
Optimizing Web Service Composition While

Enforcing Regulations

Shirin Sohrabi and Sheila A. McIlraith

Department of Computer Science, University of Toronto, Toronto, Canada
{shirin,sheila}@cs.toronto.edu

Abstract. To direct automated Web service composition, it is com-
pelling to provide a template, workflow or scaffolding that dictates the
ways in which services can be composed. In this paper we present an
approach to Web service composition that builds on work using AI plan-
ning, and more specifically Hierarchical Task Networks (HTNs), for Web
service composition. A significant advantage of our approach is that it
provides much of the how-to knowledge of a choreography while enabling
customization and optimization of integrated Web service selection and
composition based upon the needs of the specific problem, the preferences
of the customer, and the available services. Many customers must also be
concerned with enforcement of regulations, perhaps in the form of corpo-
rate policies and/or government regulations. Regulations are tradition-
ally enforced at design time by verifying that a workflow or composition
adheres to regulations. Our approach supports customization, optimiza-
tion and regulation enforcement all at composition construction time. To
maximize efficiency, we have developed novel search heuristics together
with a branch and bound search algorithm that enable the generation
of high quality compositions with the performance of state-of-the-art
planning systems.

1 Introduction

Increasingly, corporations are providing services within and between organiza-
tions by publishing programs on corporate intranets or on the World Wide Web.
Many of these programs represent component software that can be composed
together either manually or automatically to provide value-added service. To
direct automated Web Service Composition (WSC), it is compelling to provide
some sort of template, workflow or scaffolding that dictates the ways in which
services can be composed while leaving enough flexibility for different possible
realizations of the programs within the template. A template-based composition
is compelling for many applications in domains including e-science (e.g., [1]),
e-government (e.g., [2]), and Grid computing (e.g., [3]).

A WSC template is designed with respect to a particular task to be performed.
It provides high-level guidance on how to perform a task, but leaves many of
the details to run-time synthesis. For many WSC problems, the task can be
realized by a diversity of different services, offering comparable, but not identi-
cal services. Also unknown at the outset is the data that serves as choice points

A. Bernstein et al. (Eds.): ISWC 2009, LNCS 5823, pp. 601–617, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

602 S. Sohrabi and S.A. McIlraith

in a WSC – the availability of goods, their properties and pricing, etc. A compo-
sition template streamlines the generation of a problem, and customer-specific
WSC, while enabling the individual customer to customize the composition with
respect to their preferences and constraints and/or those of the corporation they
work for, the laws of the countries in which they are doing business, etc.

A composition template can be represented in a variety of different ways. One
way to represent a template is to use a workflow or a flowchart. This can be ex-
pressed pictorially as a schematic or alternatively in a form akin to a procedural
programming language. The Algol-inspired Golog agent programming language
provides one such procedural language (e.g., [4]). Indeed, the first template-based
approach to WSC exploited Golog to provide a so-called generic procedure that
provided a template specification of the composition [5,6]. The Golog procedures
were combined with individual user constraints (e.g., “I want to fly with a star
alliance carrier”) at run time, resulting in dynamic binding of Web services.
However, the user constraints considered were hard constraints, i.e., realizations
that did not satisfy those constraints were eliminated. In [7], we extended this
framework to be able to deal with soft user constraints (i.e., preferences). The
proposed preference language handled a wide variety of user constraints. It en-
abled the synthesis of a composition of services, where the selection of services
and service groundings (e.g., in the case of travel, the selection of the specific
flight) was customized to individual users at run time. Unfortunately, the imple-
mentation of the system, GologPref was not optimized.

Another type of composition template that can be used is based on Hier-
archical Task Networks (HTNs) [8]. Like Golog, HTNs provide useful control
knowledge — advice on how to perform a composition. However, this how-to
knowledge is specified as a task network. The task network provides a way of
hierarchically abstracting the composition into a set of tasks that need to be
performed and that decompose in various ways into leaf nodes realized by pro-
grams. Sirin et al. [9] used SHOP2, a highly-optimized HTN planner for the task
of WSC. The HTN induces a family of compositions and the if-then-else ordering
of SHOP2 provided a means of reflecting a preference for achieving a task one
way over another. However this limited form of preference was hard-coded into
the SHOP2 domain description (i.e., the method description) and could not be
customized by an individual user without recoding the HTN. In [10], an HTN-
DL formalization was proposed in which they combined reasoning about Web
service ontologies using a DL reasoner with HTN planning. Like their prede-
cessor, they exploited SHOP2 domain ordering to reflect preferences, but these
were again not easily customizable to an individual user. They further provided
a means of preferring services according to their class descriptions, but did not
optimize the selection of service groundings.

Most recently, Lin et al. [11] proposed an algorithm for HTN planning with
preferences described in the Planning Domain Definition Language PDDL3 [12]
that did allow for preferences over service groundings. They implemented a pro-
totype of the algorithm in a planner, scup, tailored to the task of WSC. A merit
of this work over previous HTN work is that it is not restricted to SHOP2 syntax

Optimizing Web Service Composition While Enforcing Regulations 603

and as such provides the nondeterminism (flexibility) necessary for preference-
based planning. Unfortunately, the ability of the planner to deal with preferences
was somewhat limited. In particular, it appears to be unable to handle conflicting
user preferences. The authors indicate that conflicting preferences are removed
(rather than resolved) during a pre-processing step prior to run time.

In this paper, we build on our previous work on GologPref, our previous work
on HTN planning with rich user preferences, and on the previous work of others
on HTN WSC to propose another template-based WSC system, based on HTN
planning, HTNWSC-P. Our work advances the state of the art by providing
an HTN-based WSC system that:

1. synthesizes compositions that adhere to policies and regulations expressed
as a subset of linear temporal logic (LTL);

2. exploits a preference language that is truly tailored to WSC with HTNs and
that can express preferences over how a task is to be decomposed, as well as
preferences over service and data selection;

3. imports and exploits OWL-S profiles for Web service selection;
4. synthesizes a composition that simultaneously optimizes, at run time, the

selection of services based on functional and non-functional properties and
their groundings, while enforcing stated regulations; and that

5. provides an implementation that combines HTN templates, the optimization
of rich user preferences, and adherence to LTL regulations within one sys-
tem, that reflects and exploits state-of-the-art techniques for planning with
preferences. In particular, we exploit our own recent work on HTN planning
with preferences [13] as the computational foundation for HTNWSC-P.

Elaborating on the first point, many customers must be concerned with enforce-
ment of regulations, perhaps in the form of corporate policies and/or government
regulations. Software that is developed for use by a particular corporation or ju-
risdiction will have the enforcement of such regulations built in. For Web services
that are published for use by the masses this is not the case, and the onus is
often on the customer to ensure that regulations are enforced when a work-
flow is constructed from multiple service providers. For inter-jurisdictional or
international business, different regulations may apply to different aspects of the
composition. In this paper we provide a mechanism for generating compositions
from templates that adhere to such regulations.

Figure 1 provides a high-level depiction of our WSC framework. We assume
that Web services are described in OWL-S, a leading ontology for describing
Web services [14]. We also assume that the composition template (e.g., for trip
planning, commodity purchasing, etc.) is described in OWL-S, though it need
not be. The user’s task (e.g., the specifics of the trip) are specializations of the
composition template. We provide a translation from OWL-S to HTN that not
only translates OWL-S process models, but also translates service profiles (see
Section 2). A user’s task, is translated to an initial task network in the HTN
framework. User preferences and regulations are also important elements of the
structure and could be described within an OWL ontology, though likely not in a

604 S. Sohrabi and S.A. McIlraith

.

.

Web Service 1

Web Service 2

Web Service K

.

HTN Domain Description

OWL−S Ontology

HTNWSC−P

User Preferences

OWL−S to HTN

User Task

Regulations

HTN Plan

WSC

Fig. 1. The overall structure of our composition framework

way that preserves their semantics given their description in LTL. We do not ad-
dress this issue in the paper. Our HTN WSC planner, HTNWSC-P, then takes
user preferences specified in PDDL3 syntax (see Section 3) along with a user’s
task specified as an initial task network and computes a preferred plan, prun-
ing plans that do not meet the imposed regulations specified by LTL formulae.
The final HTN plan is then converted to a composition of Web services. In the
sections that follow, we elaborate on individual components of our framework.

2 Preliminaries

In this section, we first overview OWL-S [14], a Web ontology for Web services.
Next, we describe HTN planning [8] and show how OWL-S can be translated
into HTN. The translation is similar to [9], but has some key differences that
make service selection based on the non-functional properties possible.

2.1 OWL-S

OWL-S [14] is a Web ontology [15] for Web services with a view to supporting
automated discovery, enactment and composition of Web services. The OWL-
S ontology has three major components: service profile, process model, service
grounding. The service profile is used to advertise the service by describing its
functional properties (i.e., input, output, precondition, and effects) and non-
functional properties (e.g., service trust, reliability, subject, cost, etc.). The pro-
cess model describes how the service works, similar to workflow. Finally, service
grounding explains how to interact with the service.

OWL-S defines three classes of processes: atomic, composite and simple pro-
cesses. Each process has input, output, precondition and effects. Atomic pro-
cesses have no subprocesses and can be executed in a single step. Simple
processes provide an abstract view for an existing process. However, unlike
atomic processes a simple process is not associated with a grounding. A com-
posite process is composed of other processes via control constructs such as
Sequence, Split, Any-Order, Choice, If-Then-Else, Repeat-While, Repeat-Until,
and Iterate.

Optimizing Web Service Composition While Enforcing Regulations 605

Web service composition systems generally translate OWL-S process mod-
els into internal representations such as HTN, PDDL, or Golog that are more
amenable to AI planning [7,9,10,11]. Our approach to WSC also translates OWL-
S description into an HTN planning problem. In the next section, we briefly
describe HTN planning and then describe this translation.

2.2 HTN Planning

Hierarchical Task Network (HTN) planning [8] is a popular and widely used
planning paradigm that has been shown to be promising for the task of Web
service composition (e.g., [9,11]). In HTN planning, the planner is provided with
a set of tasks to be performed, together with a set of so-called methods that tell
how to decompose tasks into subtasks. Given an initial task network, a plan is
formulated by repeatedly decomposing tasks into smaller and smaller subtasks
until a primitive decomposition of the initial task network is found. Most of the
basic definitions that follow originate in [8].

Definition 1 (HTN Planning Problem). An HTN planning problem is a
3-tuple P = (s0, w0, D) where s0 is the initial state, w0 is a task network called
the initial task network, and D is the HTN planning domain which consists of a
set of operators and methods.

A domain is a pair D = (O, M) where O is a set of operators and M is a set of
methods. An operator is a primitive action, described by a triple o =(name(o),
pre(o), eff(o)), corresponding to the operator’s name, preconditions and effects.

A task consists of a task symbol and a list of arguments. A task is primi-
tive if its task symbol is an operator name and its parameters match, otherwise
it is nonprimitive. A method, m, is a 4-tuple (name(m), task(m),subtasks(m),
constr(m)) corresponding to the method’s name, a nonprimitive task and the
method’s task network, comprising subtasks and constraints. Method m is rel-
evant for a task t if there is a substitution σ such that σ(t) =task(m). Several
methods can be relevant to a particular nonprimitive task t, leading to different
decompositions of t. An operator o may also accomplish a ground primitive task
t if their names match.

Definition 2 (Task Network). A task network is a pair w=(U, C) where U
is a set of task nodes and C is a set of constraints. The constraints normally
considered are of type precedence constraint, before-constraint, after-constraint
or between-constraint.

Definition 3 (Plan). π = o1o2 . . . ok is a plan for HTN planning program P if
there is a primitive decomposition, w, of w0 of which π is an instance.

2.3 From OWL-S to HTN

In this section, we describe how to translate an OWL-S description into an
HTN planning domain and problem. We first describe how to encode an OWL-S

606 S. Sohrabi and S.A. McIlraith

process model as elements of HTN planning (i.e., operators and methods). Then
we describe how to encode the service profile. Encoding the service profile as a
component of HTN planning will enable users to specify preferences over how
to select services based on their non-functional properties (i.e., those specified
in the service profile).

Our translation is similar to that in [9]. In particular, we encode each atomic
process as an HTN operator just as in [9]. We also encode each composite and
simple process as an HTN method. Where our translation differs is that we as-
sociate each method with a unique name. Having a name for a method allows
preferences to refer to methods by their name. This is particularly important in
preferences that describe how to decompose a particular task. Since a task can
be realized by more than one method, being able to distinguish each method
by its name allows the user to express preferences over which methods they
prefer, or in other words, how they prefer the task to be realized. In the next
section, we will give examples of such preferences. Below we show how to trans-
late the Sequence construct. The translations for the rest of the constructs is
similar.

Translate-Sequence(Q)
Input: a OWL-S definition of a composite process Q in the form Q1;Q2;...;Qk with
Sequence control construct.
Output: an HTN method M.
Procedure:
(1) let v = the list of input parameters defined for Q
(2) let Pre = conjunct of all preconditions of Q
(3) for all i : 1 ≤ i ≤ k : let ni be a task node for Qi

(4) let C= {before(n1, P re), (ni, ni+1)|1 ≤ i < k}
(5) Return M = (Nm, Q(v), {n1, n2, ..., nk}, C), where Nm is a unique method name.

In addition, for every process and subprocesses in the process model that is
associated with a service (i.e., is executable on the Web), we compile its service
profile as extra properties of their corresponding HTN element. Hence, if an
atomic/composite process is associated with a service, its corresponding HTN
operator/method will be associated with that service profile. We capture this
extra property using a predicate isAssociatedWith.

For example, let us assume that the Air Canada service can be described by
an atomic process AP and service profile SP. In addition, assume that the ser-
vice profile SP hasName AirCanada, has-url www.aircanada.com, has-Language
English, has-trust high, has-reliability high. Then we will encode the atomic pro-
cess AP into an HTN operator with the same name as described above. Next, we
would capture the service profile of the service Air Canada associated with the
atomic process AP by the binary predicate isAssociatedWith(AP, SP). Note AP
is the name of the encoded HTN operator. In the case of composite process we
would have the name of the corresponding HTN method. The profile information
of the service profile SP would now be described by predicates has-language(SP,
English), has-trust(SP, High), and has-reliability(SP, High).

Optimizing Web Service Composition While Enforcing Regulations 607

3 WSC with Preferences

In this section, we describe the syntax of the preference language we use for
specifying user preferences. The preference language is an extension of the Plan-
ning Domain Definition Language, PDDL3 [12] that we proposed in [13]. The
preference language supports specification of preferences over how tasks are de-
composed analogous to how the process model is realized. It also allows users to
specify preferences over the non-functional properties of services as well as their
preferred parameterizations of tasks analogous to processes. The semantics of
the preference language is defined using the situation calculus [4]. We will not
discuss the semantics here and direct readers to [13].

Illustrative Example (Travel Example). To help illustrate our preference
language, consider the problem of arranging travel for a conference. The problem
can be viewed as having a top-level composite process bookTravelforConference
that is composed of several other composite processes via the Choice construct.
One of the composite processes among them can be viewed as a composite pro-
cess that is constructed via an Any-Order construct into registering for a con-
ference, arranging transportation, accommodations, local transportation, and
getting insurance for the trip. Each of these processes can be constructed via
the Choice construct to consider several different Web services that offer flights,
hotels, cars, trains, buses, insurance, etc.

3.1 Specifying Preferences in Our PDDL3 Extension

The Planning Domain Definition Language (PDDL) is a standard input language
for many planning systems. PDDL3 extends PDDL2.2 to support the specifica-
tion of preferences and hard constraints over state properties of a trajectory. In
[13], we extended PDDL3 to support preferences that are over how to decompose
tasks as well as expressing preferred parameterization of a task (i.e., constraints
over action properties). In the context of WSC and OWL-S, following the trans-
lation from OWL-S to HTN, how to decompose a tasks is analogous on how to
realize a service using its process model. This is particularly important when the
process model is constructed using the Choice construct and users may prefer
one choice over another. Each preference formula is given a name and a metric
value (i.e., penalty if the preference formula is not satisfied). The quality of a
plan is defined using a metric function. A lower metric value indicates higher
satisfaction of the preferences, and vice versa.

PDDL3 supports specification of preferences that are temporally extended
in a subset of Linear Temporal Logic (LTL). always, sometime, at-most-once,
sometime-after, sometime-before are among the constructs allowed in PDDL3.

We extended PDDL3 to give users the ability to express preferences over
how to decompose tasks as well as expressing preferences over the preferred pa-
rameterization of a task. We added three new constructs to PDDL3: occ(a),
initiate(x) and terminate(x), where a is a primitive task (i.e., an operator or
an atomic process), and x is either a task (i.e., a composite process’ name and its

608 S. Sohrabi and S.A. McIlraith

input parameters) or a method name (i.e., the unique method name assigned for
each method during the translation). occ(a) states that the primitive task a oc-
curs in the present state. On the other hand, initiate(t) and terminate(t) state,
respectively, that the task t is initiated or terminated in the current state. Sim-
ilarly, initiate(n) (resp. terminate(n)) states that the application of method
named n is initiated (resp. terminated) in the current state. Below are some ex-
amples from our travel domain given a particular origin Origin and destination
Dest1 that use the above extension.

(preference p1 (sometime-after (terminate arrange-trans)(initiate arrange-acc)))
(preference p2 (sometime-after (terminate arrange-acc)(initiate get-insurance)))
(preference p3 (always (not (occ (pay MasterCard)))))
(preference p4 (sometime (initiate (book-flight SA Eco Direct WindowSeat))))
(preference p5

(imply (different Origin Dest) (sometime (initiate by-flight-trans))))
(preference p6 (imply (and (hasBookedFlight ?Y)(hasAirline ?Y ?X)(member ?X SA))

(sometime (occ (pay ?Y CIBC)))))
(preference p7 (imply (hasBookedCar ?Z) (sometime (occ (pay ?Z AE)))))

p1 states that the task associated with the arrange-trans process is terminated
before the task associated with the arrange-acc process begins (for example: fin-
ish arranging your transportation before booking a hotel). Similarly, p2 states
that the task associated with the arrange-acc process is terminated before the
task associated with the get-insurance process begins. The p3 preference states
that the user never pays by Mastercard. Note here that payment with Master-
Card is thought of as an atomic process. The p4 preference states that at some
point the user books a direct economy window-seated flight with a Star Alliance
(SA) carrier. Here, booking a flight is believed to be a composite process. The
p5 preference states that if Origin and Dest are different, the user prefers that
at some point a method named by-flight-trans is chosen for decomposition of a
task (i.e., the arrange transportation process). The p6 preference states that if
a flight is booked with a Star Alliance (SA) carrier, pay using the user’s CIBC
credit card. Finally p7 preference states that if a car is booked, the user prefers
to pay with their American Express (AE) credit card.

The metric function defines the quality of a plan, generally depending on the
preferences that have been achieved by the plan. PDDL3 defines an is-violated
function, that takes as input a preference name and returns the number of times
the corresponding preference is violated. It is also possible to define whether
we want to maximize or minimize the metric, and how we want to weight its
different components. For example, the PDDL3 metric function:

(:metric minimize (+ (* 40 (is-violated p1)) (* 20 (is-violated p2))))

specifies that it is twice as important to satisfy preference p1 as to satisfy pref-
erence p2. Note that it is always possible to transform a metric that requires
maximization into one that requires minimization, henceforth, we will assume
that the metric is always being minimized.
1 For simplicity, many parameters have been suppressed. Variables start with ?

Optimizing Web Service Composition While Enforcing Regulations 609

Further note that inconsistent preferences are handled automatically using
the PDDL metric function as discussed above. The metric function is a weighted
sum of individual preference formulae. This function is then minimized by our
planning approach. In doing so, it makes an appropriate trade off between in-
consistent preferences so that it can optimize the metric function.

3.2 Service Selection Preferences

Service selection or discovery is a key component of WSC. However, the only
other approaches, to our knowledge, that treat this as a preference optimization
task integrated with actual composition are [10] and our previous Golog work [7].
In [10], they rely on extending an OWL-S ontology to include abstract processes
that refer to service profiles. These descriptions also need to be represented as
assertions in an OWL ontology, and an OWL-DL reasoner needs to undertake
the task of matching and ranking services based on their service selection pref-
erences. Unfortunately, combining OWL-DL reasoning with planning can create
significant performance challenges since one needs to call the OWL-DL reasoner
many times during the planning phase, leading to very expensive computations.

Our approach is different. Following discussion in Section 2, during the trans-
lation phase we compile each service profile as an extra property of its corre-
sponding HTN element. Note that not all processes will be associated to a service
since a process can correspond to an internal subprocess of the service. We only
associate profiles with Web-accessible processes. We capture the profile property
using a binary predicate isAssociatedWith(process, service-profile). The service-
profile serves as an index for the profile information and is encoded as additional
predicates (e.g., has-trust(service-profile, trust), has-reliability(service-profile, re-
liability), etc). Below are some service selection preferences for our travel domain.

(preference p8 (always
(imply (and (initiate ?X)(isAssociatedWith ?X ?Y))(has-trust ?Y High)))

(preference p9 (sometime
(and (initiate ?Z)(isAssociatedWith ?Z ?Y)(has-name ?Y AirCanada))))

(preference p10 (never
(and (initiate ?Z)(isAssociatedWith ?Z ?Y)(has-reliability ?Y Low))))

p8 states that the user prefers selecting services that have high trust values.
p9 states that a user prefers to invoke the AirCanada service. Lastly, p10 states
that the user prefers to never select low reliability services.

4 Regulation-Based Composition

Policies and regulations are an important aspect of semantic Web services. A
number of researchers have proposed approaches to both regulation represen-
tation and regulation enforcement as part of semantic Web service tasks (e.g.,
[16]). Kolovski et al. [17] proposed a formal semantics for the WS-policy [18]
language by providing a mapping to a Web ontology language OWL [15] and
describing how an OWL-DL reasoner could be used to enforce policies. They

610 S. Sohrabi and S.A. McIlraith

provided two translations of WS-Policy to OWL-DL by treating policies as in-
stances and classes in the DL framework. Chun et al. [19] considered policies
imposed on both service selection and on the entire composition, expressed us-
ing RuleML [20]. In their work, policies take the form of condition-action pairs
providing an action-centric approach to policy enforcement.

Regulations are traditionally enforced at design time by verifying that a work-
flow or composition adheres to the regulations. In our approach, we enforce
regulations during composition construction. In particular, during the planning
phase we consider only those partial plans that adhere to the regulations while
pruning those that do not. In the next section, we provide an algorithm that
specifies exactly how this pruning occurs within the HTN algorithm.

In this paper, we focus on regulations that are more geared towards the
verification community, particularly those that can be specified as safety con-
straints. During our regulation enforcement phase, we ensure that the computed
composition preserves certain properties of the world. These types of regulations
can be specified potentially by state conditions that must hold during the com-
position. Hence, rather than having action-centric rules in the form of RuleML or
rule-based languages, we are interested in assertions that must be enforced dur-
ing the composition. Classically this form of verification has been represented in
Linear Temporal Logic (LTL) [21] or some combination of first-order logic with
temporal logic (e.g., [22]). Here, we are not concerned with the representation
of regulations within an ontology but rather with how we enforce them within
our framework. Hence, for the purpose of this paper we represent regulations in
a subset of LTL considering for the most part the never and always constructs.
Below are some example regulations that corporations might impose on their
employees when traveling: (1) Always book flights with US-carriers. (2) Never
book business or first-class flights. (3) Get pre-approval for travel outside the
US. (4) Always pay for flights and hotels with your corporate credit card. As an
example, the first regulation above can be written in LTL as follows2:

� [((hasBookedFlight ?Y) ∧ (hasAirline ?Y ?X)) ⇒ (USCarrier ?X)]

5 Computing Preferred WSC Adhering to Regulations

In this section we address the problem of how to compute a preferred Web
service composition while enforcing regulations. Having the HTN encoding of
the problem in hand, we turn to planning techniques to help guide construction
of the composition. In particular, we exploit our developed heuristics for HTN
planning and augment our algorithm [13] to enforce regulations.

Our algorithm is outlined in Figure 2. Our HTNWSC planner performs best-
first, incremental search (i.e., always improves on the quality of the plans
returned). It takes as input a planning problem (s0, w0, D), a metric function
MetricFn, a heuristic function HeuristicFn, and regulations Regulations.

2 � is a symbol for always.

Optimizing Web Service Composition While Enforcing Regulations 611

1: function HTNWSC(s0, w0,D, MetricFn,HeuristicFn, Regulations)
2: frontier ← 〈s0, w0, ∅〉 � initialize frontier
3: bestMetric ← worst case upper bound
4: while frontier is not empty do
5: current ← Extract best element from frontier
6: 〈s, w, partialP 〉 ← current
7: if SatisfiesRegulations(s) then � pruning to enforce regulations
8: lbound ←MetricBoundFn(s)
9: if lbound < bestMetric then � pruning suboptimal partial plans

10: if w = ∅ and current ’s metric < bestMetric then
11: Output plan partialP
12: bestMetric ← MetricFn(s)

13: succ← successors of current
14: frontier ← merge succ into frontier

Fig. 2. A sketch of our HTNWSC algorithm

frontier contains the nodes in the search frontier. Each of these nodes is of
the form 〈s, w, partialP 〉, where s is a plan state, w is a task network, and
partialP is a partial plan. frontier is initialized with a single node 〈s0, w0, ∅〉,
where ∅ represents the empty plan. Its elements are always sorted according to
the function HeuristicFn. bestMetric is a variable that stores the metric value
of the best plan found so far initialized to a high value representing a worst
case upper bound. In each iteration of the while loop, the algorithm extracts
the best element from the frontier and places it in current . If the state violates
the regulations (i.e., SatisfiesRegulations(s) returns false), this node will be
pruned from the search space. LTL regulations are enforced by progression of
the formula as the plan is constructed (e.g., [23]). The LTL formulation is more
expressive than HTN-type constraints and thus the enforcement is different that
e.g., Redux [24]. Using the function MetricBoundFn a lowerbound estimation
of the metric value is computed. If lbound is greater than or equal to bestMetric
this node would again be pruned. If current corresponds to a plan, bestMetric is
updated, and the plan is returned. All successors to current are computed using
the Partial-order Forward Decomposition procedure (PFD) [8], and merged into
the frontier . The algorithm terminates when frontier is empty.

Although templates specified in HTN greatly reduce the search space, a task
can be decomposed by a fairly large number of methods corresponding to a
large number of services that can carry out the same task. Hence, we use the
heuristics proposed in [13] to guide the search towards finding a high-quality
composition quickly. We will use four heuristic functions as follows: Optimistic
Metric Function (OM), Pessimistic Metric Function (PM), Lookahead Metric
Function (LA), and Depth (D). The OM function estimates optimistically the
metric value resulting from the current task network w. Recall that in PDDL3
the metric function defines the quality of a plan. The PM function is the dual
of OM . LA function estimate the metric of the best successor to the current
node. It first solves the current node up to a certain depth, then it computes

612 S. Sohrabi and S.A. McIlraith

a single primitive decomposition for each of the resulting nodes. In the end,
it returns the best metric value among all the fully decomposed nodes. D is
another heuristic to guide the search. This heuristic encourages the planner to
find a decomposition soon. The HeuristicFn function we use in our algorithm
is a prioritized sequence of the above heuristics. However, as shown in [13] the
best combination is to use D, LA, OM , and PM , in that order, when comparing
two nodes. Hence, if the depths are equal, we use the other heuristics in sequence
to break ties. We will use this prioritized sequence in our evaluations.

The search space for a WSC is reduced by imposing the template, impos-
ing the regulations, and by further sound pruning that results from the incre-
mental search. In particular, the OM function provides sound pruning if the
metric function is non-decreasing in the number of satisfied preferences, non-
decreasing in plan length, and independent of other state properties. A metric
is non-decreasing in plan length if one cannot make a plan better by increasing
its length only (without satisfying additional preferences).

Using inadmissible heuristics does not guarantee generation of an optimal
plan. However, we have shown in [13] that in the case the search is exhausted,
the last plan returned is guaranteed to be optimal. In our algorithm we are
pruning those states that violate the regulations, so optimality is with respect
to the subset of plans that adhere to the regulations.

Proposition 1. If the algorithm performs sound pruning, then the last plan
returned, if any, is optimal.

6 Implementation and Evaluation

We implemented our Web service composition engine using templates specified in
HTN, user preferences specified in PDDL3 syntax, regulations specified as LTL
formulae, and the user’s initial task specified as HTN’s initial task network. Our
implementation, HTNWSC-P, builds on our earlier work HTNPlan-P [13]
that itself is a modification of the LISP version of SHOP2 [25]. It implements
the algorithm and heuristic described above. We used a 15 minute time out and
a limit of 1 GB per process in all our experiments.

HTNWSC-P builds on the effective search techniques for HTNPlan-P,
which was shown to generate better quality plans faster that the leading plan-
ners from the IPC-5 planning competition. We do not repeat these experimental
results here. However, as such, we had three main objectives in performing our
experimental evaluation. We wanted to evaluate the performance of our imple-
mentation as we increased the number of preferences and the number of ser-
vices. We also wanted to compare our work with other WSC preference-based
planners that use HTNs. Unfortunately, we were unable to achieve our third
objective, since we could not obtain a copy of scup[11], the only other HTN
preference-based planner (for WSC) we know of (See Section 7 for a qualitative
comparison).

Optimizing Web Service Composition While Enforcing Regulations 613

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6 7

M
et

ric

Problem No.

HTNWSC-P
Worst Metric

Optimal Metric

Fig. 3. Evaluating the quality of the last plan as
the number of preferences increases. A low metric
value means higher quality plan. Worst Metric is a
metric value if none of the preferences are satisfied.

Prb Ser FirstPlan LastPlan
Time(s) Time(s)
1 10 0.22 580.00
2 30 0.23 610.00
3 50 0.21 636.00
4 70 0.22 640.00
5 110 0.23 643.00
6 130 0.24 656.00
7 150 0.24 660.00
8 170 0.26 668.00
9 190 0.24 671.00
10 210 0.25 673.00

Fig. 4. Time comparison be-
tween the first and last plan re-
turned as we increase the number
of services in the problem

We used the Travel domain described in this paper as our benchmark. (Note
that HTNPlan-P was additionally evaluated with IPC-5 planning domains.)
The problem sets we used were designed to help us achieve our first and second
objectives. We achieved this by adding more preferences some of which could
potentially be conflicting with each other, and by increasing the number of ser-
vices, achieved by increasing the branching factor and grounding options of the
domain. To this end, we automatically generated 7 problems where the number
of services were kept constant and the number of preferences were increased. We
similarly generated 10 problems with increasing number of services, keeping the
number of preferences constant. The preferences were rich, temporally extended
preferences over task groundings and task decompositions. Note that we used a
constant number of policies in each problem.

Figure 3 shows the last metric value returned by HTNWSC-P for the 7
problems with increasing number of preferences and constant number of services.
It also shows the Worst and Optimal Metric value for these problems. Worst
Metric is the metric value of the problem if none of the preferences are satisfied
while Optimal Metric is the best possible metric value achievable. The result
shows that HTNWSC-P finds a very close to optimal solution within the time
limit. Furthermore, similar to our work in [13], we observe a rapid improvement
during the first seconds of search, followed by a marginal one after that.

Next, we evaluated the performance of HTNWSC-P by increasing the num-
ber of available services. This results in having more methods and operators in
the HTN description, hence, the number of possible ways to decompose a single
task increases. This causes the number of nodes in the frontier to blow up ac-
cording to the algorithm described in Section 5, and the planner to run out of
stack. There are two common ways HTN planners solve this problem. Combining
the advantages of both, we propose a middle-ground solution to the problem.

One way to avoid the problem is to have a limit on the size of the frontier as in
[11]. However, this approach only works if the size is relatively small. Moreover,

614 S. Sohrabi and S.A. McIlraith

many possible decompositions and high-quality solutions could potentially be
removed from the search space. Another approach is to use the if-then-else non-
determinism semantics taken for example by SHOP2. In this semantics, if there
are several methods m1 to mk that can be used to decompose a task t, method m1
should be used if it is applicable, else method m2, else method m3, and so forth.
Hence, the order in which the methods are written in the domain description
can influence the quality of the results. This simple ordering is considered a
form of user preferences in [25]. Hence, users must write different versions of a
domain description to specify their preferences. However, this form of preferences
is very limited and is analogous to writing different templates for different users
as opposed to customizing one fixed template to meet users’ differing needs.

In this experiment, we employed a combination of the above two approaches,
modifying our algorithm to place a limit on the number of applicable methods for
a task. Our search considered all tasks by considering all of their corresponding
nodes in the frontier but we limited the number of applicable methods for each
task. Note that with this approach we might also potentially prune good-quality
plans but the likelihood of this is small compared to limiting the size of the
frontier. Nevertheless, our optimality result does not hold for this experiment.
Our results are summarized in Figure 4.

Figure 4 shows the time to find the first and the last plan within the time-out.
The experiments are run on the 10 problem sets with constant preferences and
increasing service numbers. Note that the metric value of all the first and last
plans is equal since all 10 problems use the same sets of preferences. The result
shows that as the number of services increases, the time to solve the problem
increases only slightly.

Finally, recall that our implementation is incremental, performing search in
a series, each one returning a better-quality plan. To see how effective this ap-
proach is, we calculated the percent metric improvement (PMI), i.e., the percent
difference between the metric of the first and the last plan returned by our plan-
ner (relative to the first plan). The average PMI for the problems used in our
experiments is 23%.

7 Summary and Related Work

A number of researchers have advocated using AI planning techniques to ad-
dress the task of Web service composition including planners that are based on
model checking (e.g., [26]) and planners that use a regression-based approach
[27]. Previous work has also considered using a template or workflow to ease the
task of composition including the work using Golog [5,6,13] and HTNs [9,10,11].
Work by Calvanese, de Giacomo and colleagues on the so-called Roman model
is another example of a template-like approach in that they provide a desired
behaviour to be synthesized (e.g., [28]) by a set of services. This desired be-
haviour plays a similar role to that of a template however the synthesis itself
is performed using techniques from finite state controller synthesis. Following
in this tradition, we also take a template-based approach to WSC. Our tem-
plates are specified using HTN domain descriptions and can be customized by

Optimizing Web Service Composition While Enforcing Regulations 615

the specification of rich user preferences and by the specification of hard regu-
lations. Users specify their preferences in our PDDL3 extension that supports
conditional, temporally extended, service selection preferences as well as prefer-
ences over how to parameterize and how to decompose a task. Regulations are
specified at LTL formulae. We provide translation from OWL-S to HTN that
not only translates OWL-S process models, but also translates service profiles
into our HTN framework. Our composition engine, HTNWSC-P, then takes
user preferences and computes a preferred composition while pruning those that
do not meet the imposed regulations. Our algorithm is based on our previous
work on HTN preference-based planning that has been demonstrated to outper-
form leading planners. Experimental evaluation shows that our approach can be
scaled as we increase the number of preferences and the number of services.

Most of the related work with respect to specifying and imposing regulations
has already been discussed in Section 5. There has also been work on compliance
checking using a constraint-based approach that is similar in spirit to regulation
enforcement (e.g., [29]). Also, recent work [30] has considered integrity con-
straints, and proposed various ways to solve the ramification problem. Solving
the ramification problem is not a focus of this paper.

The most notable and closest work to ours that uses both HTNs and prefer-
ences developed for IPC-5 is [11]. Unfortunately, the scup prototype planner is
not available for experimental comparison. There are several differences among
our works. In particular, they translate user preferences into HTN constraints
and preprocess the preferences to check if additional tasks need to be added.
They also have an interesting approach to the problem by combining HTN plan-
ning with DL, and by using a DL reasoner. However, their preferences are spec-
ified in PDDL3, while our preferences can be expressed in the PDDL3 extension
that uses HTN-specific preference constructs. Moreover, they do not translate
service profiles; hence, they are unable to specify preferences over service se-
lections. Additionally, they do not consider handling regulations, a hallmark of
our work. Further, their algorithm cannot handle conflicting user preferences at
run-time, and so conflicts need to be detected as a pre-processing step.

Acknowledgements. We thank our colleague Jorge Baier for helpful discussion.
We gratefully acknowledge funding from the Natural Sciences and Engineering
Research Council of Canada (NSERC) and the Ontario Ministry of Innovations
Early Researcher Award (ERA).

References

1. Cheung, W.K.W., Gil, Y.: Privacy enforcement through workflow systems in e-
science and beyond. In: Proceedings of the ISWC 2007 Workshop on Privacy En-
forcement and Accountability with Semantics (PEAS) (2007)

2. Chun, S.A., Atluri, V., Adam, N.R.: Policy-based Web service composition. In:
Proceedings of the 14th International Workshop on Research Issues on Data En-
gineering: Web Services for E-Commerce and E-Government ApplicationsRIDE,
pp. 85–92. IEEE Computer Society, Los Alamitos (2004)

616 S. Sohrabi and S.A. McIlraith

3. Gil, Y., Deelman, E., Blythe, J., Kesselman, C., Tangmunarunkit, H.: Artifi-
cial intelligence and grids: Workflow planning and beyond. IEEE Intelligent Sys-
tems 19(1), 26–33 (2004)

4. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

5. McIlraith, S., Son, T., Zeng, H.: Semantic Web services. IEEE Intelligent Systems.
Special Issue on the Semantic Web 16(2), 46–53 (2001)

6. McIlraith, S., Son, T.: Adapting Golog for composition of semantic Web services.
In: Proceedings of the 8th International Conference on Knowledge Representation
and Reasoning (KR), pp. 482–493 (2002)

7. Sohrabi, S., Prokoshyna, N., McIlraith, S.A.: Web service composition via
generic procedures and customizing user preferences. In: Cruz, I., Decker, S.,
Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.)
ISWC 2006. LNCS, vol. 4273, pp. 597–611. Springer, Heidelberg (2006)

8. Ghallab, M., Nau, D., Traverso, P.: Hierarchical Task Network Planning. In: Au-
tomated Planning: Theory and Practice. Morgan Kaufmann, San Francisco (2004)

9. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for Web service
composition using SHOP2. Journal of Web Semantics 1(4), 377–396 (2005)

10. Sirin, E., Parsia, B., Hendler, J.: Template-based composition of semantic Web
services. In: AAAI 2005 Fall Symposium on Agents and the Semantic Web (2005)

11. Lin, N., Kuter, U., Sirin, E.: Web service composition with user preferences. In:
Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008.
LNCS, vol. 5021, pp. 629–643. Springer, Heidelberg (2008)

12. Gerevini, A., Long, D.: Plan constraints and preferences for PDDL3. Technical Re-
port 2005-08-07, Department of Electronics for Automation, University of Brescia,
Brescia, Italy (2005)

13. Sohrabi, S., Baier, J.A., McIlraith, S.A.: HTN planning with preferences. In:
Proceedings of the 21st International Joint Conference on Artificial Intelli-
gence(IJCAI), pp. 1790–1797 (2009)

14. Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K.,
McGuinness, D., Sirin, E., Srinivasan, N.: Bringing semantics to Web services with
OWL-S. World Wide Web Journal 10(3), 243–277 (2007)

15. Horrocks, I., Patel-Schneider, P., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a Web ontology language. Journal of Web Semantics 1(1),
7–26 (2003)

16. Tonti, G., Bradshaw, J.M., Jeffers, R., Montanari, R., Suri, N., Uszok, A.: Semantic
Web languages for policy representation and reasoning: A comparison of KAoS,
Rei, and Ponder. In: Proceedings of the 2rd International Semantic Web Conference
(ISWC), pp. 419–437 (2003)

17. Kolovski, V., Parsia, B., Katz, Y., Hendler, J.A.: Representing Web service policies
in OWL-DL. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC
2005. LNCS, vol. 3729, pp. 461–475. Springer, Heidelberg (2005)

18. WS-Policy: Web service policy framework (WS-policy),
http://www.w3.org/Submission/WS-Policy/

19. Chun, S.A., Atluri, V., Adam, N.R.: Using semantics for policy-based Web service
composition. Distrib. Parallel Databases 18(1), 37–64 (2005)

20. RuleML: Rule markup language (RuleML), http://ruleml.org/

21. Emerson, E.A.: Temporal and modal logic. In: Handbook of theoretical computer
science: formal models and semantics B, pp. 995–1072 (1990)

http://www.w3.org/Submission/WS-Policy/
http://ruleml.org/

Optimizing Web Service Composition While Enforcing Regulations 617

22. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifica-
tion of linear temporal logic. In: Proceedings of the 15th International Symposium
on Protocol Specification, Testing and Verification (PSTV), pp. 3–18 (1995)

23. Bacchus, F., Kabanza, F.: Using temporal logics to express search control knowl-
edge for planning. AI Magazine 16, 123–191 (2000)

24. Petrie, C.J.: The Redux Server. In: Proc. Intl. Conf. on Intelligent and Cooperative
Information Systems (ICICIS), pp. 134–143 (1993)

25. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman,
F.: SHOP2: An HTN planning system. Journal of Artificial Intelligence Research
(JAIR) 20, 379–404 (2003)

26. Traverso, P., Pistore, M.: Automatic composition of semantic Web services into
executable processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 380–394. Springer, Heidelberg (2004)

27. McDermott, D.V.: Estimated-regression planning for interactions with Web ser-
vices. In: Proceedings of the 6th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS), pp. 204–211 (2002)

28. Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M., Patrizi, F.: Automatic
service composition and synthesis: the Roman Model. IEEE Data Eng. Bull. 31(3),
18–22 (2008)

29. Hoffmann, J., Weber, I., Governatori, G.: On compliance checking for clausal con-
straints in annotated process models. In: Journal Information Systems Frontiers
(2009)

30. Hoffmann, J., Bertoli, P., Helmert, M., Pistore, M.: Message-based Web service
composition, integrity constraints, and planning under uncertainty: A new connec-
tion. Journal of Artificial Intelligence Research (JAIR) 35, 49–117 (2009)

	Optimizing Web Service Composition While Enforcing Regulations
	Introduction
	Preliminaries
	OWL-S
	HTN Planning
	From OWL-S to HTN

	WSC with Preferences
	Specifying Preferences in Our PDDL3 Extension
	Service Selection Preferences

	Regulation-Based Composition
	Computing Preferred WSC Adhering to Regulations
	Implementation and Evaluation
	Summary and Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

