
Finding Diverse High-Quality Plans for
Hypothesis Generation

Shirin Sohrabi and Anton V. Riabov and Octavian Udrea and Oktie Hassanzadeh 1

Abstract.
In this paper, we address the problem of finding diverse high-

quality plans motivated by the hypothesis generation problem. To this
end, we present a planner called TK∗ that first efficiently solves the
“top-k” cost-optimal planning problem to find k best plans, followed
by clustering to produce diverse plans as cluster representatives.

1 Introduction

New applications that use AI planning to generate explanations and
hypotheses have given rise to a new class of planning problems, re-
quiring finding multiple alternative plans while minimizing the cost
of those plans [11, 7, 9]. Hypotheses or explanations about a system,
such as a monitored network host that could be infected by malware,
are generated as candidate plans given a planning problem definition
describing the sequence of observations that can be noisy, incom-
plete, or missing, and a domain model capturing the possible state
transitions for the modeled system, as well as the many-to-many cor-
respondence between the states and the observations. The plans must
minimize both the penalties for unexplained observations and the
cost of state transitions. Additionally, among those candidate plans,
a small number of the most diverse plans must be selected as repre-
sentatives for further analysis.

The malware detection problem or more generally the hypothesis
generation problem is encoded as an AI planning problem, where the
generated plans correspond to the hypotheses, and furthermore, the
min-cost (or top-quality) plans correspond to the plausible hypothe-
ses. Plausible hypotheses are those that the domain expert believes
to be more plausible (more likely) compared to the other hypotheses.
Plausibility can be encoded as an action cost, where higher costs in-
dicate lower plausibility. Hence, the notion of the top-k plans maps
to finding k plans with the lowest cost.

In this paper, we propose an approach for finding a set of low-cost
diverse plans for hypothesis generation. To this end, we have devel-
oped a planner that first efficiently solves the “top-k” cost-optimal
planning problem to find k best plans, followed by clustering to pro-
duce diverse plans as cluster representatives. Our framework is mod-
ular allowing different planning algorithms, similarity measures, and
clustering algorithms in different combinations. Experiments set in
hypothesis generation domains show that the top-k planning prob-
lem can be solved in time comparable to cost-optimal planning using
Fast-Downward. We further empirically evaluate multiple clustering
algorithms and similarity measures, and characterize the tradeoffs in
choosing parameters and similarity measures.

1 IBM T.J. Watson Research Center, Yorktown Heights, NY, USA, email:
{ssohrab, riabov, udrea, hassanzadeh}@us.ibm.com

2 Top-k Planning Using K∗

We define the top-k planning problem asR = (F,A, I,G, k), where
F is a finite set of fluent symbols, A is a set of actions with non-
negative costs, I is a clause over F defining the initial state, G is a
clause over F defining the goal state, and k is the number of plans
to find. Let R′ = (F,A, I,G) be the cost optimal planning problem
with n valid plans. The set of plans Π = {α1, ..., αm}, wherem = k
if k ≤ n, m = n otherwise, is the solution to R if and only if each
αi ∈ Π is a plan for the cost-optimal planning problem R′ and there
does not exist a plan α′ for R′, α′ /∈ Π, and a plan αi ∈ Π such that
cost(α′) < cost(αi). When k > n, Π contains all n valid plans,
otherwise it contains k plans. Π can contain both optimal plans and
sub-optimal plans, and for each plan in Π all valid plans of lower cost
are in Π. If Π 6= ∅, it contains at least one optimal plan.

To solve the top-k planning problem,R, we will apply the k short-
est path algorithm, K∗, to find the top-k plans.K shortest paths prob-
lem is an extension of the shortest path problem where in addition to
finding one shortest path, we need to find a set of paths that rep-
resent the k shortest paths. K shortest path problem is defined as
Q = (G, s, t, k), where G = (V,E) is a graph with a finite set of
nodes V and a finite set of edges E, s is the source node, t is the
destination node, and k is the number of shortest paths to find. The
K∗ algorithm [1] is an improved variant of the Eppstein’s k shortest
paths algorithm [2] (we refer to as EA). The EA algorithm constructs
a complex data structure called path graph P (G) that stores the all
paths in G, where each node in P (G) represents a sidetrack edge.
This is followed by the use of Dijkstra search on P (G) to extract
the k shortest paths. The major bottleneck of the EA algorithm is the
construction of the complete state transition graph, which may in-
clude a huge number of states that are very far away from the goal.

In short, theK∗ algorithm works as follows. The first step is to ap-
ply a forward A∗ search to construct a portion of graph G. The sec-
ond step is suspending A∗ search, updating P (G) similarly to EA, to
include nodes and sidetracks discovered by A∗, applying Dijkstra to
P (G) to extract solution paths, and resuming the A∗ search. The use
of A∗ search to dynamically expand G enables the use of heuristic
search and also allows extraction of the solution paths before G is
fully explored. While K∗ algorithm has the same worst-case com-
plexity as the EA algorithm, it has better performance in practice
because unlike the EA algorithm, K∗ does not require the graph G
to be completely defined when the search starts.

Our planner, TK∗, applies K∗ to search in state space, with dy-
namic grounding of actions, similarly to how Fast-Downward and
other planners apply A∗. The K∗ scheduling condition is evaluated
by comparing the state of A∗ and Dijkstra searches, as defined inK∗

algorithm. It determines whether new links must be added to G be-



fore resuming Dijkstra search on updated P (G). There is no separate
grounding stage, since actions are ground at the same time when they
are applied during A∗ search. The amount of A∗ expansion required
before resuming Dijkstra (in our implementation, 20%) controls the
efficiency tradeoff, and 20% is the same value that was used in ex-
periments in the original K∗ paper [1]. Soundness and completeness
of TK∗ follows directly from the soundness and completeness of the
K∗ algorithm. For further details of the TK∗ planner see [10].

3 Finding Diverse Plans via Clustering
In practice, many of the generated top-k plans are only slightly dif-
ferent from each other. That is, they do seem to be duplicates of each
other, except for one or more states or actions that are different. To
consolidate similar plans produced by the top-k planner, we com-
pute a similarity score between plans and apply three clustering al-
gorithms that create clusters of plans where each cluster is disjoint
and each plan belongs to only one cluster. We then may choose to
present only the cluster representatives from a subset of these clus-
ters to the user or to the automated system for further investigation.

Finding if two plans are similar has been studied mainly under plan
stability for replanning and finding diverse plans (e.g., [3, 6]). Two
plans can be compared based on their actions, states, or causal links.
We also consider comparing plans based on their costs or their final
states. Each similarity measure assigns a number between 0 (unre-
lated) or 1 (same). Two plans are said to be similar if their similarity
score is above a predefined threshold θ. The similarity measures can
be used individually or be combined using a weighted average.

We have implemented several similarity measures including Gen-
eralized Edit Similarity (GES) and Jaccard Similarity, an inverse of
the plan distance from [6]. An important desired property of GES
is that it not only considers the similarity between sequences, but
also considers the similarity between tokens. Therefore, we are able
to use any extra domain-dependent knowledge at hand about the re-
lationship between, for example, actions to determine if two plans
belong to the same cluster. This allows further semantic information
to be included in similarity calculations.

We have also implemented three clustering algorithms: Center-
Link, Single-Link, and Average-Link [10]. Each of these algorithms
require visiting each plan only once in order to decide the cluster they
belong to; however, depending on which algorithm is used, the plans
are compared to representative element of the cluster or all plans.

4 Experimental Evaluation
We used both manually crafted and random problems to create our
evaluation benchmark. Our problems are based on the hypothesis
generation application described by Sohrabi et al. [11]. This applica-
tion is a good example of a challenging top-k planning problem, and
generated problems typically have a very large number of possible
plans with different costs. We report a summary of our evaluations.

Top-k Planning Performance We compare the performance of our
top-k planner, TK∗, with k=50 and k=1000 to Gamer [5] (Gamer
2014 version) and Fast-Downward [4] (2015 version, withA∗). Both
find a single cost-optimal plan, which is equivalent to k=1. Overall,
our results showed that TK∗ is very efficient at finding top-k plans,
and in our implementation and our set of problems performs at least
as fast or faster than Fast-Downward and Gamer, which is essen-
tial for use in applications. Due to soundness and completeness of
K∗, TK∗ is guaranteed to produce top-k plans and that was con-
firmed in our experiments. Overall, these experiment results support

our claim that top-k problems can be solved just efficiently as cost-
optimal ones, at least within a certain class of planning domains.

Evaluation of Clusters We evaluate the different clustering al-
gorithms and similarity measures we used. Our results show that
Center-Link algorithm is the best algorithm with respect to time as
fewer number of similarity comparisons is performed since each plan
is only compared to the representatives. Average-Link produces more
clusters compared to the other two. As the threshold increases, the
number of clusters also increases for all algorithms. With respect
to stability and uniqueness measures [8], the results does not show
a superior clustering algorithm. Furthermore, the results show that
grouping based on cost or last state may be fastest but these sim-
ilarity measures give the worst results with respect to stability and
uniqueness. On the other hand, using Jaccard produces most diverse
plans with respect to uniqueness and GES also produces most diverse
plans with respect to stability.

Comparison With Diverse Planners We selected two representa-
tive diverse planners, LPG-d [6] (with d=0.1) and Div (Multi-queue
A∗ MQATD) [8], and compared to our implementation that in-
cluded top-k and Average-link clustering, using Jaccard similarity.
We averaged over 5 instances of each size and had a 30 minutes time
limit. We measure time in seconds, shown under T, plan diversity
by stability, S, and by uniqueness, U, using formula from [8]. Sub-
set of the results are shown in the following table. The results show
that Div places greater emphasis on plan cost but sometimes pro-
duces multiple copies of the same plan, resulting in poor diversity.
LPG-d produced diverse plans but with higher average cost. Our ap-
proach, the top-k plus clustering, produces the lowest average cost
with somewhat lower diversity compared to LPG-d.

Top-k + Average Link LPG-d Div
Prob T Cost S U T Cost S U T Cost S U

1 1 1502 0.51 1 1 3513 0.80 1 1 1789 0.36 0.37
2 1 1586 0.41 0.99 59 8426 0.84 1 1 3861 0.44 0.54
3 3 1492 0.20 0.99 384 16520 0.87 1 1 7262 0.46 0.53

REFERENCES
[1] Husain Aljazzar and Stefan Leue, ‘K*: A heuristic search algorithm for

finding the k shortest paths’, AIJ, 175(18), 2129–2154, (2011).
[2] David Eppstein, ‘Finding the k shortest paths’, SIAM Journal on Com-

puting, 28(2), 652–673, (1998).
[3] Maria Fox, Alfonso Gerevini, Derek Long, and Ivan Serina, ‘Plan sta-

bility: Replanning versus plan repair’, in ICAPS, pp. 212–221, (2006).
[4] Malte Helmert, ‘The Fast Downward planning system’, JAIR, 26, 191–

246, (2006).
[5] Peter Kissmann, Stefan Edelkamp, and Jörg Hoffmann, ‘Gamer and

Dynamic-Gamer symbolic search at IPC 2014’, in IPC-2014, (2014).
[6] Tuan Nguyen, Minh Do, Alfonso Gerevini, Ivan Serina, Biplav Srivas-

tava, and Subbarao Kambhampati, ‘Generating diverse plans to handle
unknown and partially known user preferences’, AIJ, 190, 1–31, (2012).

[7] Anton V. Riabov, Shirin Sohrabi, Daby M. Sow, Deepak S. Turaga,
Octavian Udrea, and Long H. Vu, ‘Planning-based reasoning for auto-
mated large-scale data analysis’, in ICAPS, pp. 282–290, (2015).

[8] Mark Roberts, Adele E. Howe, and Indrajit Ray, ‘Evaluating diversity
in classical planning’, in ICAPS, pp. 253–261, (2014).

[9] Shirin Sohrabi, Anton Riabov, and Octavian Udrea, ‘Plan recognition
as planning revisited’, in IJCAI, (2016).

[10] Shirin Sohrabi, Anton Riabov, Octavian Udrea, and Oktie Hassanzadeh,
‘Finding diverse high-quality plans for hypothesis generation’, in MRC
workshop at ECAI, (2016).

[11] Shirin Sohrabi, Octavian Udrea, and Anton Riabov, ‘Hypothesis explo-
ration for malware detection using planning’, in AAAI, (2013).


