• Analyst influences STRIDER’s decisions by extending or
annotating link diagrams. For instance, STRIDER labels
information gaps in the analyst’s diagram, which become
goals for STRIDER’s information extraction. Also, as the
link diagram grows or otherwise changes, the set of rel-
evant entities and relationships change, which affects the
space of information that STRIDER will decide is relevant
enough to present to the analyst.

• STRIDER influences analyst decisions by presenting rel-
evant information. STRIDER may thereby influence the
analyst’s focus, e.g., toward relevant organizations or
events. Further, since STRIDER maintains provenance ac-
cording to IC directives (Office of the Director of National
Intelligence, 2007a,b), the analyst may expand relevant
entities in the link diagram and peruse other supporting
documents from the corpus.

This mutual influence is desirable from a collaborative
workflow perspective: it allows the analyst to drive the ob-
jectives and utilize their deep intuition and common sense,
while exploiting the machine’s broad parallel processing and
book-keeping. However, if the machine collaborator ex-
tracts erroneous information or displays irrelevant informa-
tion to the analyst, it will distract or mislead the analyst and
thereby derail the workflow. We conducted a pilot study, de-
scribed below, to estimate the precision and completeness of
STRIDER’s information extraction and relevance judgments,
compared to a senior IC analyst, and we present encourag-
ing results. This pilot study precedes more detailed work-
flow analyses of analysts using STRIDER, which is a central
goal of future work, as we describe below.

We continue by outlining the tasks and cognitive biases
relevant to intelligence analysis, which motivate STRIDER’s
complementary cognitive computation. We then describe
the STRIDER architecture and the information flows that
support the pillars of cognitive computation described
above. We present results from a pilot study to demonstrate
STRIDER’s effectiveness on these tasks, and close with a dis-
cussion of relevant and future work.

Strategic Intelligence Analysis
STRIDER’s design is guided by the following guidelines of
strategic intelligence analysis, based on Intelligence Com-
munity Directives (ICDs) (e.g., Office of the Director of Na-
tional Intelligence, 2007a,b, 2009). We describe each guide-
line and STRIDER’s contribution.

Objectivity. Analysis should be free of emotional con-
tent, regard alternative/contrary reports, and acknowledge
developments. STRIDER supports this ideal with objective
information extraction: deep semantic parsing extracts the

semantics reported by the source; its only interpretive bias
is the ontology with which it represents information.

Based on all available sources. Analysis should be in-
formed by all relevant information available, and informa-
tion collectors should address critical gaps. STRIDER ex-
plicitly identifies information gaps (i.e., missing data about
an individual or event) and labels the source coverage (i.e.,
sources of information that support each datum).

Describe quality & reliability of sources. Open-source
references should include metadata such as reference type,
author, publication, title/subject, date, and more. STRIDER
tracks all of these data, down to the specific paragraphs and
character offsets supporting the extracted information.

Distinguish between intelligence & assumptions. As-
sumptions are hypotheses or foundations on which conclu-
sions are reached, so critical assumptions must be explic-
itly identified, and so should indicators that may validate
or invalidate assumptions. STRIDER helps analysts identify
assumptions in their diagrams by automatically identifying
unsupported information and information gaps.

Incorporate alternative analyses & hypotheses. An-
alytic products should identify and qualify alternative hy-
potheses in light of available information and information
gaps. STRIDER’s hypothesis-based organization (described
below) helps analysts segment and compare competing hy-
potheses, which helps compensate for known cognitive lim-
itations (Heuer, 1999, Johnston, 2005).

Timeliness. Analytic products must be disseminated to
customers with enough time to be actionable. The integrated
STRIDER system— from information-gathering to prove-
nance to reporting— aims to improve efficiency.

Approach
Here we outline the general STRIDER approach, start-
ing with STRIDER’s interfacing advances, then describing
supporting technology, and finally describing STRIDER’s
decision-making and how it is affected by the analyst’s ob-
jectives and directives.

Diagrammatic Interfacing
STRIDER uses link diagram interfaces to display informa-
tion and communicate objectives and queries. Figure 1 il-
lustrates the link diagram display of STRIDER, which sup-
ports touch-based, pen-based, or mouse-based HTML5-
enabled devices. Figure 2 illustrates how analysts manip-
ulate STRIDER’s link diagrams to express their intent.

STRIDER’s interface provides an informative, intuitive,
and domain-general shared workspace for human-machine
collaboration, without requiring proficiency with ontologies
or knowledge representation. To be sure, link diagrams are
not as expressive as natural language, but as shown in Fig-
ure 2, annotating a link diagram offers significant flexibility
for expressing objectives and queries. These annotations in
Figure 2 include the following:

• Connecting annotations indicates that STRIDER should
find direct or indirect relationships between existing enti-
ties or events in the link diagram.
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Pattern query annotation.

Broadening annotation.
opponent-of

founder-of
member-of

employed-by
empl

Property query annotation.

Iranian Atomic
Energy Organization

Mostafa Roshan
[Iranian Scientist]

Iran

Iranian Nuclear
Program Natanz Nuclear

Facility

country-of
supports

resource-of

deputy-director

      last name [3]

      nationality [1]
      first name [2]

      title [2]
      birthplace [0]

Israel

Mossad

country-of

program-of

employed-by

employed-by

Connecting annotation.

Q:Person

Figure 2: STRIDER’s link diagram query interface.

• Broadening annotations indicate a broad interest in a spe-
cific entity or event in the diagram, and STRIDER should
extract additional properties and events related to this.

• Pattern query annotations specify a pattern of interest—
including a semantic relationship and one or more un-
known entities— for STRIDER to match in the corpus.

• Property query annotations specify one or more prop-
erties of interest of an existing entity or event in the di-
agram, and STRIDER should extract additional evidence
and/or values to fill that property.

STRIDER’s use of link diagram manipulation to spec-
ify intent is inspired by Visual Query Systems (VQSs) for
databases, web services, and other information repositories
(e.g., Calvanese et al., 2010, Catarci et al., 1997). VQSs
depict the domain of interest and express related requests,
and aim to simplify complex query languages such as SQL
and SPARQL. Direct manipulation (i.e., direct annotating or
altering) of VQSs replaces the less-intuitive command lan-
guage syntax, and benefits the user by reducing barrier of
entry. This increases the ease of learning, providing high
efficiency with experts, and reducing error rate (Ziegler and
Fahnrich, 1988). We believe that STRIDER’s direct diagram
manipulations for querying and issuing directives, as shown
in Figure 2, are novel interactions for specifying intent in a
mixed-initiative information-gathering setting.

Deep Natural Language Understanding
Deep parsing allows STRIDER to extract precise seman-
tics and determine entity types from local lexical context.
STRIDER uses the SPARSER (McDonald, 1996) rule-based,
type-driven semantic parser to read unstructured news arti-
cles. SPARSER’S rules succeed only if the types of the con-
stituents to be composed satisfy the type constraints (i.e.,
value restrictions) specified by the rule. SPARSER compiles
a semantic grammar from a semantic model of the informa-
tion to be analyzed, including a specification of all the ways

Shaul Mofaz, former Chief of Staff of the Israeli Defense Forces, 
head of Kadima, and leader of the opposition in the Knesset, ...

Shaul Mofaz, former Chief of Staff of the Israeli Defense Forces, ...

name0 name1

person2

organization5

organization6

of-organization7

position3

position4

position8

person9

[Shaul Mofaz], former [Chief of Staff] of [the Israeli Defense Forces], 
[head] of [Kadima], and [leader] of the [opposition] in [the Knesset], ...

Figure 3: SPARSER efficiently analyzes text over multiple
passes. Subscripts in the final semantic structure indicates
the order in which SPARSER instantiated the instances.

each of the concepts can be realized in the language of the
domain (e.g., open-source news articles). This ensures that
everything SPARSER is able to parse it can model, and that
every rule in the compiled grammar has an interpretation.

Figure 3 illustrates SPARSER’S scanning algorithm at a
high level. In the first step, SPARSER segments or brack-
ets the text into phrases, referred to as segments. Some of
the segments include both known and unknown words, and
some words are not included in any segment. SPARSER then
detects instances of people, organizations, titles, times, lo-
cations, and more. It links these and other instances to exact
locations in the document corpus to preserve the data source,
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in compliance with U.S. IC directives (e.g., Office of the Di-
rector of National Intelligence, 2007b).

Next, SPARSER uses rules and discourse heuristics to
identify relations that connect the phrase segments. This is
shown in the final SPARSER scan in Figure 3. Unless an es-
tablished grammar and conceptualization applies, SPARSER
relies on a set of textual relations drawn from its standard
syntactic vocabulary. Along with the recognized entities,
these segment-spanning relations represent the meaning of
the text for STRIDER, and they are used to populate larger
content models, as we describe below.

Organizing Competing Hypotheses
Tracking alternative hypotheses— and gathering evidence
for each— is a recurring theme in the intelligence analysis
literature, and is notably difficult for analysts due to cogni-
tive biases and attentional limitations (Heuer, 1999, John-
ston, 2005, Pirolli and Card, 2005).

Traditional link diagrams are flat, in that they conflate po-
tentially disjoint or competing hypotheses into the same net-
work structure. Consequently, they may contain entities and
links that are unrelated, competing, or disjoint. We believe
that competing hypotheses should be displayed and consid-
ered separately to preserve relevance and help the analyst
weigh alternative outcomes.

We have integrated SPIRE inference and knowledge base
(KB) technology— from our ongoing work on parsing
biomedical texts (Friedman et al., 2016)— to house the
STRIDER knowledge base. This allows us to store STRIDER
sub-networks hierarchically in different logical contexts.
Logical contexts support inheritance, as illustrated in Fig-
ure 4: the Core context contains the portion of the network
shared by each competing scenario; and each competing sce-
nario (e.g., Covert and Missile) inherits the Core network,
but none of its sibling networks.

Importantly, the branching of hypotheses can continue be-
yond the single four-way split shown in Figure 4. For in-
stance, SPIRE could support multiple sub-scenarios that in-
herit from the Covert scenario shown here, where each sub-
Covert scenario contains mutually exclusive entities and re-
lations. SPIRE also supports multiple inheritance of con-
texts, so a STRIDER context could inherit from both SOF
and Air hypotheses to describe a joint strike.

Aggregating Semantic Content
STRIDER uses content models to organize, inherit, and pri-
oritize knowledge about different types of entities, events,
and relationships. Content models relate to the object-level
ontology like a database view relates to a database. Each
content model is associated with a category in STRIDER’s
ontology and specifies a partially-ordered list of properties
that may be relevant for analysis. For example, the content
model Person CM in Figure 5, associated with category Per-
son, inherits all properties from the content model Base CM.
STRIDER uses content models to aggregate presentable or
queriable information, to support the following capabilities:

1. Detect gaps in information (i.e., unpopulated properties)
or evidence (i.e., properties without support from the cor-

Core

Networks stored as relational statements Contexts in STRIDER KB
(logical containers with inheritance)

Israel
ORGANIZATION A

PERSON E

director,

PERSON D
[Physicist]

PERSON C
[NuclearScientist]

PERSON A
[Commander]

Iranian 
Missile Forces

fmr commander

PERSON B
[Scientist]

assassinated

assassinated
assassinated,

assassinated,

Israeli Defense 
Forces (IDF)

Jericho III

Submarine-Launched
Cruise Missile

Knesset

Benjamin
Netanyahu

Kadima
(Political Party)

United States
of America

Israel Shimon
Peres

Israeli Defense 
Forces (IDF)

Military
pm

Likud
(Political Party)

member

member

ldr opp

majority

pres

fmr CoS

Shaul
Mofaz

Israeli Defense 
Forces (IDF)

Deployed
Air Forces

Israeli Defense 
Forces (IDF)

Special Forces
(heliborne from ship)

Special Forces
(submarine-borne)

Covert Ops Scenario

Missile Strike Scenario

Air Strike Scenario

Special Forces Scenario

Core

Covert

Missile

Air

SOF

Figure 4: STRIDER records alternative hypotheses in sepa-
rate hierarchical contexts.

pus). This helps the analyst manage uncertainty judg-
ments (Heuer, 1999) and reduces the cognitive cost of
monitoring for information gaps (Pirolli and Card, 2005).

2. Determine whether information should be rendered as a
node (e.g., like the Person CM) or a link (e.g., like the
Assassination CM) in the diagram.

3. Display relevant drill-down data for nodes and links.
4. Specify equivalence classes over categories, to help

STRIDER detect equivalent entities (i.e., references to the
same real-world entity or event) and data conflicts (i.e.,
multiple, inconsistent property values) within and across
information sources.

Similarity-Based Reasoning
Given an entity, individual, or event of interest, STRIDER
uses similarity-based retrieval to identify semantically sim-
ilar analogs from its knowledge base. These retrieved
analogs may help the analyst establish precedence and rea-
son from previous examples to identify possible outcomes.
STRIDER’s similarity-based retrieval feature is motivated by
well-known cognitive biases in memory retrieval and like-
lihood estimation; for instance, people use the sub-optimal
availability strategy to estimate the probability of an event
based on memory retrieval and imagination: assuming that if
an event occurs frequently (and is therefore more probable),
we can recall more instances of it (Heuer, 1999). Unfortu-
nately, the ability to recall instances of an event is influenced
by recency, context, vividness, and many other factors that
are unrelated to the objective probability of an event.

STRIDER uses structure-mapping, a constrained graph-
matching algorithm (e.g. Falkenhainer, Forbus, and Gentner,
1989, Friedman et al., 2016) to compute isomorphisms be-
tween semantic graphs and compute a numerical similarity
rating. Given an entity (e.g., an Iranian nuclear scientist)
in the network, STRIDER computes a subgraph of the entity

 4 



id
name
aliases[ ]
comments[ ]
pictures[ ]

Base CM

startTime
endTime
location[ ]
causedBy[ ]
enables[ ]
...

Event CM
members[ ]
headOf[ ]
...

Org CM

firstName
lastName
sex
dateOfBirth
dateOfDeath
nationalities[ ]
residences[ ]
...

Person CM
performedBy
successOf
collaborators[ ]
otherAttempts[ ]
...

AgentAction CM

source: performedBy
target: agentActedOn

agentActedOn
...

AgentAgentAct CM

...
Assassination CM

startTime
endTime
...

Situation CM

source: positionHolder
target: organization

organization
positionHolder
positionTitle
...

OrgPosition CM

... ...

...

...

...

...

Figure 5: A portion of STRIDER’s content model hierarchy.

from the content model and related events (e.g., the event
describing the scientist’s assassination), and matches it over
the rest of the extracted semantic content in the KB to find
similar analogues.

In this fashion, STRIDER not only builds a semantic net-
work describing an event or topic of interest; it also relates
different event descriptions using structural similarity, find-
ing similar, or related, events and people, which helps to
broaden the analysis.

Influences on STRIDER’s Decision-Making
STRIDER’s decision-making is influenced by the analyst’s
objectives (i.e., the analyst’s annotated link diagram) and the
analyst’s focus (i.e., the article they are reading).

When STRIDER extracts information from text, it uses its
content models to fuse the information into new or exist-
ing nodes or edges in its link diagrams. If the analyst has
manually created nodes or links for entities and events (e.g.,
an individual or an organization), and then these are subse-
quently mentioned in an article, STRIDER will automatically
extend the existing nodes and edges with the new informa-
tion or evidence from the article; otherwise, STRIDER will
generate new nodes and edges in the diagram.

To establish link diagram portions that are relevant to an
article that the analyst is presently reading, STRIDER (1)
parses the article, (2) grounds the entities and events refer-
enced by the article within its link diagram(s), and then (3)
displays entities and events within a specified link distance
from the mentioned events or entities. STRIDER’s distance-
based relevance metric is effective for our current means,
but we believe other methods, such as token-passing spread-
ing activation, will yield better results as STRIDER accrues
dense diagrams, as we describe in future work.

As mentioned above, if STRIDER incorrectly extracts in-
formation and then decides to present it— or if STRIDER
decides to present otherwise irrelevant data— then STRIDER
could distract or mislead the analyst. We next describe a pi-
lot study to evaluate STRIDER’s information extraction and
fusion, compared to a senior intelligence analyst.

Information Extraction Pilot Experiment
We conducted a pilot experiment to assess STRIDER’s abil-
ity to produce report-ready diagrams to aide a human ana-
lyst collaborator. In this experiment, a U.S. IC analyst con-
sultant used a third-party diagram tool (i.e., not STRIDER)
to build a link diagram from news articles, and we com-
pare STRIDER’s ability to extract, aggregate, and present the
same information in a diagram, completely autonomously.

We tested STRIDER’s information extraction on
three articles from the Open Source Center (OSC,
http://www.opensource.gov) in order to reproduce real link
diagrams created by the analyst on the same material. The
IC analyst used the third-party tool to build a gold-standard
link diagram from many articles, citing individual sources.
We used the a subset of the gold-standard diagram, in-
cluding one of STRIDER’s three articles, that described
four assassinated individuals, an attempted assassination,
and more. From the single-article portion of the analyst’s
gold-standard diagram, we counted 34 data fragments,
including names, relationships, categories, events, dates,
titles, nationalities, affiliations, organizations, and more.

STRIDER extracted all individuals correctly, most orga-
nization affiliations, two of four assassination events with
dates intact, and more. However, due to gaps in parsing cov-
erage, it missed two assassination events, it missed one un-
successful assassination attempt, and it did not label a per-
son’s nationality:
• 33 total data fragments were extracted (e.g., names, rela-

tionships, events, dates, and titles)
• 30 fragments were in the analyst’s diagram.
• 4 fragments (three events and one relation) were missing.
• 3 fragments (about an individual) were correct but

deemed irrelevant by the analyst.
• 0 fragments were incorrect.

In total, the precision was 1.0, the recall was 0.88, for
an F1 score of 0.94. STRIDER analyzed all three arti-
cles and recorded the sources of information in under one
minute, and the human expert analyzed and recorded this
information in one hour. Four elements were not extracted
due to complex grammatical constructions that makes inter-
sentence references to “bombings” and “attacks.”

We subsequently gave STRIDER the remaining two OSC
articles about the same events. From these, STRIDER ex-
tracted some consistent and some additional information
and used its content models to fuse the new information
into the diagram. The additional documents contained two
previously-missing assassination events, and three univer-
sity affiliations (two were diagrammed by the analyst, one
is novel). Figure 6 illustrates the diagram STRIDER deemed
relevant to the the initial article, with names hidden. It con-
tains relevant information from the two subsequent articles,
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Figure 6: STRIDER screenshot (names hidden) showing in-
formation extracted and merged from three OSC articles.

hiding data that was determined irrelevant due to diagram
distance from nodes mentioned in the article.

Overall, we demonstrated STRIDER extracting informa-
tion, identifying gaps, presenting information and incorpo-
rating feedback using one consistent interface. These pre-
liminary results suggest that STRIDER can:
• Extract information about individuals (e.g., their names,

careers, nationalities, and titles), assassinations, organiza-
tion affiliations, and role-based slot-fillers (e.g., an article
mentions a“terrorist” assassinating somebody instead of a
specific organization or individual).

• Extract partial information when complete information is
not available.

• Utilize its content model and equivalence classes to merge
and organize data across multiple sources.

• Display extracted information for non-technical users.
Information fusion is a time-intensive process of read-

ing documents, extracting events and tying people and en-
tities to related events. We demonstrated how a system like
STRIDER can both help with the reading and information ex-
traction process and also support the analyst in interactively
tying relevant people and events together from multiple doc-
uments, improving the speed the process dramatically.

Related Work
STRIDER’s interfacing exploits link diagram interfaces for
information presentation and visual queries. Previous work
in network analysis and link analysis utilize link diagrams as
information displays. Organizational Risk Analysis (ORA)
(Carley et al., 2012), a network analysis tool, automatically
analyzes dynamic networks, social networks, geo-spatial
data, and workflows. Jigsaw (Stasko, Gorg, and Liu, 2008)
represents documents and their entities visually to help an-
alysts examine them more efficiently, with an emphasis on
illustrating connections between entities across documents.
This reduces the cognitive load of data analysis. CRAFT
(Gruen et al., 2008) supports wiki-like analyst collaboration

with link diagram and form-based interfaces, to help ana-
lysts extend and share hypotheses, inquiries, and ontologies.
These tools analyze link diagrams and support collaboration,
but to our knowledge, they do not encode and autonomously
react to analysts’ changing objectives.

Semantic targeting in online advertising incorporates a se-
mantic representation alongside an optional syntactic (i.e.,
keyword or bag-of-words) representation. Ad and page se-
mantics can be evaluated for proximity (i.e., relevance) by
calculating their taxonomic distance, allowing for semantic
matches when no exact lexical matches are found. For in-
stance, if a webpage describes a curling event, but no curl-
ing ads exist, ads belonging to the semantic class “skiing” (a
sibling of class “curling” under the parent “winter sports”)
could be retrieved and delivered. STRIDER’s relevance cri-
teria is inspired, in part, by web-based semantic targeting.

Conclusion & Future Work
We described the cognitive computing technology of the
STRIDER system for collaborative intelligence analysis,
with a focus on (1) diagrammatic interfaces for eliciting
the analyst’s objectives and presenting relevant informa-
tion, and (2) the influence of the analyst’s objectives on
STRIDER’s decision-making. We presented preliminary re-
sults of STRIDER’s information extraction and fusion, and
we compared STRIDER’s product to a senior intelligence an-
alyst’s diagram, with encouraging results (F1 = 0.94).

Our pilot experiment demonstrates that STRIDER can
gather and present information, but it does not evaluate all
of STRIDER’s features as a collaborative closed-loop sys-
tem. Evaluating the analyst’s workflow with and without
STRIDER will help qualify (1) how STRIDER addresses its
user’s cognitive biases and limitations, (2) the analyst time
and effort required for inputting and maintaining informa-
tion in STRIDER, and (3) STRIDER’s overall impact on the
breadth, objectivity, and efficiency of intelligence analysis.

In addition to evaluation, we have significant development
remaining to realize our vision for STRIDER. For instance,
STRIDER computes relevance using a diagram distance met-
ric from the analyst’s manually-created or annotated ele-
ments of the link diagram. We believe that a semantics-
directed spreading activation algorithm will yield more com-
plete and precise results. Also, we plan to have STRIDER
learn from analysts’ feedback on extracted data: if the an-
alyst resolves a data conflict by choosing data from one
source over another, STRIDER can generate or revise a topi-
cal model of source credibility.

Finally, STRIDER must support noisy data, e.g., as news
reports are revised, as assumptions are violated, and as situa-
tions develop. This is crucial for cognitive aides in the intel-
ligence analysis domain, to support human decision-makers
in a partially-observable, uncertain, and changing world. We
believe that metadata-based approaches for conflict resul-
tion (e.g., Bleiholder and Naumann, 2006), in conjunction
with human feedback and collaborative filtering, will help
STRIDER semi-automatically prioritize conflicting data, but
this is an empirical question and an area of future work.
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Abstract

Machine learning often focuses on how best to in-
fer structure from data. Also important is the ability
to convey that structure to human users. We inves-
tigate a system for automating quantification, anal-
ysis, and presentation of data to human users. We
focus on the domain of natural scenes, an area in
which human performance has been well explored,
and can thus be used to inform choices of com-
putational tools. Informed by perceptual science,
we characterize a corpus of images in terms of the
statistics of their orientation distributions. In two
experiments, we compare mixture and topic mod-
els for analysis, and teaching-optimized versus av-
erage images for conveying model structure to peo-
ple. Using a categorization task, in Experiment
1, we find that, when subclusters are overlapping
and categorization difficult, examples selected to
teach the category structure lead to improved cate-
gorization performance relative to examples closest
to the mean. Experiment 2 further shows that mix-
ture models outperformed topic models and teach-
ing examples outperformed maximum likelihood.
By leveraging cognitively natural machine learning
methods to facilitate automatic analysis and sum-
mary of naturalistic data, this work has implications
for conveying both typicality and variability of ex-
periences in complex data.

1 Introduction

For decades the focus of machine learning has been to take
a prepared data set and, given some parameters, infer struc-
ture from it. While it is important to find such patterns in
data, it is also important to ensure that structure can be easily
accessed by humans attempting to make sense of the data. In-
deed, problems anywhere in the pipeline—from quantifying
experiences, to inferring structure, to interpreting and acting
on results—may to lead to incorrect outcomes. Thus, a crit-
ical problem for machine learning, data science, and artifi-
cial intelligence more generally is how to make choices about
each step so that the people at the end of the data analysis
pipeline understand the output and make correct decisions.

In this paper, we investigate automating the quantification,
analysis, and interpretation pipeline. Solving this problem
is a long term goal. Whereas typical machine learning and
data science approaches rely on highly educated experts to
implement and interpret analyses, we present a specific ex-
ample of a general approach based on leveraging humans’
uniquely powerful ability to learn from small amounts of data
generated by teachers. A naive computational learner infers
some structure in the data and a computational teacher selects
a small subset of the original data that best convey that struc-
ture to humans learners. We compare teaching decisions to
well-known alternative methods not motivated by human rea-
soning in the domain. Success on this project would greatly
increase the accessibility of data-driven decision making by
reducing the need for specific training.

We focus on a domain (natural scene perception) and task
(categorization) that have been well studied in the human
learning literature. This allows us to select methods of quan-
tifying and analyzing data that are strongly informed by ex-
isting science. Specifically, we leverage known human com-
petencies in perception, cognition and social learning. In
two experiments, we investigate different machine learning
methods—mixture models and topic models—and methods
of summarizing their results—selecting examples through
computational models of teaching or that capture the mean or
maximum likelihood estimate. Teaching has computational
support in the literatures on perception, cognition, and social
learning, while choosing data close to the mean or that maxi-
mize likelihood do not.

The paper unfolds in three sections. First, we discuss foun-
dational work in the areas of natural scene perception, cate-
gorization, and computational models of teaching. Second,
we describe the pipeline for quantifying images, extracting
categories from these data, and selecting images to teach the
resulting categories. Third, we describe two experiments that
investigate the performance of the approach with untrained
learners. Experiment 1 focuses on the last step of the pipeline,
the selection of images, via teaching or the maximum likeli-
hood data, to communicate the results to the user. Experiment
2 additionally manipulates model used to infer structure from
the data, comparing mixture models with topic models. The
results show that when the problem is difficult, computational
models of teaching outperform methods based on the mean
or maximum likelihood. Results also show that a more cogni-

 8 



Figure 1: Scene category results. Orientation-orientation scatter plots of random samples from the target model. Different
marker colors denote difference inner categories. The top row represents Indoor scenes and the bottom row represents Outdoor
scenes. The indoor scene categories have considerably greater overlap than the natural scene categories.

tively natural representation of the domain—modeling scenes
as mixture distributions—outperform a less cognitively natu-
ral, but otherwise effective, model in this visual domain.

2 Background

The natural-scene-category-teaching pipeline relies on find-
ings from three literatures: natural scene perception, catego-
rization, and computational models of teaching.

2.1 Natural scene perception

Natural scenes are semantically, structurally, and perceptually
complex, and this complexity is decomposed by the human
visual system, starting with low level features such as ori-
entation. There is a characteristically biased distribution of
oriented contours in natural scenes [1–3] and this anisotropy
is reflected in the visual cortex at one of the earliest levels of
visual processing [e.g. 4, 5]. Perception takes advantage of
the regular anisotropy present in natural scenes [6] making it
a logical structural property by which to quantify images as
several previous image categorization approaches have done
[7]. Therefore, it is sensible to quantify the structure of nat-
ural scenes in the orientation domain and determine if such
structure can be taught to human users.

2.2 Categorization

There is a long history of behavioral research on human cate-
gorization (see [8, 9] for reviews). Anderson [10] [also 11]
derived a model for learning an unknown number of cat-
egories, which was essentially a Dirichlet-process mixture
model [12, 13]. Rasmussen [14] later proposed an efficient
Gibbs sampling algorithm for this model. The Dirichlet pro-
cess mixture model framework has since been widely adopted
as a model of human category learning and in unsupervised
machine learning, and has been used to model scene cate-
gories in images [7, 15]. Extending this previous work into
communicating categories to human users is a logical next
step.

2.3 Computational models of teaching

Computational models of teaching formalize the purposeful
selection of examples whose goal is to enable the learner
to infer the correct hypothesis [16–18]. Shafto & Good-
man [16] introduced a Bayesian model of pedagogical data
selection and learning, and used a simple teaching game to
demonstrate that human teachers choose data consistently
with the model and that human learners make stronger infer-
ences from pedagogically-sampled data than from randomly-
sampled data (data generated according to the true distribu-
tion; [19, 20]). More recently, Eaves Jr. et al. [21] employed
advances in Monte Carlo approximation to facilitate tractable
Bayesian teaching. Although enjoying considerable evidence
in lab-based tasks where the target knowledge is selected by
the experimenter, no prior work has investigated the possibil-
ity that this approach may be used to facilitate human learning
from machine-derived knowledge.

3 Data analysis pipeline

3.1 Quantifying images

The first stage in the pipeline involves quantifying the com-
plex information in an image. To do this, we extract the ori-
entation information using a previously developed image ro-
tation method [see 2]. In this method, each frame is rotated
to the orientation of interest and the amplitude of the cardinal
orientations (horizontal and vertical) extracted and stored via
fast Fourier transform filtering. Repeating this process at dif-
ferent orientations allows each image to be condensed into a
series of 4 (Experiment 1) or 36 (Experiment 2) data points
representing the amount of oriented structure in the environ-
ment at four primary orientations 0, 45, 90, and 135 degrees
in global (Experiment 1) or local (Experiment 2) image re-
gions. We processed 200 images for both outdoor and indoor
environments. The resulting four-orientation data can be seen
in Figure 1.

The second stage involves inferring structure (categories)
from the orientation data so that it may be taught. We com-
pare two methods for image categorization: the infinite Gaus-
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sian mixture model (IGMM) and latent Dirichlet allocation
(LDA).

Infinite Mixtures

In experiment 1, we represent scenes as categories in continu-
ous, multidimensional amplitude space. We model these cat-
egories as multidimensional Gaussians with mean µ and co-
variance matrix ⌃. Learners must learn how many categories
there are, their means and covariance matrices, and must infer
of which category each datum is a member. We capture this
with the infinite Gaussian mixture model framework [IGMM
14].

Infinite mixtures allow for as few as one or as many as n

mixture components (categories). The IGMM infers an as-
signment, z, of data to categories, which is assumed to fol-
low a Dirichlet process–in this work, the Chinese restaurant
process–prior with concentration parameter ↵, CRP(↵) [22].
The likelihood of the data, x, is then

`(x | ✓) =
nY

i=1

N (x
i

;µ
zi ,⌃zi). (1)

where N (x;µ,⌃) is the Gaussian (Normal) density of x

given mean µ and covariance matrix ⌃.
We place a conjugate, Normal inverse-Wishart prior on µ

and ⌃ [23],
⌃ ⇠ Inverse-Wishart

⌫0(⇤
�1
0 ), (2)

µ|⌃ ⇠ N (µ0,⌃/0). (3)

Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a bag-of-words model
for inferring the topics in corpora [24, 25]. Topic models
have been adopted for use with images [7, 15], by treating
each image as a document composed of visual words from
a number of visual topics, T , which we treat as categories.
To generate D documents from a W -word vocabulary under
LDA with parameters ↵,� 2 (0,1),

for all topics, t 2 1, . . . , T do

�

t

⇠ Dirichlet
W

(�)
end for

for all documents, d 2 1, . . . , D do

✓

d

⇠ Dirichlet
T

(↵)
for i 2 {1, . . . , w

d

} do

z ⇠ Discrete(✓
d

)
w

d|i ⇠ Discrete(�
z

)
end for

end for

The likelihood of a corpus, C, given � = {�1, . . . ,�T

}
under LDA is

`(C|T,�,↵,�) =
X

z

" 
DY

d=1

DirCat(z
d

|↵)
!

nY

i=1

�

(zi)
wi

#
,

(4)
where DirCat denotes the Dirichlet-categorical distribution,
the sum over z denotes the sum over all possible assignments
of the n words in the corpus to topics, z

d

indicates the assign-
ment of words in document d, and �

(zi)
wi indicates the proba-

bility of the i

th word under the topic to which it is assigned,
z

i

.

3.2 Bayesian teaching

Teaching implies choosing data, x, that lead a learner to a spe-
cific hypothesis, ✓, which we shall refer to as the target. In a
Bayesian setting, teaching means choosing data in proportion
with their induced posterior density:

p

T

(x | ✓) = p

L

(✓ | x)R
p

L

(✓ | x)dx
/ `(x | ✓)

m(x)
, (5)

where `(x | ✓) is the likelihood of x under ✓, m(x) =
R
`(x |

✓)⇡(✓)d✓ is the marginal likelihood of x, and the subscripts
T and L denote probabilities from the teacher’s and learner’s
perspective, respectively.

Teaching infinite mixture models

Given data x = x1, . . . , xn

we wish to teach the assignment
of data to categories, z, and the category means and covari-
ance matrices. The IGMM framework assumes that learner
knows only the prior parameters (µ0, ⇤0, ⌫0, and 0) and that
all other quantities are unknown.

The teacher’s target model, ✓, consists of K means and
covariance matrices, and an n-length assignment of data to
categories. To draw data from p

T

(x | ✓), we employ random-
walk Metropolis sampling [26, 27]. An initial set of n data
are drawn from the target model, after which new data, x0, are
proposed by adding Gaussian noise to x. The new data are
accepted (x := x

0) according to the acceptance probability:

p(x0 | x) := min [A, 1] , A =
`(x0 | ✓)m(x)

`(x | ✓)m(x0)
. (6)

To search for argmax
x

p

T

(x | ✓) one may employ simulated

annealing [28] by replacing A with A

1/T , such that T goes to
zero with the number of Metropolis steps.

Exploiting conjugacy, we can calculate m(x) exactly for
a small number of data by enumerating over the set of pos-
sible assignment vectors, z 2 Z, and for each z calculating
the product of the marginal likelihoods of the data in each
component given the prior parameters:

m(x) =
X

z2Z

CRP(z;↵)
KzY

k=1

f(x
i

: z
i

= k | ⇤0, µ0, ⌫0,0),

(7)
where K

z

is the number of mixture components in z.

Teaching topic models

The number of topics is known under LDA, so we need
only teach the learner � = {�1, . . . ,�T

}. We do not teach
the assignment of visual words to visual topics, z, and thus
marginalize over all possible z. The marginal likelihood for
LDA is

X

z

 
DY

d=1

DirCat(z
d

| ↵)
! 

TY

t=1

DirCat({w
i

: z
i

= t} | �)
!
.

(8)
There are T

n terms in the sum over assignments of words
to topics, thus neither Equation 4 nor Equation 8 can be com-
puted exactly for most real-word problems. We estimate
these quantities using sequential importance sampling [e.g.,
21, 29].
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4 Experiments

Different types of visual experience were collected by wear-
ing a head mounted camera (NET CMOS iCube USB 3.0;
54.9o X 37.0o FOV) which sent an outgoing video feed to a
laptop. Videos were recorded as observers walked around dif-
ferent types of environments for variable amounts of time (a
nature preserve, inside a house, down-town in a city, around
a University, etc). Subsequently, every 500th frame of the
videos was taken as a representative sample of a given video
and sample images were sorted into purely natural, outdoor
scenes (no man-made structure) or scenes from indoor expe-
rience.

To derive a target distribution (means and covariance ma-
trices of subcategories), we applied expectation maximization
[EM; 30] to the orientation data from each setting (see Fig-
ure 1). EM found two categories for both indoor and outdoor
images. Although each image comprises information about
the amplitude of structure at specific orientations, there were
qualitative visual implications of the choice of images used
for teaching (see Figure 2).

The target visual topic model for LDA taken from the LDA
sampler state, �, at the 1000th iteration of Gibbs sampling.
The number of topics was set to 2 to match the number of
categories in the IGMM target model. The parameters, ↵ and
�, were set to maximize the probability of the images under
two topics.

4.1 General Methods

To determine if our teaching model better conveyed the envi-
ronmental data to humans we ran a series of psychophysical
categorization tasks. If the teaching model captures cogni-
tively natural aspects of the selection of evidence for learn-
ing, then we would expect this group to perform better than
those provided examples that capture the center (mean) of the
category distribution. Rather than have subjects categorize
all possible images from the distribution, we focused on im-
ages that should be difficult to categorize – ambiguous im-
ages that lie somewhere between the two categories. We
compared categorization of ambiguous images based on ei-
ther one of the three best teaching pairs or one of the three
image pairs that captured the central tendency of each inner
category (the mean for Experiment 1; or most likely under
the model in Experiment 2). By using multiple pairs of im-
ages for comparison, we sought to eliminate any effects of
idiosyncratic semantic content (i.e. filing cabinets) in indi-
vidual images. Participants were recruited through Amazon
Mechanical Turk and paid for completing the task. Using a
completely on-line categorization task allowed us to test the
optimality of teaching categories to untrained observers. Par-
ticipants were presented with a machine-selected exemplar
pair (see examples in Figure 2) and 24 sequentially presented
ambiguous images which they were asked to categorize as
either category one (left) or category 2 (right). At least one
additional image was presented as an attention check; one of
the exemplar images was presented as a image to be catego-
rized to eliminate subjects who were not paying attention to
the task. The data from any subject (n = 43 total) who failed
to correctly categorize the attention checks was not used in
further analyses.

Figure 2: Examples of different exemplar pairs used in the
categorization experiment for subject reference. The top row
shows images used for outdoor scenes and the bottom row
shows images used for indoor scenes. The left column shows
the images that best capture the mean of the inner category
distributions while the right column shows the example pairs
picked by the model to teach the category.

4.2 Experiment 1

Experiment 1 focused on distinguishing indoor and outdoor
scene types and determining if the teaching model provided
better examples than images closest to the mean for each cat-
egory. The ambiguous images in this experiment were cho-
sen by calculating the Euclidean distance in orientation space
each image lay from each inner category mean. The summed
difference from each mean was then compared to the distance
between the category means and the middle third of images
closest to this value were labeled ‘ambiguous’. A total of ap-
proximately 60 subjects were run in each of the 12 possible
conditions (357 total). In order to minimize learning effects,
the first four trials for trials were considered training and all
results are based on performance on the last 18 images.

4.3 Results

In order to assess the results of the teaching model, we col-
lapsed across the three exemplar pairs by first determining
that there were no differences between them. Separate one-
way ANOVAs were run and, while there were no differences
for the indoor images, for outdoor images one pair in the
teaching condition showed significantly lower performance
than the other two runs F (2, 124) = 54.26, p < .001 (see
Figure 3). Moreover, the standard deviation in this condi-
tion (.19) was more than twice any of the other 5 conditions
(average = .093). Thirty percent of participants in this con-
dition performed above chance level, correctly categorizing
eleven images that were incorrectly categorized by most of
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the participants who performed below chance. Interestingly,
these eleven images were of open fields, which only the high-
performers were grouping with the images selected for teach-
ing that contained bodies of water. Our method for quanti-
fying images based only on orientation content does not dis-
tinguish between fields and bodies of water (In Experiment
2 we explore a method that may map more closely to human
perception by quantifying orientation in regions).

Subsequent analyses focus on the remaining two pairs of
images for the teaching condition. To compensate for elim-
inating an entire pair of images from the outdoor condi-
tion, a random sample of equal size was extracted from the
pooled total subjects who completed the task with indoor im-
ages. Further statistical analyses confirmed no differences
across exemplar pairs between different runs within image
type (Outdoor vs Indoor) and exemplar condition (Teach vs
Mean) and thus the data from different exemplar pairs was
pooled.

We tested categorization performance for the remaining
teaching and mean pairs for outdoor and indoor images sep-
arately. Results plotted in Figure 3 show that participants
were able to more easily categorize outdoor images than in-
door images, F (3, 319) = 20.12, p < .001, which is con-
sistent with the increased cluster separation of the outdoor
categories (see Figure 1). Consequently, there were no dif-
ferences in categorization performance based on the teaching
exemplars as compared to the mean exemplars for outdoor
images, p = .90; all participants performed well presumably
because even the most ambiguous images were not especially
difficult to categorize.

For indoor images, participants’ categorization perfor-
mance was significantly better for the teaching images rel-
atively to the mean images, p < .001. These categories were
less well separated in orientation space (see Figure 1). Conse-
quently, the representative images selected for each category
had a greater potential influence. Indeed, the teaching images,
which are selected by the model to highlight the structure of
the category and to contrast with the alternative category lead
to better performance. Overall, the results of Experiment 1
indicate that for images whose categories are difficult to dis-
tinguish, the teaching model provides better exemplars for
human category learners.

4.4 Experiment 2

Given the results of Experiment 1, Experiment 2 focused only
on indoor images and used a higher-dimensional image quan-
tification method. Inspired by the spatial envelope quantifi-
cation of [7], we ran our global orientation analysis on nine
sub regions of each image from Experiment 1. Each image
is quantified into 36 orientation dimensions, corresponding
to the 4 primary orientations (0, 45, 90, 135) in each of nine
square image regions. We also sought to investigate whether
the IGMM classification method outperformed Latent Dirich-
let Allocation (LDA), which is less cognitively natural for
categorization but is widely used for image analysis [7, 15].
The 36 dimensional data was fed directly into the IGMM,
but was further quantized for the LDA model. Each image
region was treated as a word and the vocabulary for indoor
images was determined by K-means clustering. Each image

Figure 3: Results of psychophysical categorization experi-
ments. Error bars represent two standard error of the mean.

contained nine regions summarized by four-dimensional con-
tinuous orientation data. The data from the nine regions of all
of the two hundred images was assigned a cluster (word) by
K-means (200 images times 9 data per image resulted in 1800
data to K-means). Elbow plots revealed that K=20 was the
optimal vocabulary size. Each image was then a visual docu-
ment composed of nine visual words from a 20-word vocabu-
lary. To compare most directly with the IGMM we generated
a target model with two topics by running LDA on the visual
corpus. The images were then classified into one of two top-
ics based on the higher percentage of words belonging to a
given topic. Both the IGMM and LDA classification results
were then fed into the teaching model to determine the best
three image pairs for teaching each classification model. The
highest likelihood pairs from each model were used for com-
parison. Ambiguous images were selected by finding their
log-likelihood value under each category/topic (depending on
the model), subtracting the two values, and finding the cen-
ter third of images whose log likelihood difference score was
closest to zero. This process led to 55 images under each
model, 35 of which were identical across models. Approx-
imately 23 subjects ran each of the 12 conditions for a total
of 285 participants. Eleven were removed for incorrectly cat-
egorizing the attention checks. Preliminary analyses showed
no learning affects and thus all 24 trials were included in the
results.

4.5 Results

Again, we collapsed across the three exemplar pairs by first
determining that there were no differences between those
used within conditions (Teach vs. Likelihood). Separate one-
way ANOVAs determined that the only significant difference
between exemplar pairs was between pair 1 and pair 2 in the
GMM likelihood condition (F(2,68) = 3.59, p= 0.03). How-
ever, neither pair 1 nor pair 2 was significantly different from
pair 3 and thus all three exemplar pairs were collapsed into
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overall teaching and likelihood conditions for each model.
The overall 2 (model) by 2 (condition) way between sub-
jects ANOVA showed significant main effects of teaching and
model, but no interaction: F(1,270) = 8.93, p = .003, F(1,270)
= 24.87, p < .001, and F(1,274) = 0.93, p = 0.34 respec-
tively. As can be seen in Figure 4, the main effect of teach-
ing is driven predominately by the higher accuracy scores in
the GMM condition; the LDA condition shows no difference
between teaching and likelihood exemplars. Accuracy scores
were also significantly higher under the GMM model than the
LDA model, in general. This suggests an additive improve-
ment in performance for analysis with the mixture model and
example selection with the teaching algorithm for these im-
ages on this task. Notably, performance in the GMM-teach
condition is similar to that in Experiment 1, suggesting that
characterizing images at the four orientations (cardinals and
obliques) was sufficient to capture information about the ori-
entation distribution in the images.

Figure 4: Results of Experiment 2. Error bars represent two
standard error of the mean.

5 Conclusion

We presented an approach to optimizing the data analysis
pipeline to minimize required expertise/training in data an-
alytics in order to make informed decisions and increase ac-
curacy. We leveraged known human competencies in percep-
tion, cognition and social learning as well as information clas-
sification methods from machine learning. We illustrated the
approach in a domain and on a task where human competen-
cies are well-investigated—scene perception and categoriza-
tion, respectively—which allowed us to select established so-
lutions to the problems of quantifying and analyzing the data.
We presented an experimental investigation into the use of
social learning methods, specifically a computational formal-
ization of teaching, to provide a generic method of translating
analytic results into human-understandable format. Because

these experiments relied on the entire data analysis pipeline,
our experiments necessarily tested both the efficacy of the
computational model of teaching and the methods of quan-
tifying and analyzing data.

Our results showed that human performance was signifi-
cantly greater than chance for the two problems tested and
that performance was related to the difficulty of the catego-
rization. Results also showed that the computational teaching
method performed well, exhibiting specific gains when the
data analysis problem was hard. In this particularly difficult
condition, the mean images failed to communicate the nec-
essary distinction between categories. This failure demon-
strates how a loss of information anywhere in the data anal-
ysis pipeline can indeed lead to incorrect outcomes. This
work is a step forward in solving the problem of how to make
choices along the pipeline such that users at the end are able
to make informative decisions about the data without exten-
sive training. It should be noted, however, that these results
are specific to this domain of visual teaching with a relatively
small sample size. The primary conclusion of this work is
that complete automation and optimization of the data analy-
sis pipeline is possible as long as one chooses a psychologi-
cally appropriate data model.

The results also highlighted known limitations in our data
analysis pipeline. Specifically, we quantified images exclu-
sively in terms of orientation content—one of the earliest
steps of visual processing. This underestimates people’s cate-
gorization abilities and our results revealed that while our ap-
proach performed better in general, there were specific cases
where this quantification hampered decision making. Two
notable instances are in the overall accuracy—we used only
the most difficult images—and the case of semantic differ-
ences in outdoor images, which represent information that
was not available to the models. Given the known limitations
of this approach, we take this to be a promising negative re-
sult and an area for future work. Other areas for future work
include generalization to domains that are less perceptually
natural (e.g. radiography), to a broader array of representative
decision making tasks, and exploring cases where analysis
uncertainty is passed through to the decision maker. Regard-
less, our results indicate that creating data analysis pipelines
based on human perceptual, cognitive, and social learning ca-
pacities is possible and a potentially fruitful direction for fu-
ture research.
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Abstract
Humans can easily capture real world concepts
from multi-modal signals by constructing joint rep-
resentations of these signals. The joint representa-
tions may contain abstract information of multiple
modalities and relationships across the modalities.
Contrary to humans, it is not easy to obtain joint
representations reflecting the structure of multi-
modal data with machine learning algorithms, es-
pecially with conventional neural networks. This
is because these models only have additive interac-
tion across modalities. To deal with this issue, we
propose a novel machine learning algorithm which
captures multiplicative interaction between multi-
ple modalities by using high-order edges. With
these edges, the proposed method is able to learn
the highly non-linear correlation among modali-
ties. In the experimental results, we demonstrate
the effect of this high-order interaction by showing
improved results compared to other conventional
models with a benchmark dataset, MNIST.

1 Introduction
The brain can easily perceive information of the environment
from signals of multiple sensory modalities, including vision,
audition and touch. This perception is facilitated by integrat-
ing of multiple sources of information efficiently, both within
the senses and between them [Burr et al., 2011]. Although
there have been many research to imitate the multi-modal
information processing mechanism of the brain, it still re-
mains a difficult problem. This is because the information
which consists of multiple input modalities has highly dis-
tinct statistical properties and each modality has a different
kind of representation and correlational structure [Srivastava
and Salakhutdinov, 2012]. Also, noise exists at every level
of information processing, which makes the information un-
reliable and inaccurate [Ernst and Di Luca, 2011]. From this
point of view, it is desirable to construct a multi-modal learn-
ing model which can discover the highly non-linear relation-
ship across the modalities to replicate human-level percep-
tion.

A good multi-modal learning model should consist of com-
petent joint representations that satisfy certain properties. It

must be such that similarity in the representation space im-
plies similarity of the corresponding ’concepts’ [Srivastava
and Salakhutdinov, 2012]. Furthermore, if there is noise in
either modality which is uncorrelated with the other modal-
ity, then the joint representations are required to exclude this
noise [Andrew et al., 2013]. In addition, the joint representa-
tions ought to be useful for discriminative tasks.

In this paper, we develop a novel multi-modal learn-
ing model, High-order deep neural networks (HODNN). the
HODNN combines the multi-modal data with high-order in-
teraction to capture highly non-linear correlations among
them.

In the following sections, we first explain the details of the
HODNN. We then demonstrate the effect of high-order in-
teraction in preliminary experiments. Finally we discuss our
results and future work.

2 High-Order Deep Neural Networks
The HODNN connects abstract information of multiple
modalities with high-order edges, which lead to a multiplica-
tive interaction rather than just additive interaction used in
conventional deep neural networks. This high-order interac-
tion not only captures highly non-linear relationship across
the modalities but also suppresses the uncorrelated noise effi-
ciently. In addition, general deep structure is applied to each
modality so as to obtain the balanced abstract information
from each of it [Srivastava and Salakhutdinov, 2012].

Thus, the HODNN consists of two parts: modal-specific
learning layers and a joint representations learning layers.
The modal-specific learning layers have connections only
within each modality, so the highest hidden layers of each
modality represent abstract information of that modality (Fig-
ure 1a). The joint representations learning layers is com-
posed of higher-order interactions between the joint hidden
units and multiple groups of modal-specific hidden units. The
joint hidden units can learn non-linear correlations among the
modal-specific hidden units (Figure 1b).

In detail, the modal-specific learning layers follow a gen-
eral neural networks framework. The hidden representations
h

1
j

of the specific modality(Figure 1a) are obtained by Equa-
tion 1.

h

1
j
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X

i

W

v
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ij

v

1
i

+ bias) (1)
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Figure 1: Building blocks of High-order deep neural networks. (a): Modal-specific learning layers, composed of RBM seper-
ately. (b): Joint representations learning layers which capture correlations across the modalities. (c) Factorized version of joint
the representations learning layers. The High-order deep neural networks (in Figure 2) stacks (a) and (c) to compose a deep
architecture.

where �() is an activation function, which is a sigmoid func-
tion in our work.

In the joint representations learning layers, the weight is
an (n + 1)-way interaction tensor which connects n-groups
of modal-specific hidden units and a group of joint hidden
units. For simplicity, we show the case of a 2-modalities en-
vironment as an example, but it can be easily expanded across
n-modalities case. The joint hidden representations h

Joint

j

(Figure 1b) is obtained from Equation 2.
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Motivated by [Memisevic and Hinton, 2010], the multi-way

Figure 2: Architecture of High-order deep neural networks

factoring method is employed to maintain efficient model

complexity without heavily loosing the capacity of the model
(Figure 1c). As a consequence, we can obtain the joint hidden
representations hjoint

k

as follows:
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The overall HODNN architecture is illustrated in Figure 2. In
the next sections, we explain how the model can be learned
by a general deep learning framework.

3 Learning
As for most of the deep neural networks, HODNN adopts
a strategy of fine-tuning with backpropagation after pre-
training each module. Since the training method of the
modal-specific learning layers can easily be derived in the
same way, in this section, we only focus on how the joint
representations learning layers can be trained.

3.1 Learning: Pre-training
With the presented architecture and activation rules of the
joint hidden units of the HODDN, a high-order Boltzmann
machine can be used as a building block for the joint repre-
sentations learning layers [Sejnowski, 1986]. For clarity, we
use the notation in Figure 1 and refer to h

1 and h

2 as visible
units and h

Joint as hidden units in order to see joint represen-
tations learning layers as an isolated high-order Boltzmann
machine. The high-order Boltzmann machine connects more
than two layers using weight tensor W Joint. Then the joint
probability distribution of P (h1

, h

2
, h

Joint) is defined as fol-
low:
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In Equation 4, the energy function E(h1
, h

2
, h

Joint) is given
by:
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where the b indicates the bias of each layer.
To train the model, the negative log-likelihood need to be

minimized by using gradient descent. The derivative of the
negative log-likelihood with regard to parameter ✓ is given
by:
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(6)

Like a standard RBM, the first term (visible expectation)
is easily computed but the second term (model expectation)
is intractable. The contrastive divergence (CD) is an use-
ful method to approximate the second term [Hinton, 2002].
However, the conditional dependency of the visible units
h

1
i

and h

2
j

given hidden units h

Joint precludes to utilize
CD as it is. Therefore, a 3-way sampling method is ap-
plied by using Equation in 7, 8 and 9 [Reed et al., 2014;
Susskind et al., 2011].
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As noted earlier, the factoring method is employed to prevent
the number of parameter W

Joint

ijk

from growing exponen-
tially. With this factoring method, the 3-dimensional weight
tensor W
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is replaced by the multiplication of three 2-
dimensional weight matrices Wh
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There are several research which take a similar approach to
ours in terms of the models [Reed et al., 2014; Susskind et
al., 2011; Nguyen et al., 2015], but these studies do not cover
the multi-modal environment and the deep neural networks
architecture.

3.2 Learning: Fine-tuning
The backpropagation algorithm is well known to fine-tune
the deep neural network. In this section, we demonstrate
that the suggested model can be trained using backpropaga-
tion by providing the following derivative equations @h
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Using Equation 11,12 and 13, we can easily obtain the deriva-
tive equation in terms of all weight parameters for backprop-
agation.

4 Preliminary experiment: Effect of
high-order interaction

As preliminary experimental results, we show three results
with MNIST dataset. To focus on the effect of high-order
interaction, only the joint representations learning layers of
HODNN, a factored high-order Boltzmann machine, is used
(Figure 3). Also, the MNIST dataset is utilized which con-
sists of hand written digit images and the corresponding la-
bels. Each image contains 28 ⇥ 28 gray scale pixel values
and each label is presented with 10-dimensional one-hot en-
coding vector. While the label vectors are usually used as
targets in discriminative tasks, in our experiments, the image
and the label vectors are used as two different modalities, the
former is for visual information and the latter is for textual in-
formation which indicate the concept ’number’. Thus, as the
two input vectors have highly non-linear relationships, we ap-
ply our model to learn the useful representations by capturing
such relationships. To demonstrate this effect, we conducted
three comparative experiments:

Figure 3: Comparative models for demonstrating the effect of
high-order interaction
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Figure 4: Weight vector pairs of randomly selected 25 factors
out of 100. The upper rows are 28⇥28 dimensions image fil-
ters W image

if

and the lower rows are 10 dimensions text filters
W

text

jf

. The brighter color of filter indicates a higher value of
weight.

• Show the learning weight that represents correlational
structure.

• Explore the learned joint hidden representations space.
• Prove robustness to noise.
To show the competence of our model, a shallow bi-modal

RBM (Figure 3b) is used as a comparative model. The
shallow bi-modal RBM also functions as a module combin-
ing different modalities in conventional multi-modal deep
networks [Srivastava and Salakhutdinov, 2012; Ngiam et
al., 2011]. For impartiality, same architecture and hyper-
parameters (200 hidden units, and 0.001 learning rate) are
used for both module. Also, we used 100 factors for fac-
tored high-order Boltzmann machine. it is worth noticing
that our model has lower complexity than the comparative
model. (the number of weights of shallow bi-modal RBM:
200 ⇥ (784 + 10), the number of weights of factored high-
order Boltzmann machine: 200⇥100+784⇥100+10⇥100)

4.1 Learning weight that represent correlational
structure

Factorization leads to a matching of weight (filter) responses
(W

if

,W

jf

in Figure 3a). The observed weight pairs from the
trained model can be used to determine how well the model
learns the heterogeneous multi-modal inputs. To look closely,

we visualized only 25 randomly selected weight vector pairs
of factors out of 100 factors (Figure 4). In Figure 4, each pair
of weight vectors consists of two sub images. Upper large im-
ages represents image filters which size is 28⇥ 28 and lower
small images represents 10-dimensional text filters. If an im-
age filter mainly passes visual information of a certain num-
ber, the corresponding text filter also tends to pass the textual
information of that number. In addition, there are some filter
pairs that behave in an opposite way. However, it is obvious
that both of the tendencies support the fact that the model can
effectively capture the relationship between the two hetero-
geneous inputs.

Figure 5: Some examples of 100 corrupted images. The cor-
rupted images are generated by mixing of randomly selected
image of number 1 and other numbers

Figure 6: 2D t SNE visualization of learned representation of
both models using corrupted image information and clear text
information. (a) is for shallow bi-modal RBM and (b) is for
factored high-order Boltzmann machine.
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Figure 7: Comparison of learned representations between shallow bi-modal RBM and factored high-order Boltzmann machine.
The upper row shows the shallow bi-modal RBM and lower row shows the factored high-order Boltzmann machine. (a): 2D
t-SNE visualization, (b): 2D ISOMAP visualization and (c): 2D LDP(Linear Discriminent Projection) visualization.

4.2 Learned joint hidden representations space
In order to see how the joint hidden units represent the ab-
stract information across the modalities, 2D embedding algo-
rithm is applied to hidden units of both factored high-order
Boltzmann machine and shallow bi-modal RBM .To ensure
the generality, various techniques are used, which are t-SNE,
ISOMAP and Linear discriminant projection. Figure 7 shows
the embedding results of both models. All three results of fac-
tored high-order Boltzmann machine are more visually dis-
criminative than those of the shallow bi-modal RBM. Also, it
is interesting to notice that the t-SNE embedding result of the
joint hidden representations with factored high-order Boltz-
mann machine looks as if the representations of each number
form their own sub-manifold structure. These interpretations
imply that the representations power of factored high-order
Boltzmann machine is greater than the that of shallow bi-
modal RBM.

4.3 Robustness to noise
To demonstrate how the high-order interaction efficiently
cancels out the noise of either modality which is uncorrelated
with other modality, it is appropriate to compare the joint hid-
den representations of both models when the noisy input is
fed in. For this experiment, we firstly generated a corrupted
dataset which consists of the 100 image inputs of number 1
corrupted by other numbers and corresponding clear text in-
puts of number 1 (Figure 5). The joint hidden representations
of the corrupted dataset are shown with normal dataset by us-
ing 2D t-SNE visualization 6. The big yellow circle is for the
corrupted dataset and others are for the normal dataset. Figure
6a shows the case using shallow bi-modal RBM and Figure
6b shows the case using factored high-order Boltzmann ma-
chine. As expected, in the factored high-order Boltzmann ma-
chine, the representations of the corrupted dataset are located
near the representations of number 1. However, in the shal-
low bi-modal RBM, the representations of corrupted dataset

lie scattered across the numbers. It reveals the property of
high-order interaction that remove the uncorrelated noise in-
formation of either modality based on the other modality.

5 Conclusion
In this paper, we suggest the High-order deep neural networks
for learning representations of multi-modal data which has
highly non-linear relationships. We performed three prelim-
inary experiments to demonstrate the effect of high-order in-
teraction. Based on experimental results, we conclude that the
high-order interaction can capture not only intra-relationships
of multiple modalities but also inter-relationships.

In future works, we aim to apply our model to the study of
event cognition which have emerged over the last years as a
vibrant topic of scientific study. It is an important research
topic because much of our behavior is guided by our under-
standing of events which is what happens to us, what we do,
what we anticipate and what we remember in our daily life
[Radvansky and Zacks, 2014]. For better understanding of
the study, we employ multiple wearable sensors to record the
daily-life of a person. This is because the collected data from
the viewpoint of the first-person plays a significant role in
learning of human behavior [Zhang, 2013; Kim et al., 2016;
Lee et al., 2016]. Through this study, we hope to suggest an
event cognition model which can perceive real-time events in
real-life by using multiple wearable sensors.
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Abstract

Despite the utility of AI agent systems for question
and answer in domains such as customer service, the
cost of human effort to establish and maintain the
knowledge underlying these systems remains high. In
this work, we introduce a process to radically reduce
investment of human time required to generate and
maintain the data necessary for implementing such a
system. We demonstrate the utilization of different
type of data sources in building a knowledge base for
the AI agent using machine learning techniques. In
cases where human expert verification is required for
confidence in the system, the AI agent collaborates
with the human expert to verify reliable knowledge in
the AI agent’s own dialog system.

1 Background

1.1 Conversational QA Systems

Artificial Intelligence agents are increasingly efficacious for
question-and-answer in domains such as customer service, see
Fader, Zettlemoyer, and Etzioni (2014); Tan et al. (2000).
Agents must understand user questions, retrieve useful infor-
mation, and relay answers to users. A few underlying data are
required to implement such agents. Natural language under-
standing can be approached with techniques as simple as string
matching or as complex as deep learning classification, but in
any case requires many variations of the user question. Dialog
systems can be deterministic or probabilistic, but in either case
require a mapping between the discerned user question and the
correct answer. Finally, the answer itself can reside in a pre-
processed map of questions and answers, or within a corpus of
curated documents from which the answer is retrieved, some
background and examples can be found in Ogan et al. (2012);
Wong et al. (2012) and references therein.

Each of these data require large investments of human effort
to create and maintain. However, even if an automated approach
to generating these data were available, there would be many
instances where human review of the data would be required.
In some cases, the accuracy of the system may be insufficient
without human review, and in others, there may be regulatory
requirements for human review.

We propose a method for automated construction and main-
tenance of the data required for such an agent system. Our ap-
proach combines machine learning, unsupervised topic model-
ing, and information retrieval given source corpora containing
candidate questions and answers. Further, to address the cases

where human review is required, we describe a method for in-
cluding the AI agent in the construction, verification, and main-
tenance of its own data resources by requesting review from a
human expert. Our approach aims to minimize the time required
of the human expert while ensuring accuracy in the system. For
some related work see Clark et al. (2003); Nass, Steuer, and
Tauber (1994).

1.2 Generation of Knowledge

The agent system relies on multiple corpora for knowledge. Po-
tential user questions represent one corpus. Within each user
question, a set of variations for matching the associated user
question is required, and these collectively represent a second
corpus. The corpus of answers can either be specifically coded
to correspond to match questions, or may be an unstructured
corpus from which answers are retrieved.

Here, we consider a case from a customer service center pro-
viding an existing unstructured corpus containing historical cus-
tomer service tickets as well as an unstructured corpus of ref-
erence documents intended for human reference. From these
corpora, our method generates the required corpus of potential
user questions, the variations of those questions, and their an-
swers. For cases where probabilistic answers are acceptable,
the AI agent can use these to directly in answering user ques-
tions. It is critical for maintenance of these data to monitor up-
dates the reference corpus and to re-evaluate the question and
answer entries that could be affected by the updates. In cases
where human expert supervision is required, our method iden-
tifies the best expert and requests their supervision via the AI
agent interface. Here the role of the AI agent reduces the cost
for the human expert in identifying new and trending questions,
researching them, and verifying their answers.

2 Methodology

2.1 Dialog System

For natural language understanding, we employ a multi-
layer convolutional neural network for multi-label classification
which identifies the most likely question entry in a determin-
istic dialog tree, (Krizhevsky, Sutskever, and Hinton (2012)).
The CNN labels are trained on variations of each question. We
describe the initial generation of these labels below. The de-
terministic dialog tree maps via its associated CNN label to an
associated answer. If an answer has not yet been associated with
that label, the system employs a search strategy to retrieve doc-
uments that are likely to contain the answer from the reference
corpus (see below for the direction of these documents to the
human expert).
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2.2 Knowledge Base

Our method requires the existence of a reference corpus and a
corpus of historical inquiries. The reference corpus typically
consists of unstructured text in the form of reference documents
intended for human interpretation. These could be in the form
of policy documents, web pages, or reference emails. In our
customer service center case, the historical inquiry corpus con-
sists of previous tickets from customer call and email inquiries.
Our method aims to use the data housed and obscured in these
corpora to automate the generation of the CNN label for natural
language understanding as well to identify the correct answer to
a given user question.

2.2.1 Topic Modeling

The historical inquiry corpus is the source used to generate
question variations. Our method uses Latent Dirichlet Alloca-
tion (LDA) topic modeling (Blei, Ng, and Jordan (2003)) to
infer the topics that are represented in the all the tickets. We
apply LDA using the Mallet toolbox (McCallum (2002)) in a
recursive manner where the tickets are first divided into several
general topics to find sub-topics in each partition. Hierarchical
clustering and topic models for documents have been looked
at extensively in the literature with different applications, see
Blei, Griffiths, and Jordan (2010); Bot et al. (2005); Wang et al.
(2011). The LDA topic labels themselves can be used as CNN
labels, as they encapsulate a group of relevant tickets into a set
of sorted keywords. The representative labels in the CNN are
not required to be a natural language question themselves, but
they provide a descriptive label for the question variations asso-
ciated with that label. Next, we apply the LDA inference model
to label all sentences in the tickets. In this way, we deconvolve
the multiple topics of each ticket to the level of their constituent
sentences. Next, we hierarchically cluster these sentences in
the space of their LDA topic vectors. Many of the resulting
clusters correspond the LDA topics directly, and a few corre-
spond to convolutions of those topics. Critically, this clustering
approach allows us to identify sentences that represent clear ex-
amples of the question posed in the topic while simultaneously
sifting out off-topic (e.g. greetings) and perfunctory language
(e.g. metadata tags) to separate clusters. The relevant clusters
of sentences then represent natural language variations for the
training of the CNN. As an example in Fig. 1 we see a collection
of around 260 sentences from 10 topics clustered into 15 differ-
ent clusters. Sentences are represented as rows and columns
show different topics. Red corresponds to higher relevance and
blue is low relevance to that topic.

The LDA model is also used in conjunction with an inverted
index of the reference corpus to retrieve documents that likely
contain answers to the user question. Thus we can populate the
required elements of a new dialog tree entry: the question label,
its variations, and an answer. However, in some cases, we may
prefer human verification of these elements.

2.2.2 Expert-sourcing

Given access to a human expert, our method leverages the AI
agent as a social actor seeking expertise assistant in the same
manner that a human agent working a customer service center
would seek expertise in the case of ticket escalation. The AI
agent can present the expert (for example via email or an inter-
active prompt or web interface) with a request stating the iden-

Figure 1: Hierarchical Clusters of Sentences from 10 Topics

Figure 2: Schematic of the information retrieval process

tification of a new question that needs an answer. In addition
to the top-scoring variations identified in the topic modeling,
the agent can retrieve the original context of these sentences
from their ticket in the historical inquiry corpus. To minimize
research time required by the expert, the AI agent can also pro-
vide any documents retrieved from the reference corpus. Thus
the expert’s task is reduced to formulation of a bona fide an-
swer to the question represented. This process closes the loop
of generating trusted answers to the questions provided to the
customer with minimal investment of human supervision. An
schematic presentation of the process is shown in Fig. 2.

3 Discussion

We have described a process of radically reducing investment of
human time required to generate and maintain the data neces-
sary for implementing an AI agent for question and answer. We
hope to refine and generalize this work in a number of ways, in-
cluding implementing optimal algorithms for selection of topic
models and cluster, novel strategies for information retrieval
from the reference corpus, event detection for trending ques-
tions in a continuously updated inquiry corpus, and evaluation
of a system resulting from the method in comparison to manu-
ally constructed and curated knowledge bases.
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Abstract
This paper describes an architecture that combines
the complementary strengths of declarative pro-
gramming, probabilistic graphical models, and re-
inforcement learning. Reasoning with different de-
scriptions of incomplete domain knowledge and
uncertainty is based on tightly-coupled representa-
tions at two different resolutions. For any given
goal, non-monotonic logical inference with the
coarse-resolution domain representation provides a
plan of abstract actions. Each abstract action is
implemented as a sequence of concrete actions by
reasoning probabilistically over a relevant part of
the fine-resolution representation, committing high
probability beliefs to the coarse-resolution repre-
sentation. Unexplained plan step failures trigger re-
lational reinforcement learning for incremental and
interactive discovery of domain axioms. These ca-
pabilities are illustrated in simulated domains and
on a physical robot in an indoor domain.

1 Introduction
Consider a robot assisting humans in locating and moving
objects to specific places in an office with multiple rooms.
While the robot typically needs considerable domain knowl-
edge to perform these tasks, it is difficult for humans to pro-
vide comprehensive domain knowledge. The robot may be
equipped with some commonsense knowledge, e.g., “books
are usually in the library”, and exceptions to this knowl-
edge, e.g., “cookbooks are in the kitchen”. In addition, the
robot’s actions are non-deterministic, and any information ex-
tracted from sensor inputs is likely to be incomplete and un-
reliable. To assist humans in such domains, the robot thus
has to represent knowledge, reason, and learn, at both the
sensorimotor level and the cognitive level. This objective
maps to some fundamental challenges in knowledge repre-
sentation, reasoning, and learning. For instance, the robot has
to encode and reason with commonsense knowledge such that
the semantics are readily accessible to humans, while also
quantitatively modeling the uncertainty in sensing and actu-
ation. Furthermore, for computational efficiency, the robot
has to tailor sensing and actuation to tasks at hand, incremen-
tally and interactively revising its knowledge over time. As a

step towards addressing these challenges, the architecture de-
scribed in this paper combines the knowledge representation
and non-monotonic logical reasoning capabilities of declara-
tive programming, with the uncertainty modeling capabilities
of probabilistic graphical models, and the incremental and in-
teractive learning capability of reinforcement learning. Key
features of this architecture are:
• An action language describes transition diagrams of the do-

main at two resolutions, with the fine-resolution diagram
being a refinement of the coarse-resolution diagram.

• For any given goal, non-monotonic logical reasoning with
the coarse-resolution commonsense knowledge provides a
tentative plan of abstract actions.

• Each abstract action is implemented probabilistically as a
sequence of fine-resolution concrete actions, by zooming
to the relevant part of the fine-resolution diagram and con-
structing suitable data structures.

• Unexplained plan step failures trigger incremental and in-
teractive discovery of previously unknown domain axioms
using relational reinforcement learning.

In our architecture, we translate the coarse-resolution rep-
resentation to an Answer Set Prolog (ASP) program, and
construct a partially observable Markov decision process
(POMDP) for probabilistic planning. The architecture has
been demonstrated to support reasoning with violation of de-
faults, noisy observations, and unreliable actions in large,
complex domains [Colaco and Sridharan, 2015; Zhang et al.,
2015; Sridharan et al., 2016; Zhang et al., 2014]. Here, we
summarize the technical contributions, and some results of
experimental trials in simulation and on a mobile robot mov-
ing objects to specific places in an office domain.

2 Related Work
Knowledge representation, reasoning, and learning are well-
researched areas in robotics and AI. Logic-based represen-
tations and probabilistic graphical models have been used
to control sensing, navigation and interaction for robots and
agents [Bai et al., 2014; Galindo et al., 2008]. Formulations
based on probabilistic representations (by themselves) make
it difficult to perform commonsense reasoning, whereas clas-
sical planning algorithms and logic programming tend to re-
quire considerable prior knowledge of the domain and the
agent’s capabilities. For instance, theories of reasoning about
action and change, and the non-monotonic logical reasoning
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ability of ASP have been used by an international community
for controlling the behavior of one or more robots [Balduccini
et al., 2014; Saribatur et al., 2014]. However, ASP does not
support probabilistic representation of uncertainty, whereas
a lot of information extracted from sensors and actuators is
represented probabilistically.

Researchers have designed architectures that combine de-
terministic and probabilistic algorithms for task and motion
planning [Kaelbling and Lozano-Perez, 2013], or combine
a probabilistic extension of ASP with POMDPs for human-
robot dialog [Zhang and Stone, 2015]. Recent work used a
three-layered organization of knowledge and reasoning, and
combined first-order logic with probabilistic reasoning for
open world planning [Hanheide et al., 2015]. Some popular
formulations that combine logical and probabilistic reason-
ing include Markov logic network [Richardson and Domin-
gos, 2006], Bayesian logic [Milch et al., 2006], and proba-
bilistic extensions to ASP [Baral et al., 2009; Lee and Wang,
2015]. However, algorithms based on first-order logic do not
provide the desired expressiveness—they do not support non-
monotonic logical reasoning, and it is not always possible to
express degrees of belief quantitatively, e.g., by adding prob-
abilities to logic statements. Algorithms based on logic pro-
gramming do not support all the desired capabilities such as
incremental revision of (probabilistic) information, and rea-
soning with a large probabilistic component.

Many tasks that require an agent to learn from repeated
interactions with the environment have been posed as Re-
inforcement Learning (RL) problems [Sutton and Barto,
1998]. As a step towards addressing fundamental chal-
lenges such as scaling and transfer of learned knowledge, re-
lational RL (RRL) combines relational representations with
regression for generalization [Dzeroski et al., 2001]. Exist-
ing approaches, however, use RRL for planning, and gen-
eralization is limited to a single MDP for a specific plan-
ning task [Driessens and Ramon, 2003; Gartner et al., 2003;
Tadepalli et al., 2004].

As a step towards addressing the challenges described
above, we have developed architectures that couple declar-
ative programming, probabilistic graphical models, and rein-
forcement learning [Sridharan et al., 2016; 2015; Zhang et
al., 2015]. Here, we describe the architecture, and illustrate
its capabilities in simulation and in the context of a physical
robot assisting in an office domain.

3 Architecture Description
Figure 1 shows the components of our architecture. We illus-
trate the components using the following examples.

Office Domain: Consider a robot that is assigned the goal of
moving specific objects to specific places in an office. This
domain contains:

• Sorts such as place, thing, robot, and ob ject, with
ob ject and robot being subsorts of thing. Sorts textbook,
printer and kitchenware, are subsorts of ob ject. Also,
sorts for object attributes color, shape, and size.

• Four specific places: o f f ice, main library, aux library,
and kitchen. We assume that these places are accessible

ASP

POMDP
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Probabilistic
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actions,

fluents action outcomes

Non−monotonic
logical reasoning

Representation

Coarse−resolution

Representation

Fine−resolution
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Reinforcement
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Figure 1: Architecture integrates the complementary
strengths of declarative programming, probabilistic graphical
models, and reinforcement learning, for knowledge represen-
tation, reasoning, and learning, with qualitative and quantita-
tive descriptions of knowledge and uncertainty.

from each other without the need to navigate any corri-
dors, and that doors between these places are open.

• An instance of sort robot, called rob1. Also, a number of
instances of subsorts of the sort ob ject in specific places.

In this domain, coarse-resolution reasoning considers the lo-
cation of objects in places, while fine-resolution reasoning
considers the location of objects in grid cells in these places.
As an additional example used to illustrate the relational re-
inforcement learning, consider:

Blocks World (BW): a tabletop domain where the robot’s
objective is to stack blocks characterized by different col-
ors, shapes, and sizes, in specific configurations on a table.
The sorts of the BW domain include elements such as block,
place, color, shape, size, and robot. A scenario with four
blocks of the same size corresponds to ⇡ 70 states under a
standard RL/MDP formulation [Dzeroski et al., 2001]. In this
domain, the robot may not know, for instance, that no block
can be placed on a prism-shaped block.

Action Language: The transition diagrams of our architec-
ture’s coarse-resolution and fine-resolution domain represen-
tations are described in an action language AL [Gelfond and
Kahl, 2014]. AL has a sorted signature containing three
sorts: statics (domain properties whose truth values cannot
be changed by actions), f luents (domain properties whose
values can be changed by actions) and actions (elementary
actions that can be executed in parallel). AL allows three
types of statements: causal laws, state constraints and exe-
cutability conditions.

3.1 Coarse-Resolution Planning and Diagnosis
The coarse-resolution domain representation has a system
description DH and histories with defaults H . DH con-
sists of a sorted signature (SH ) that defines the names
of objects, functions, and predicates available for use,
and axioms to describe the coarse-resolution transition di-
agram tH . Examples of sorts in the example domain are

 25 



place, thing, and robot. The fluents and actions are de-
fined in terms of their arguments, e.g., in our domain,
loc(thing, place) and in hand(robot,ob ject) are some iner-
tial fluents1, and move(robot, place), grasp(robot,ob ject),
putdown(robot,ob ject), and put(ob ject,ob ject) are some
actions. Examples of axioms include causal laws such as:

move(R,Pl) causes loc(R,Pl)
grasp(R,Ob) causes in hand(R,Ob)

state constraints such as:

¬loc(Ob,Pl1) if loc(R,Pl2), Pl1 6= Pl2
loc(Ob,Pl) if loc(R,Pl), in hand(R,Ob)

and executability conditions such as:

impossible move(R,Pl) if loc(R,Pl)
impossible grasp(R,Ob) if loc(R,Pl1), loc(Ob,Pl2),

Pl1 6= Pl2
impossible grasp(R,Ob) if in hand(R,Ob)

The recorded history of a dynamic domain is usually a
record of (a) fluents observed to be true at a time step
obs( f luent,boolean,step), and (b) the occurrence of an ac-
tion at a time step hpd(action,step). Our architecture ex-
pands on this view by allowing histories to contain (priori-
tized) defaults describing the values of fluents in their initial
states. For instance, the default “textbooks are typically in the
main library. If a textbook is not there, it is in the auxiliary
library. If the textbook is not there either, it is in the office”
can be represented elegantly as:

initial default loc(X ,main library) if textbook(X)

initial default loc(X ,aux library) if textbook(X),

¬loc(X ,main library)
initial default loc(X ,o f f ice) if textbook(X),

¬loc(X ,main library),
¬loc(X ,aux library)

This coarse-resolution domain representation is transformed
into a program P(DH ,H ) in CR-Prolog that incorporates
consistency restoring (CR) rules in ASP [Gelfond and Kahl,
2014]. ASP is based on stable model semantics and non-
monotonic logics, and includes default negation and epis-
temic disjunction, e.g., unlike ¬a that states a is believed to be
false, not a only implies that a is not believed to be true, and
unlike “p _ ¬p” in propositional logic, “p or ¬p” is not a
tautology. ASP can represent recursive definitions, defaults,
causal relations, and constructs that are difficult to express
in classical logic formalisms. The ground literals in an an-
swer set obtained by solving P represent beliefs of an agent
associated with P; statements that hold in all such answer

1Inertial fluents obey the laws of inertia and can be changed di-
rectly by actions, while defined fluents are not subject to inertia ax-
ioms and cannot be changed directly by an action.

sets are program consequences. Algorithms for computing
the entailment of CR-Prolog programs, and for planning and
diagnostics, reduce these tasks to computing answer sets of
CR-Prolog programs. P consists of causal laws of DH , iner-
tia axioms, closed world assumption for defined fluents, real-
ity checks, and records of observations, actions, and defaults,
from H . Every default is turned into an ASP rule and a
CR rule that allows the robot to assume, under exceptional
circumstances, that the default’s conclusion is false, so as
to restore program consistency—see [Sridharan et al., 2015;
Zhang et al., 2014] for formal definitions of states, entail-
ment, and models for consistent inference.

In addition to planning, the architecture supports reason-
ing about exogenous actions to explain the unexpected (ob-
served) outcomes of actions [Balduccini and Gelfond, 2003].
For instance, to reason about a door between two rooms being
locked unexpectedly (e.g., by a human), we introduce exoge-
nous action locked(door) and add the axioms:

is open(D)  open(R,D), ¬ab(D)

ab(D)  locked(D)

where a door is considered abnormal, i.e., ab(D), if it has
been locked, say by a human. Actions and suitable axioms
are included for other situations in a similar manner. We also
introduce an explanation generation rule and a new relation
expl as follows:

occurs(A, I) | ¬ occurs(A, I)  exogenous action(A)
I < n

expl(A, I)  action(exogenous,A),
occurs(A, I), not hpd(A, I)

where expl holds if an exogenous action is hypothesized but
there is no matching record in the history. We also include
awareness axioms and reality check axioms:

% awareness axiom
holds(F,0) or ¬ holds(F,0)  f luent(basic,F)

occurs(A, I)  hpd(A, I)
% reality checks
 obs( f luent, true, I), ¬ holds( f luent, I)
 obs( f luent, f alse, I), holds( f luent, I)

The awareness axioms guarantee that an inertial fluent’s value
is always known, and that reasoning takes into account ac-
tions that actually happened. The reality check axioms cause
a contradiction when observations do not match expectations,
and the explanation for such unexpected symptoms can be re-
duced to finding (and extracting suitable statements from) the
answer set of the corresponding program [Gelfond and Kahl,
2014]. The new knowledge is included in the ASP program
and used for subsequent inference. This approach provides
all explanations of an unexpected symptom. The other option
is to use a CR rule instead of the explanation generation rule:

occurs(A, I) + exogenous action(A), I < n

where the robot assumes the occurrence of an exogenous ac-
tion, under exceptional circumstances, to restore consistency.
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the set of CR rules with the smallest cardinality is consid-
ered to be the minimal explanation. The architecture also in-
cludes a similar approach (with CR rules) to reason about par-
tial scene descriptions, e.g., properties of objects and events,
extracted from sensor inputs such as camera images. Given
ideal descriptions of domain objects, and partial descriptions
extracted from sensor input, candidate explanations are sets
of CR rules that can be triggered to explain the descriptions,
the set with lowest cardinality is the minimal explanation—
see [Colaco and Sridharan, 2015] for more details.

3.2 Fine-Resolution Probabilistic Planning
For any given goal, the answer set obtained by ASP-based
coarse-resolution inference includes a sequence of abstract
actions. Each such action aH in state s of tH is executed by
probabilistic reasoning at a fine-resolution. This reasoning
includes three steps:

1. Define the fine-resolution version of the coarse-
resolution transition diagram and randomize it.

2. Zoom to the part of the randomized fine-resolution tran-
sition diagram that is relevant to the execution of aH .

3. Construct a POMDP from the zoomed part, solve it to
obtain a policy, and use policy to execute a sequence of
concrete actions.

The fine-resolution system description DL has a sorted signa-
ture SL and axioms that describe transition diagram tL. Un-
like the coarse-resolution representation, the fine-resolution
representation implicitly includes a history of observations
and actions—the current state is assumed to be the result of
all information obtained in previous time steps. SL inher-
its the sorts, fluents, actions, and axioms from the coarse
resolution signature and introduces new ones (or revised
versions) that are viewed as components of their coarse-
resolution counterparts. For instance, sorts room and cell
are subsorts of place, while new fluent loc(thing,cell) rep-
resents the cell location of things in the domain. Since action
execution is considered to be non-deterministic in the fine-
resolution representation, we introduce new fluents to keep
track of observations, e.g., observed( f luent,value,outcome),
with outcomes = {true, f alse,undet}, keeps track of the ob-
served values of specific fluents. New actions are also intro-
duced, e.g., test(robot, f luent,value) is used to test a fluent
for a specific value. In addition, we define new statics to de-
scribe relations between the new sorts, and new axioms that
describe the relations between the coarse-resolution elements
and their fine-resolution counterparts. We specify a sequence
of steps that defines the fine-resolution transition diagram as
a refinement of the coarse-resolution diagram such that, for
every state transition T = hs ,aH ,s 0i in tH , there is a path in
tL from state s compatible with s , to some state compatible
with s 0—see [Sridharan and Gelfond, 2016] for details.

The certainty of the robot’s observations and the effects
of the actions executed are only known with some degree
of probability. We model this uncertainty by randomizing
DL, i.e., by replacing the deterministic causal laws in DL by
non-deterministic ones and modifying the signature to declare
each affected fluent as a random fluent. The randomized sys-
tem description DLR is used in semi-supervised experimen-

tal trials to collect statistics and compute the probabilities of
action outcomes and reliability of observations. Reasoning
probabilistically over DLR can result in incorrect behavior and
be computationally intractable for complex domains. To exe-
cute any given abstract action aH in state s of tH , the archi-
tecture thus zooms to DLR(T ), the part of DLR that is relevant
to the execution of aH—see [Sridharan and Gelfond, 2016]
for details.

Next, DLR(T ) is used to construct a POMDP defined by
the tuple hSL,AL,ZL,T L,OL,RLi for a specific goal state. The
first three elements are the set of states, actions, and the val-
ues of observable fluents. The next two elements are the
transition function T L : SL ⇥AL ⇥S0L ! [0,1], which defines
the probabilistic state transitions, and the observation func-
tion OL : SL ⇥ AL ⇥ ZL ! [0,1], which defines the proba-
bility of observing the values of observable fluents by exe-
cuting knowledge producing actions in specific states—these
actions do not change the physical state. Functions T L and
OL describe a probabilistic transition diagram over the be-
lief state using the statistics collected experimentally. The
reward specification RL : SL ⇥ AL ⇥ S0L ! ¬ is used to en-
code the relative cost or utility of taking specific actions in
specific states, based on the goal state that is to be achieved.
Since the true state is partially observable, planning computes
a policy p : bt ! at+1 that maximizes the cumulative reward
over a planning horizon to map belief states, i.e., probability
distributions over the states, to actions. The POMDP tuple
is constructed using data structures that allow the use of ex-
isting (approximate) POMDP solvers. Plan execution uses
the policy to repeatedly choose an action in the current belief
state, and updates the belief state after executing that action
and receiving an observation:

bt+1(st+1) µ O(st+1,at+1,ot+1)Â
s

T (s,at+1,st+1) ·bt(s)

Policy execution is terminated by a transition to a terminal
state. In our case, this transition occurs because the proba-
bility of one of the states is very high, or because none of
the states are very likely and there is no value in executing
the policy further—the latter case is interpreted as the inabil-
ity to execute aH . The corresponding action outcomes are
added as statements to the history in the coarse-resolution
description—see [Sridharan et al., 2015] for details about
constructing and solving the POMDP.

Constructing and solving a POMDP can become compu-
tationally inefficient for complex domains, e.g., rooms with
many cells connected to many other rooms, even with sophis-
ticated POMDP solvers. To address this problem, we have
explored reasoning in ASP at a finer resolution (e.g., areas
in places instead of places), with selective grounding of the
variables [Colaco and Sridharan, 2015]. Our prior work has
also explored hierarchical decompositions of POMDPs for re-
liable and efficient operation [Sridharan et al., 2010].

3.3 Reinforcement Learning
Consider the task of stacking books in the main library in
our illustrative domain, and assume that the axiom “larger
books cannot be stacked on smaller books” is not known to
the robot. Generating and executing plans that do not take this
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Figure 2: Illustrative example of a planned goal state that the
robot cannot achieve.

axiom into account will result in the robot failing to accom-
plish the desired objective of stacking the books. Similarly,
in the BW domain, a robot that does not know the axiom “no
block can be placed on a prism-shaped block”, and asked to
stack any three of the four blocks placed on a table, may at-
tempt to reach the goal configuration shown in Figure 2. The
first action in the corresponding plan: move(b1,b0) followed
by move(b2,b1), will result in a failure that cannot be ex-
plained. Our architecture supports incremental discovery of
unknown axioms governing domain dynamics, by integrating
relational reinforcement learning (RRL). The current beliefs
of the robot, and the system descriptions at the two resolu-
tions, are used to formulate the task of incrementally discov-
ering domain axioms as an RL problem. Ideally, the state
should be estimated using the fine-resolution representation
and the corresponding (POMDP) belief states. However, to
explore the feasibility of RRL for discovering axioms, our
current RRL implementation abstracts away the uncertainty
in perception and consider the corresponding MDP. Further-
more, we currently focus on discovering executability con-
ditions for actions in the coarse-resolution description, i.e.,
axioms that encode the conditions under which each specific
action cannot be executed.

Axioms in the coarse-resolution ASP program eliminate
impossible state transitions in the RL formulation. In the
RL formulation, the goal (achieving which provides high re-
wards) is set to be the state that resulted in the unexplained
plan step failure. Over repeated episodes of Q-learning,
the relative values of different state-action pairs (i.e., the Q-
values) are computed. Once the Q-values converge, this ap-
proach can identify specific ground actions that should not
be attempted. However, these axioms may conflict with ex-
isting axioms, or include specific instances of more general
axioms. Conflicts can be identified as inconsistencies in the
answer set of the corresponding ASP program. To discover
the general axioms, we first support generalization within the
MDP, using state-action pairs visited in a set of episodes to
construct a binary decision tree—each path from the root to
a leaf corresponds to a state-action pair, and individual nodes
are specific fluents. This tree is used to provide a policy for
the subsequent episode(s). When Q-learning is terminated,
this tree relationally represents the robot’s experiences. The
second step simulates similar errors (to the one that triggered
RRL) and considers the corresponding MDPs. The Q-value

of a state-action pair is now the the weighted average of the
values across different MDPs—the weight is inversely pro-
portional to the distance to the goal state based on the optimal
policy for the MDP. These similar MDPs may be chosen us-
ing the information encoded in the ASP program. The third
step identifies candidate axioms by constructing training sam-
ples based on specific actions and the corresponding related
fluents encoded in the binary decision tree. These training
samples are used to construct a decision tree in which each
path from the root node to a leaf is a candidate executability
condition. The final step considers all candidate axioms for
different actions, and uses K-means algorithm to cluster these
candidates based on their value. The axioms that fall within
the cluster with the largest mean are considered to represent
generalized axioms, and are added to the ASP program to be
used in the subsequent steps—see [Sridharan et al., 2016] for
details about our RRL approach.

4 Summary of Experimental Results
This section summarizes some experimental results in simu-
lation and on physical robots to demonstrate the capabilities
of the architecture—for more information, please see [Colaco
and Sridharan, 2015; Sridharan et al., 2015; Sridharan and
Gelfond, 2016; Sridharan et al., 2016]. The simulator uses
models that represent objects using probabilistic functions of
features extracted from images, and models that reflect the
robot’s motion and perception capabilities.

First, consider an execution scenario in which the robot is
in the o f f ice, and it is assigned the goal of moving a spe-
cific textbook tbk to the o f f ice. Based on default knowledge
(about the location of textbooks), the robot creates a plan of
abstract actions:

move(rob1,main library), grasp(rob1, tbk)
move(rob1,o f f ice), putdown(rob1, tbk)

where the robot rob1 will have to search for tbk in the
main library before grasping it. Each action is executed
probabilistically by constructing and solving the correspond-
ing POMDP, as described above.

Next, consider the comparison of the proposed architecture
(henceforth “PA”) with just using POMDPs (“POMDP-1”) in
simulation trials. In these trials, the objective of the robot
was to move specific objects (with unknown locations) to spe-
cific places in the domain. Note that POMDP-1 includes a
hierarchical decomposition to make the task of solving the
POMDPs computationally tractable [Zhang et al., 2013]. The
POMDP solver is given a fixed amount of time to compute ac-
tion policies. An object’s location in a cell is assumed to be
known with certainty if the probabilistic belief (of the object’s
existence in the cell) exceeds a threshold (0.85). The robot’s
ability to successfully complete the task is shown in Figure 3
as a function of the number of cells in the domain; each data
point is the average of 1000 trials, and each room has four
cells. As the number of cells increases, it becomes compu-
tationally difficult to generate good POMDP action policies
that, in conjunction with incorrect observations, significantly
impacts the ability to complete the trials. PA focuses the
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Figure 3: With limited policy computation time, PA is much
more accurate than POMDPs as the number of cells increases.

Figure 4: Comparing the rate of convergence of Q-RRL with
that of Q-learning—Q-RRL converges much faster.

robot’s attention on relevant rooms and cells to improve com-
putational efficiency while still maintaining high accuracy—
for larger domains, there is a drop in accuracy but the impact
is much less pronounced.

The time taken by PA to generate a plan was also com-
puted as a function of the domain size (characterized as the
number of rooms and objects). PA generates appropriate
plans for domains with a large number of rooms and ob-
jects. Using only the knowledge relevant to the goal sig-
nificantly reduces the planning time in comparison with us-
ing all the domain knowledge available. This relevant part
of the domain knowledge can be identified using the rela-
tions encoded in the coarse-resolution description. We also
compared PA with POMDP-1 on a wheeled robot deployed
on multiple floors of an office building. POMDP-1 takes
1.64 as much time as PA to move specific objects to spe-
cific places; this 39% reduction in execution time is statis-
tically significant. Furthermore, we instantiated and evalu-
ated our architecture in a different domain, e.g., of a robot
waiter assisting in seating people and delivering orders in a
restaurant. Results indicated that a purely probabilistic ap-
proach takes twice as much time as PA to locate and move
objects to specific places. Videos of experimental trials can
be viewed online: http://youtu.be/8zL4R8te6wg,
https://vimeo.com/136990534

Next, to evaluate the robot’s ability to discover previously
unknown executability conditions, we designed multiple sim-
ulated trials in which the robot had to arrange objects in

specific configurations. Some axioms were hidden from the
robot, resulting in failure when certain intermediate config-
urations were reached. Rewards were provided by the sim-
ulator based on the success or failure of the plan. The robot
successfully identified actions that could not be executed, and
added suitable axioms to the coarse-resolution system de-
scription. For instance, in the BW domain, Figure 4 shows
the rate of convergence of the average Q-values obtained us-
ing Q-RRL (i.e., our approach for relational reinforcement
learning) is much better than that of Q-learning. It does not
matter whether the actual average Q-values of Q-Learning are
higher or lower than those of Q-RRL. In the BW domain, the
robot also successfully discovered that no object should be
stacked on a prism-shaped object:

impossible move(A,D) if has shape(D, prism)

In a similar fashion, in the context of stacking books in the
office domain, the robot discovered that bigger books should
not be stacked on smaller ones:

impossible put(B1,B2) if bigger(B1,B2), textbook(B1),

textbook(B2).

Including such axioms in the ASP program enables the robot
to generate plans that can be successfully executed to achieve
the desired goal state, e.g., stacking of blocks or books in a
desired configuration. For additional experimental results of
evaluating our RRL approach, see [Sridharan et al., 2016].

5 Conclusions
This paper described an architecture that combines the com-
plementary strengths of declarative programming, probabilis-
tic graphical models, and relational reinforcement learning
(RRL). Tentative plans created by reasoning with common-
sense knowledge in the coarse-resolution are implemented
in the fine-resolution using probabilistic algorithms, adding
statements to the coarse-resolution history. The incremental
and interactive discovery of previously unknown domain ax-
ioms is formulated as an RRL problem. Experimental results
indicate that the architecture supports reasoning and learning
at the sensorimotor level and the cognitive level, and scales
well to complex domains. These capabilities are important
for robots collaborating with humans. Future work on the
architecture will explore tighter coupling of the logical and
probabilistic reasoning, and extensive trials on robots collab-
orating with humans in different domains.
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