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Abstract. Given a satisfiable k-CNF SAT instance, a satisfiable core is
a minimal subset of the k-CNF clauses that preserves all and only the sat-
isfying assignments of the original instance. In this paper, we extend the
previous results on satisfiable core, especially on the strong correlation
between the hardness of SAT instances and the size of their satisfiable
cores. We introduce a measure called the weighted clause-to-variable ra-
tio, which substantially improves on the classic clause-to-variable ratio in
explaining the phase transition. We also examine interesting transitions
in satisfiable core size of random instances and show that satisfiable core
is a powerful concept for studying the constrainedness of instances.

1 Introduction

In this paper, we introduce the notion of satisfiable cores of satisfiable SAT
instances, and experimentally analyze their properties with the view to better
characterizing the nature of hard and easy random 3SAT instances. Informally,
a satisfiable core of a satisfiable instance is a minimal subset of clauses from the
original SAT instance that preserve all and only its satisfying assignments. Any
strict subset of the satisfiable core has satisfying assignment(s) that do not hold
in the original SAT instance. We can generate a satisfiable core by removing
redundant clauses from the SAT instance. We define a redundant clause to be
one that may be removed from a CNF instance without altering the satisfying
assignments of that instance.

The term satisfiable core is the analogue of the notion of an unsatisfiable
core, which has been used extensively to study properties of unsatisfiable SAT
instances (e.g., [1][2][3]). Nevertheless, little has been done in studying satisfi-
able cores. The most significant work we are aware of is the redundancy study
in random SAT formulas by Boufkhad and Roussel, who in [4] formally define
the notions of redundant clauses and irredundant formulas (formulas without
redundant clauses). Their two key findings are (1) irredundant formulas are
typically much harder to solve than their counterpart redundant formulas; (2)
redundancy in random formulas decreases as the number of variables increases.
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Satisfiable core and irredundant formula are similar concepts for different pur-
poses: irredundant formula provides a redundancy characterization of a formula,
while satisfiable core is defined to study the substructures of SAT instances.

Our interest in extending the results of Boufkhad and Roussel is several-fold.
We are interested in better understanding the nature of hard and easy SAT
instances and the parameters that affect hardness. We are also interested in
predicting the hardness of instances and whether the size of a satisfiable core
provides a reasonable prediction. Finally, we are motivated by clause learning [5],
which in recent years, has become the driving force in improving the performance
of many SAT solvers, such as Siege [5] and zChaff [6]. Clause learning typically
works by augmenting the original CNF with implied clauses that are learned
from resolution conflicts during the DPLL search procedure. Such implied clauses
are intimately related to the notion of satisfiable cores because adding implied
clauses to a satisfiable core, like redundant clauses, does not affect the original
satisfying assignments.

In Section 2, we introduce satisfiable cores for SAT instances. In Section
3, we propose a definition for weighted clause-to-variable ratio, WCV , basing
it on the notion of satisfiable core. WCV substantially improves the classic
clause-to-variable (m/n) ratio in explaining the phase transition. In Section 4, we
compare WCV to a number of interesting ideas such as backbone and backdoor.
We conclude the paper in Section 5 with a summary and discussion of future
work. While this paper does not fully explain the phenomena being observed
experimentally, it shows, in the notion of satisfiable cores, an important concept
in the arsenal of tools used to characterize and generate hard SAT instances.

2 Redundant Clauses

2.1 Definitions

In this paper, we restrict our attention to satisfiable 3SAT instances without loss
of generality. We introduce the notion of redundant clause, a convenient term
that not only eases our discussion of satisfiable core but also deepens our under-
standing. Following convention, the variable m denotes the number of clauses in
an instance and n denotes the number of variables.

Intuitively, a redundant clause is one that may be removed from a CNF
instance without altering the satisfying assignments of that instance. We use the
adjective redundant because these clauses do not contribute anything further to
the defining of the set of solutions.

Definition 1 (Redundant Clause (RC)). Let Σ be a set of clauses that in-
cludes clause c. Let Σ′ be Σ with clause c removed. c is a redundant clause
relative to Σ iff Σ′ |= c.

We now define the notion of satisfiable core. Given a set of clauses Σ, a
satisfiable core of Σ satisfies three conditions: (1) is a subset of these clauses;
(2) has exactly the same satisfying assignments; (3) none of the clauses in a
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satisfiable core is redundant (i.e. none of the strict subset of a satisfiable core is
still a satisfiable core). Note that the satisfiable core of Σ may not be unique.

Definition 2 (Satisfiable Core). Given a set of clauses Σ, Σ′ is a satisfiable
core of Σ iff (i) Σ′ ⊆ Σ; (ii) for every truth assignment M of Σ′, if M |= Σ′

then M |= Σ; and (iii) ∀ci ∈ Σ′, ci is not a redundant clause relative to Σ′.

We define the clauses in a satisfiable core to be prime clauses, in contrast to
redundant clauses. Given an instance Σ and an associated satisfiable core, Σ′,
the size of the satisfiable core, or the number of prime clauses in the core (NPC)
is simply the cardinality of Σ′, |Σ′|. The number of redundant clauses (NRC) is
defined to be NRC = m−NPC. Since a satisfiable core is not unique, a prime
clause of one core may be redundant relative to another core. Further, Σ′ is a
minimal satisfiable core if there is no set Σ′′, such that Σ′′ is also a satisfiable
core relative to Σ and |Σ′′| < |Σ′|.

We can use any efficient complete SAT solver to identify redundant clauses.
We do so by removing the clause from the instance, conjoining its negation and
trying to determine satisfiability. If the resultant formula is unsatisfiable then
the clause is entailed by the original formula.

Proposition 1 (Determination of Redundancy). Given a clause c and an
instance Σ, determining whether c is a redundant clause relative to Σ is as
difficult as SAT.

Determination of Redundant Clause:
Problem: Given a set of clauses Σ, c ∈ Σ, determine if c is a redundant clause
relative to Σ.
Algorithm If Σ\c ∪ ¬c is unsatisfiable, then Σ\c |= c and c is a redundant
clause.

To compute a satisfiable core for a (satisfiable) instance Σ, we randomly
choose a clause and test if it is redundant. If it is, we delete it. We test each
clause once. The resultant set is a satisfiable core.

Determination of Satisfiable Core
Problem: Given a set of clauses Σ = {ci}, i = 1, . . . , m, find a satisfiable core
of Σ.
Algorithm:
1. CC ← {}.
2. While CC 6= Σ, do

a. Randomly choose ci ∈ Σ st ci 6∈ CC.
b. If ci is a redundant clause then Σ ← Σ\ci, else CC ← CC ∪ ci.

The resulting Σ is a satisfiable core.

Unfortunately, the determination of a satisfiable core is NP-hard; though
there are a number of ways to improve this brute-force algorithm, we are still
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severely limited by our computational power. The satisfiable cores we gener-
ated are neither unique nor minimal, but nevertheless sufficient for the needs of
studying their properties.

2.2 Experiments with Redundant Clauses

In this section we report the degree of redundancy in random and structured
instances. The values of NRC seems to be close to normal distribution, shown
by our experiment to determine the variance of NRC; therefore, we can use the
mean of NRC with some reliability in the subsequent experiments.

We ran experiments over instances with 50, 100, 150, 200, and 250 vari-
ables, each with 100 satisfiable test instances from the SATLIB benchmark [7]
(uf50-128, uf100-430, uf150-645, uf200-860, and uf250-1065). Each of the 500
test instances had a fixed clause-to-variable ratio 4.3 (m/n=4.3). Instances with
more variables (e.g. 300 variables or more) exceeded our computational power
as we mentioned above, though we believe that the phenomena we observed will
extend to instances with larger numbers of variables. Experiments depicted in
Figure 1.a show that the percentage of redundant clauses (%RC) decrease as
a function of the number of clauses in the instance, commencing at 40% (50
variables) and reaching to 20% (250 variables). Our observations are consistent
with [4] (figure 7) and suggest that the percentage of redundant clauses may
decrease to 0 as the number of variables grows to infinity.
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Fig. 1. (a) In random SAT, mean %RC decreases when n increases. (b) In backbone
controlled instances, mean %RC increases when the controlled backbone size increases
and when m/n decreases.

The backbone is the set of literals that are entailed by an instance. Fig-
ure 1.b shows the %RC in structured instances with controlled backbone sizes [7]
(CBS k3 n100 m403,m429 and m449 instances, n = 100, with different m/n).
Our results indicate strong correlation between %RC and the backbone size:
%RC increases when the controlled backbone size increases. In addition, the
%RC increases when m/n decreases.

Our experiments also show that real-world problems (encoded into SAT)
have varying degree of redundancy that is largely dependent on the nature of the
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problems and the encoding methods. For example, we find that graph coloring
problems [7] (flat50-115 instances, n = 150, m/n = 3.6) have around 30%RC
while Blocks World Planning problems [7] (bw large instances, with different
m/n), have around 20%RC.

2.3 Kernel SAT instances and Constrainedness

If we fix the number of variables but change m/n, we obtain very different results
regarding %RC. Figure 2 plots the mean satisfiable core size against the m/n of
the original random 3SAT instance. Each data point represents 100 instances.
Although similar results have been shown in [4], we will give a more detailed
explanation and then show a new categorization of satisfiable cores.
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Fig. 2. Mean satisfiable core size vs. m/n of original random instance.

Figure 2 depicts two major transitions. The first one is at m/n = 3.7. Observe
that the cores of random 3SAT instances with m/n < 3.7 are (virtually) the
instances themselves. We refer to such cores as kernel SAT instances. Also note
that the mean satisfiable core size peaks around m/n = 3.7. This suggests that
(for n = 100) 360 clauses may be sufficient to characterize most/all satisfiable
3SAT instances. Further, the mean satisfiable core size decreases starting at
m/n = 3.7. The second transition point occurs at around m/n = 4.4. For random
3SAT instances with m/n > 4.4, the size of the satisfiable cores plateaus at
around 290-300 clauses, almost never dipping below 290 clauses.

The results lead us to believe that for n = 100, satisfiable cores of fewer than
290 clauses can only be kernel SAT instances; satisfiable cores with 360 clauses
rarely exist; and 3SAT instances with a satisfiable core size of 290-360 clauses
may either be kernel SAT instances (we refer to these as Type A.) or be generated
via removal of redundant clauses from a larger random SAT instance (we refer
to these as Type B.) For example, a satisfiable core with 300 clauses could be a
kernel SAT instance with 300 clauses (Point A in Figure 2), or a satisfiable core
of a random formula with 435 clauses (Point B in Figure 2). Intuitively, a Type
A satisfiable core is not critically constrained, whereas a Type B is.

To measure constrainedness, we adopt the crossover approach proposed by
Crawford and Anton in [8]. The crossover approach adds a few random clauses
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(20 clauses when n=100) to a satisfiable formula; if the resulting formula becomes
unsatisfiable then the original formula is close to the transition point (between
satisfiable and unsatisfiable formulae) and is thus deemed to be critically con-
strained.

We examine problems with satisfiable core size ranging from 290 to 350
clauses where both Type A and B instances exist. We generate 100 instances
for each type. Following Crawford and Anton’s technique we then added 20 ran-
dom clauses to each instance and checked whether the instance was satisfiable or
unsatisfiable. The results are depicted in Figure 3.a. The probability of a Type
A instance becoming unsatisfiable after adding 20 clauses is under 3%, while in
sharp contrast, that of a Type B instance is approximately 78% for 290 clauses!

In Figure 3.b, we show that the Type B cores, much more critically con-
strained than Type A, are also much harder to solve. Notably, the Type B cores
are even much harder than their original problems, which suggests the important
role of redundant clauses in reducing search cost. As we will explain in the next
section, search cost is determined by two factors: the size of a satisfiable core
and the number of redundant clauses.
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Fig. 3. (a) The graphs of Type B core and its original instances almost coincide. Type
A instances are Kernel SAT instances so their original instances are themselves. (b)
Search cost in term of number of zchaff implications. The original problems of Type B
are much easier to solve than their Type B cores. For example, Point C (290 clauses)
is a satisfiable core of Point D (450 clauses).

In [9] Gent and Walsh examined the crossover rate of 100 of the hardest
random SAT instances for the DPLL procedure, chosen from 100,000 random
instances. The crossover rate was 5% when there were 290 clauses in the instance.
Certainly, the Type B satisfiable cores (those generated by removing redundant
clauses) are much more constrained than the 100 hardest instances chosen from
100,000 random SAT instances. This leads us to posit that studying the struc-
tures of Type A and Type B may be a useful approach to understanding the
meaning of constrainedness.
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3 A New Measure of Hardness

As we have seen in Figure 3, both NPC and NRC are important factors influ-
encing the search cost. Therefore, we propose a new measure, weighted clause-
to-variable ratio (WCV ), in an attempt to combine these two factors. We define
WCV to be WCV = (NPC + α ∗NRC)/n, where α is a controlling parameter
for fitting the correlation, empirically set to 0.20 for random instances.

WCV resembles the definition of m/n ratio, although we replace m by a
linear combination of NPC and NRC. WCV may not work well for instances
that have very few redundant clauses or none because in that case, NRC = 0
and WCV is exactly the same as m/n ratio. Luckily, it is not a significant issue
because the instances that we are interested in have abundant redundant clauses.

WCV is negatively correlated with the hardness of instances, in sharp con-
trast to the m/n ratio. When m/n ¿ 4.3 or m/n À 4.3, the instance is easy;
when m/n is about 4.3, the instance is hard. In contrast, WCV is monotonically
correlated: the higher the WCV the easier the instance is. Figure 4 shows the
empirical results. The left Y-axis is the number of implications in zchaff, a mea-
sure of the hardness of instance as it takes zchaff more implication steps to solve
hard instance. The right Y-axis is the value of WCV , on a descending scale. The
two curves in Figure 4 strongly coincide, which indicates the strong correlation.
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Fig. 4. Correlation WCV (α = 0.2) and search cost. n=100.

In the under-constrained region, the NPC portion of m decreases rapidly,
as illustrated in Figure 2. While NRC is increasing, it cannot compensate for
the loss of NPC because only α ∗ NRC contributes towards the computation
of WCV . Consequently, search cost continues to increase while WCV begins to
decrease. In the over-constrained region, as m (or m/n) increases, NPC remains
stable (as also illustrated in Figure 2). In this region WCV is dominated by the
increase in NRC. Therefore, search cost decreases here as WCV increases. In
summary, NPC dominates the prediction of behavior in the under-constrained
region and NRC dominates in the over-constrained region. Arguably, WCV is
not really a predictor, since NPC is even harder to compute than solving the
instance. Nevertheless, like the studying of backbones (which are also difficult
to compute), we propose an interesting qualitative model to explain the phase
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transition phenomenon with the hope that our results may lead to deeper insights
into the nature of SAT and SAT solving.

4 Comparison with Other Measures

A number of interesting parameters have been proposed to study phase tran-
sition and the hardness of instances, including but not limited to clause-to-
variable (m/n) ratio by Mitchell, Selman, Levesque and many others [10], the
”constrainedness” measure by Gent and Walsh [11], the number of solutions by
Clark et al. [12], backbone size and backbone fragility by Parkes, Singer, and
Gent et al. [13] [14], the number of implicates and prime implicates by Schrag
and Crawford [15], backdoor by Williams, Gomes and Selman [16]. The hard-
ness of instances are typically measured in terms of search cost, which could be
the number of resolution steps in systematic search or the number of variable
flipping steps in local search.

Clause-to-variable (m/n) ratio is the simplest measure and the only one that
can be easily calculated. Numerous empirical experiments suggest a phase tran-
sition happening at the point where the ratio is about 4.3 for random 3-SAT.
Nevertheless, while m/n is accurate for random instances, it may not work for
structured instances, which in general represent the real problems that we care
to solve. For example, consider two instances with the same m/n but different
backbone size: one with 0.1n backbone and the other with 0.9n backbone size.
We know that typically the second instance is much more difficult to solve than
the first instance, despite the fact that they have the same m/n. On the contrary,
WCV correctly predicts the hardness of backbone controlled test instances in
Figure 5. WCV is a generalization of m/n ratio; it works for both random and
most structured clauses. Nevertheless, despite the limitations of m/n ratio, it
remains a popular measure in SAT due to its simplicity and effectiveness for
random instances.
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Fig. 5. n = 100. WCV (α = 0.2) decreases and search cost increases when controlled
backbone size increases; when backbone size is fixed, lower WCV means higher search
cost.

The constrainedness measure [11] and the number of solutions [12] are largely
overlapping measures because constrainedness is defined in term of the number
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of solutions. Gent and Clark et al. show that constrainedness is a good predictor
of the search cost problems in the under-constrained region as well as certain
CSP problems.

Parkes [13] and Singer et al. [14] all suggest search cost is a result of two
competing factors. They agree that the first factor is the number of solutions,
or the constrainedness. In the under-constrained region, the number of solutions
dominates search cost; the fewer solution an instance has, the higher search cost
it takes.

There are different opinions on the second factor, which is the dominating
factor in the over-constrained region. Singer et al. shows that backbone fragility
(i.e., how persistent the backbone is as clauses are removed) is a good candidate
of the second factor. Singer et al. explain that search cost decreases in the over-
constrained region because adding clauses increases backbone fragility for large
backbone instances and the majority of the instances in that region have large
backbones.

Backdoor [16] is another closely related concept to satisfiable core. A (strong)
backdoor of an instance is a set of variables which, when they are assigned, gives
a simplified instance that may be solved in polynomial time. Backdoor variables
are inherently algorithm dependent. Variable ordering technique in backtracking
solvers is an example of implicit use of backdoor. Although backdoor and satis-
fiable core both aim to discover the hidden structure of a problem, identifying
backdoor variables and satisfiable cores are very difficult. An interesting question
is to find backdoors in a satisfiable core rather than the original instance.

Finally, we contrast the notion of satisfiable core to the notion of prime
implicates [15]. Informally, a prime implicate is a clause β entailed by Σ such
that there is no β′ entailed by Σ such that β′ |= β. Like our satisfiable core,
prime implicates are often used to provide a minimal or core characterization
of a formula Σ. Nevertheless, unlike satisfiable core, prime implicates have no
syntactic restrictions. They are only semantically related to Σ and need not be
clauses taken from Σ.

The studies of above measures have produced fruitful results, both theoretical
and practical. We have sufficient reasons to believe that satisfiable core is another
important concept in this family.

5 Summary and Related Work

In this paper we introduced the notions of satisfiable cores and experimentally
examined their relationship to the hardness of satisfiable 3SAT instances. We
extended previous redundancy results in several ways: first, we gave a more com-
prehensive evaluation of satisfiable cores and redundant clauses; we introduced
two vastly different types of satisfiable cores, namely the kernel instance cores
and the generated cores. Our experimental findings provided a new look at crit-
ically constrained problems, and their relationship to the hardness of instances.
With these observed phenomena in hand, we proposed a new measure based on
the size of satisfiable core, weighted clause to variable ratio, WCV . Experimental
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results indicated that WCV is strongly correlated to the hardness of instances
and is a useful qualitative model in explaining the phase transition.

A number of interesting parameters have been proposed to study phase tran-
sition and the hardness of instances, including but not limited to clause-to-
variable (m/n) ratio by Mitchell, Selman, Levesque and many others [10], the
”constrainedness” measure by Gent and Walsh [11], the number of solutions by
Clark et al. [12], backbone size and backbone fragility by Parkes, Singer, and
Gent et al. [13] [14], the number of implicates and prime implicates by Schrag
and Crawford [15], backdoor by Williams, Gomes and Selman [16]. We fully
believe satisfiable core is unique and important because it not only preserves
original satisfying assignments but also preserves substructures (non-redundant
clauses) of the original problem.

In retrospect, the study of backbone leads to backbone guided search and
backdoor to backdoor search. We have focused on the characterization of satisfi-
able core in this paper, though finding methods for using appropriate redundant
clauses is still a major challenge and one that has good potential for improving
SAT solving. There have already been extensive results on systematic search
via clause learning [5] [6] as well as in local search via long range dependencies
and the 2-simplify procedure [17], neighborhood resolution [18], clause weight-
ing schemas [19], and implied constraints generation [20]. Nevertheless, Alsinet
et al. [21] reported that adding redundant clauses to instances encoded from
all-interval-series problems may have a negative performance impact. Further
cost-benefit analysis of using redundant clauses is clearly warranted.

In future work, we are very interested in a theoretical framework of satisfiable
cores, possibly tracing back to the mathematical root of the structure core in
graph theory. Further experiments may be conducted for deciding α in WCV for
instances with different structures, and for further understanding the meaning
of constrainedness using satisfiable cores.
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