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Abstract We propose a framework adapted from Artificial Intelligence theories of
action and diagnosis for monitoring and diagnosing failures of software requirements.
Software requirements are specified using goal models where they are associated with
preconditions and postconditions. The monitoring component generates log data that
contains the truth values of specified pre/post-conditions, as well as system action ex-
ecutions. Such data can be generated at different levels of granularity, depending on
diagnostic feedback. The diagnostic component diagnoses the denial of requirements
using the log data, and identifies problematic components. To support diagnostic rea-
soning, we transform the diagnostic problem into a propositional satisfiability (SAT)
problem that can be solved by existing SAT solvers. The framework returns sound
and complete diagnoses accounting for observed aberrant system behaviors. Our so-
lution is illustrated with two medium-sized publicly available case studies: a Web-
based email client and an ATM simulation. Our experimental results demonstrate the
scalability of our approach.
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1 Introduction

Monitoring software for requirements compliance is necessary for any operational
system. Yet, design of runtime monitoring and diagnostic components has received
little attention in the Software Engineering (hereafter SE) literature. This paper
presents a monitoring and diagnosis framework with an adaptive monitoring com-
ponent and a SAT-based diagnostic component adapted from Artificial Intelligence
(AI) theories of action and diagnosis. Software requirements are represented as goal
models that can be either reverse engineered from source code using techniques we
presented in Yu et al. (2005), or provided by requirements analysts. In addition, we
assume that traceability links are provided, linking source code and requirements in
both directions.

In Wang et al. (2007), we presented a monitoring component that monitors re-
quirements and generates log data at different levels of granularity. The monitoring
component is based on AspectJ technologies (Kiczales et al. 2001). Monitoring gran-
ularity can be tuned adaptively depending on diagnostic feedback. The diagnosing
component of our framework analyzes generated log data and identifies failures cor-
responding to aberrant system behaviors that lead to the violation of system require-
ments. When failures are found, the diagnostic component identifies root causes.

The propositional satisfiability (SAT) problem is concerned with determining
whether there exists a truth assignment to variables of a propositional formula that
makes the formula true. In Wang et al. (2007), we transformed the problem of diag-
nosing software systems into a SAT problem by encoding goal model relations and
log data into propositional formulae that can be used by an off-the-shelf SAT solver
to conjecture possible diagnoses.

This paper presents a complete account of our proposed monitoring and diagnosis
framework, along with extensions and improvements. In particular, (1), we propose
the concept of multi-layered monitoring and diagnosis to extend the applicability of
our framework to multi-layered socio-technical systems, such as systems that have
adopted service-oriented architectures (SOA); (2) We update and extend one of the
diagnostic algorithms (Algorithm 4); (3), we discuss optimizations of our algorithms
and their implementation that make the framework scalable.

We illustrate and evaluate our framework on two medium-sized publicly available
case studies: Squirrel Mail, a Web-based email client (Castello 2007), and an ATM
simulation (Bjork 2007). These case studies demonstrate the feasibility of scaling our
approach to software systems with medium to large requirement models.

2 Preliminaries

2.1 Goal models

Requirements Engineering (RE) is a branch of SE that deals with the elicitation and
analysis of system requirements. In recent years, goal models have been used in RE to
model and analyze stakeholder objectives (Dardenne et al. 1993). Software systems’
functional requirements are represented as hard goals, while their non-functional re-
quirements are represented as soft goals (Mylopoulos et al. 1992). A goal model is
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a graph structure including AND- and OR-decompositions of goals into subgoals, as
well as means-ends links that relate leaf level goals to tasks (“actions”) that can be
performed to fulfill them. We assume that traceability links are maintained between
system source code and goals/tasks. At the source code level, tasks are implemented
by simple procedures or composite components that are treated as black boxes for
the purposes of monitoring and diagnosis. This allows us to model a software system
at different levels of abstraction. If goal G is AND/OR-decomposed into subgoals
G1, . . . ,Gn, then all/at-least-one of the subgoals must be satisfied for G to be satis-
fied.

Following Giorgini et al. (2002), apart from decomposition links, hard goals and
tasks can be related to each other through various contribution links: ++S, --S, ++D,

--D, ++, --. Given two goals G1 and G2, the link G1
++S−−−→ G2 (respectively G1

--S−−−→ G2) means that if G1 is satisfied, then G2 is satisfied (respectively denied), but
if G1 is denied, we cannot infer denial (or respectively satisfaction) of G2. The mean-
ing of links ++D and --D are dual w.r.t. to ++S and --S respectively by inverting
satisfiability and deniability. Links ++S and --S (respectively ++D, and --D) prop-
agate satisfaction (respectively denial) of the source goal/task to the target goal/task.
Links ++ and -- are shorthand for the ++S, ++D, and --S, --D relationships re-
spectively, and they propagate both satisfaction and denial of the source goal/task
to the target goal/task. A ++ link (respectively a -- link) represents both ++S and
++D (respectively --S and --D) relationships. These ++ and -- links represent
the strong MAKE(++) and BREAK(--) contributions between hard goals/tasks.

In this paper, the partial (weaker) contribution links HELP(+) and HURT(−) are
not included between hard goals/tasks because we do not reason with partial evidence
for hard goal/task satisfaction and denial. These weaker links may proceed from hard
goals/tasks to soft goals. The class of goal models used in our work has been formal-
ized in Giorgini et al. (2002), where sound and complete algorithms are provided for
inferring whether a set of root-level goals can be satisfied.

As an extension, we associate goals and tasks with preconditions and postcon-
ditions (hereafter effects to be consistent with AI terminology), and monitoring
switches. Preconditions and effects are propositional formulae in Conjunctive Nor-
mal Form (CNF) that must be true before and after (respectively) a goal is satisfied
or a task is successfully executed. Monitoring switches are boolean flags that can be
switched on/off to indicate whether the corresponding goal/task is to be monitored.

We use the SquirrelMail (Castello 2007) case study as a running example through-
out this paper to illustrate how our framework works. SquirrelMail is an open source
email application that consists of 69711 LOC written in PHP. Figure 1 presents a sim-
ple, high-level goal graph for SquirrelMail with 4 goals and 7 tasks, shown in ovals
and hexagons, respectively.

The root goal g1 (send email) is AND-decomposed into task a1 (load login form),
goal g2 (process send mail request), and task a7 (send message). Goal g1 is satisfied
if and only if a1, g2, and a7 are satisfied. G2 is OR decomposed into task a6 (report
IMAP error) if the email IMAP server is not found and goal g3 (get compose page)
if otherwise. G2 is satisfied if and only if either g3 or a6 is satisfied. A BREAK
(--) contribution link proceeds between goal g3 and task a6, meaning that g3 is
satisfied/denied if and only if a6 is denied/satisfied respectively. The satisfaction of
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Fig. 1 Squirrel mail goal model

task a6 also “breaks” the satisfaction of task a7: a7 is denied/satisfied if and only
if a6 is satisfied/denied respectively. G3 is decomposed into task a2 (process user
login), and goal g4 (show compose page), which is further AND-decomposed into
three tasks: a3 (show form), a4 (enter form), and a5 (start webmail).

2.2 SAT solvers

The propositional satisfiability (SAT) problem is concerned with determining
whether there exists a truth assignment μ to variables of a propositional formula
� that makes the formula true. If such a truth assignment exists, the formula is said
to be satisfiable. A SAT solver is any procedure that determines the satisfiability of a
propositional formula, identifying the satisfying assignments of variables.

The earliest and most prominent SAT algorithm is DPLL (Davis-Putnam-
Logemann-Loveland) (Davis et al. 1962), which uses backtracking search. Even
though the SAT problem is inherently intractable, there have been many improve-
ments to SAT algorithms in recent years. Chaff (Moskewicz et al. 2001), Berk-
Min (Goldberg and Novikov 2002) and Siege (Ryan 2004) are among the fastest SAT
solvers available today. For our work, we use SAT4J (Le Berre 2007), an efficient
SAT solver that inherits a number of features from Chaff.

3 Our framework

3.1 Overview

Figure 2 provides an overview of our framework. The input to the framework is the
monitored program’s source code, and its corresponding goal model representing the
system’s requirements. The goal model can be either reverse engineered from the
program using techniques we presented in Yu et al. (2005) or it can be modeled by
requirement analysts. Requirement analysts annotate the goal model with monitor-
ing switches, and preconditions and effects for goals and tasks. When these switches
are enabled, the satisfaction of the corresponding goals and tasks is monitored at
run time. From the input goal model, the parser component obtains goal/task rela-
tionships, goals and tasks to be monitored, and their preconditions and effects. The
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Fig. 2 Framework overview

parser then passes this data to the instrumentation and SAT encoder components in
the monitoring and diagnostic layers respectively.

In the monitoring layer, the instrumentation component inserts software probes
into the monitored program at the appropriate places using AspectJ (Zhou 2008). At
run time, the instrumented program generates log data that contains program execu-
tion traces and values of preconditions and effects for monitored goals and tasks.
Offline, in the diagnostic layer, the SAT encoder component transforms the goal
model and log data into a propositional formula in CNF which is satisfied if and
only if there is a diagnosis. In our framework a diagnosis specifies for each goal and
task whether it is fully denied or not. A symbol table records the mapping between
propositional literals and diagnosis instances. The SAT solver finds one possible sat-
isfying assignment, translated by the SAT decoder into a possible diagnosis. The SAT
solver can be repeatedly invoked to find all truth assignments that correspond to all
possible diagnoses.

The analyzer analyzes the returned diagnoses, and checks if a denial of system
requirements is found. If denials of system requirements are found, they are traced
back to the source code to identify the problematic components. The diagnosis ana-
lyzer may then increase monitoring granularity by switching on monitoring switches
for subgoals of a denied parent goal. When this is done, subsequent executions of
the instrumented program generate more complete log data. More complete log data
means fewer and more precise diagnoses, due to a larger SAT search space with
added constraints. If no system requirements are denied, monitoring granularity may
also be decreased to monitor fewer (higher level) goals in order to reduce monitoring
overhead. The steps described above constitute one execution session and may be
repeated. All the above described components have been implemented.

3.2 Monitoring and diagnosis

Satisfaction of software system requirements can be monitored at different levels of
granularity. The finest level of monitoring granularity is at the functional level where
all leaf level tasks are monitored. In this case, complete log data is generated, and
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Table 1 Squirrel mail annotated goal model

Goal/
task

Monitor
switch

Precondition Effect

a1 On URL entered Correct form loaded

a2 On ¬wrongIMAP ∧ correct form
loaded

Correct key entered

a3 Off Correct key entered Form shown

a4 Off Form shown form entered

a5 Off Form entered Webmail started

a6 On WrongIMAP Error reported

a7 On Webmail started Email sent

g1 Off URL entered Email sent ∨ error reported

g2 Off Correct form loaded ∨
wrongIMAP

Webmail started ∨ error
reported

g3 Off Correct form loaded ∧
¬wrongIMAP

Webmail started

g4 On Correct key entered Webmail started

a single precise diagnosis can be inferred. Of course, the disadvantage of complete
monitoring is high monitoring overhead and the possible degradation of system per-
formance. Coarser levels of granularity only monitor higher-level goals in a goal
model. In this case, less complete log data is generated, leading to less precise di-
agnoses. Clearly, the advantage of coarse-grain monitoring is reduced monitoring
overhead.

Monitored goals and tasks need to be associated with preconditions and effects
whose truth values are monitored and are analyzed during diagnostic reasoning. Pre-
conditions and effects may also be specified for goals and tasks that are not moni-
tored. This allows for more precise diagnoses by constraining the search space for
analysis. Precondition and effects can be specified for each goal. Alternatively, they
can be specified at the task level and then propagated to higher level goals using
techniques presented in McIlraith and Fadel (2002).

Errors may be introduced if (1) the goal model is not correct, i.e. it does not cor-
rectly or completely capture the monitored system’s requirements, and (2) the spec-
ified preconditions and effects for goals and tasks are not correct, i.e. they do not
correctly capture the desired behaviors of the software system. Detecting or dealing
with these two types of errors is beyond the scope of this paper. We assume that both
the goal model and its associated preconditions and effects are correctly specified for
the application.

Table 1 lists the details of each goal/task in the SquirrelMail goal model (Fig. 1)
with its monitoring switch status (column 2), and associated precondition and effect
(columns 3 and 4). In this example, the satisfaction of goal g4, and tasks a1, a2, a6,
and a7 are monitored.

In the log data, each task occurrence is associated with a specific logical timestep t .
We introduce predicate occa(ai , t) to specify occurrences of tasks ai at timestep t .
We say a goal has occurred in an execution session s if and only if all the tasks in its



Autom Softw Eng

decomposition have occurred in s, and we associate two timesteps, t1 and t2, to goal
occurrences representing the timesteps of the first and the last executed task in the
goal’s decomposition in execution session s. We introduce predicate occg(gi , t1, t2)
to specify occurrences of goals gi that start and end at timesteps t1 and t2 respectively.

The monitored system’s runtime behavior is traced and recorded as log data con-
sisting of truth values of observed domain literals (specified in goal/task precon-
ditions and effects) and the occurrences of tasks, each associated with a specific
timestep t . The following is an example of log data from the SquirrelMail case study:

URL entered(1), occa(a1,2), correct form loaded(3), ¬wrongIMAP(4),
occa(a2,5), correct key entered(6), occa(a3,7), occa(a4,8), occa(a5,9),
¬webmail started(10), occa(a7,11), ¬email sent(12).

The log data contains two errors (¬webmail started(10), and occa(a7,11)): (1) the
effect of g4 (webmail started) was false, at timestep 10, after all the tasks under g4’s
decomposition (a3, a4, and a5) were executed at timesteps 7, 8, and 9 respectively;
and (2) task a7, send message occurred at timestep 11 when its precondition webmail
started was false before its occurrence, at timestep 10. The diagnostic component
analyzes the log data and infers that the goal g4 and the task a7 are denied.

Executions of tasks in some order form a plan which, if executed successfully,
leads to satisfaction of the root goal. We associate a unique execution session ID, s,
with each session of a plan executed in fulfillment of the root goal. Goal satisfaction
or denial may vary from one session to another. The logical timestep t is incremented
by 1 each time a new batch of monitored data arrives and is reset to 1 when a new
session starts.

We introduce a distinct predicate FD to express full evidence of goal and task
denial at a certain timestep or during a specific session. FD predicates take two pa-
rameters: the first parameter is either a goal or a task specified in the goal model and
the second parameter is either a timestep or a session id. For the SquirrelMail case
study, the diagnostic component infers FD(g4, s) and FD(a7, s) as diagnoses.

4 Formal foundations

This section presents the formal foundations of our framework. The axiomatizations
generated for diagnostic reasoning (presented in Sects. 4.3 and 4.4) are adaptations
of the theoretical diagnostic framework proposed in Reiter (1987); De Kleer et al.
(1992); McIlraith (1998).

4.1 Basic formulation for SAT

We reduce the problem of searching for diagnoses to that of the satisfiability of a
propositional formula �. � is written in the form:

� := �LOG ∧ �deniability ∧ �goal[∧�domain constraints] (1)

The first component �LOG represents log data generated by monitors as specified
in Definition 1 (Sect. 4.2). The second component �deniability encodes denials of tasks
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and goals (Sects. 4.3 and 4.4). The third component �goal encodes goal relations
and forward and backward propagation (Sect. 4.5). The last component, which is
optional, �domain constraints, encodes any domain constraints and relations that are not
represented in the goal graph.

4.2 Log data

Log data consists of truth values of observed domain literals and the occurrences of
tasks, each associated with a specific timestep t . A log is made of a sequence of log
instances.

Definition 1 (Log instance) A log instance is either the truth value of an observed
literal or the occurrence of a task, at a specific timestep t .

For example, if literal l was true at timestep 1, and task a occurred at timestep 2,
their respective log instances are: l(1) and occa(a,2).

4.3 Axiomatization of deniability

We formulate the denial of goals and tasks in terms of the truth values of the predi-
cates representing their occurrences, preconditions and effects. Intuitively, if a tasks’s
precondition is true and the task occurred at timestep t , and if its effect holds at the
subsequent timestep t +1, then the task is not denied at timestep t +1. Two scenarios
describe task denial: (1)1 if the task’s precondition is false at timestep t , but the task
still occurred at t ; or (2) if the task occurred at timestep t , but its effect is false at the
subsequent timestep t +1. Axiom (2) captures both of these cases. The preconditions
and effects are specified in CNF. All propositional literals are grounded to domain in-
stances. For example, a propositional literal a, representing a task, may be grounded
to task instance send email in an email application domain.

Axiom 1 (Task Denial Axiom) A task a with precondition p and effect q is denied
at timestep t + 1 if and only if the task occurred at the previous timestep t , and either
p was false at t , or q was false at t + 1.

FD(a, t + 1) ↔ occa(a, t) ∧ (¬p(t) ∨ ¬q(t + 1)) (2)

A goal occurrence is indexed by two timestep arguments denoting the timesteps
of the first and the last executed tasks under the goal’s decomposition. As with a task,
the goal’s precondition and effect need to be true before and after, respectively, the
goal’s occurrence for a goal to be satisfied.

Axiom 2 (Goal Denial Axiom) A goal g with precondition p and effect q is denied
at timestep t2 + 1 if and only if the goal occurrence finished at a previous timestep t2,

1In many axiomatizations it is assumed that occa(a, t) → p(t), where p is the precondition of a.
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and either p was false when goal occurrence started at t1 (t1 ≤ t2) or q is false after
goal occurrence finished at t2 + 1.

FD(g, t2 + 1) ↔ occg(g, t1, t2) ∧ (¬p(t1) ∨ ¬q(t2 + 1)) ∧ (t1 ≤ t2) (3)

If there is only one task under g’s decomposition, the goal occurrence starts and
ends at the same timestep as the task occurrence timestep. In this case, t1 = t2. De-
nial of goals and tasks in the goal model are traced back to the monitored system’s
sourcecode to identify buggy implementations and problematic components.

Axiom 3 (Task and Goal Session Denial Axioms) A task, a, or a goal, g, is denied
during an execution session, s, if a or g is denied at some timestep, t , within s.

FD(a, t) → FD(a, s) (4)

FD(g, t) → FD(g, s) (5)

As will become clear in the following sections, inferring the truth values of
FD(a, s) and FD(g, s) on all tasks and goals is useful when we propagate their denial
labels to the rest of the goal graph.

Returning to the SquirrelMail case study, the following denial axioms are gener-
ated for task a7, send message, goal g4, show compose message, and for timesteps 1
and 2:

FD(a7,2) ↔ occa(a7,1) ∧ (¬webmail started(1) ∨ ¬email sent(2))

FD(g4,2) ↔ occg(g4,1,1) ∧ (¬correct key(1) ∨ ¬webmail started(2))

FD(a7,2) → FD(a7, s)

FD(g4,2) → FD(g4, s)

4.4 Explanation closure axioms

Propositional literals whose values may vary from time step to time step are called
fluents. If a fluent f is not mentioned in the effect of a task that is executed at timestep
t , we would not know the value of f after task execution at timestep t +1. In this case,
f can take on an arbitrary truth value. To fully capture the dynamics of a changing
knowledge base (KB), it is also necessary to know what fluents are unaffected by
performing a task. Formulas that specify unaffected fluents retaining the same values
are often called frame axioms. These present a serious problem because it will be
necessary to reason with a large number of frame axioms for all the fluents, tasks,
and timesteps in the KB.

We adopt Explanation Closure Axioms (Reiter 1991) to capture the effects on
fluents as well as to address the frame problem. We make a completeness assumption
on tasks’ and goals’ effects: we assume that the effects specified for goals and tasks
characterize all conditions under which a goal or a task can change the value of a
fluent. Therefore, if the value of a fluent f changes at timestep t , then one of the
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tasks/goals that has f in its effect must have occurred at a previous timestep t − 1
and not have been denied at t .

Explanation Closure Axioms are described by axioms (6) and (7) which state that,
for any fluent f that is in a positive (or negative) effect of tasks a1, . . . , an and goals
g1, . . . , gm, if f does not hold (or does hold) at timestep t , but holds (or does not hold
respectively) at step t + 1, then one of the tasks ai must have occurred at timestep t

and not have been denied at the subsequent timestep t +1, or one of the goals gj must
have occurred between timesteps t1 and t2 and not have been denied at the subsequent
timestep t2 + 1, where t1 ≤ t ≤ t2.

If f is in a positive effect of tasks ai and goals gj (i ∈ [1, . . . , n] and j ∈
[1, . . . ,m]),

¬f (t) ∧ f (t + 1)

↔
∨

i

(occa(ai, t) ∧ ¬FD(ai, t + 1))

∨
∨

j

(occg(gj , t1, t2) ∧ ¬FD(gj , t2 + 1) ∧ (t1 ≤ t ≤ t2)) (6)

If f is in a negative effect of tasks ai and goals gj , (i ∈ [1, . . . , n] and j ∈
[1, . . . ,m]),

f (t) ∧ ¬f (t + 1)

↔
∨

i

(occa(ai, t) ∧ ¬FD(ai, t + 1))

∨
∨

j

(occg(gj , t1, t2) ∧ ¬FD(gj , t2 + 1) ∧ (t1 ≤ t ≤ t2)) (7)

For example, in the SquirrelMail case study, according to Table 1, only the task a7 has
the fluent email sent in its positive effect. The following explanation closure axiom is
generated for the fluent email sent, for timesteps 1 and 2:

¬email sent(1) ∧ email sent(2) ↔ occa(a7,1) ∧ ¬FD(a7,2)

The conjunction of axioms (2) to (7) encodes the �deniability component of the
propositional formula � (equation (1)), and they represent goal and task denial rela-
tions.

4.5 Axiomatization of the goal model

Axioms (8) and (9) describe the forward and backward propagations of the
goals’/tasks’ satisfaction/denial labels in the goal model. If a goal g is AND (or
OR) decomposed into subgoals g1 . . . gn, and tasks a1 . . . am then there is full evi-
dence that g is denied in a certain session, s, if and only if at least one (or all) of the
subgoals or tasks in its decomposition is (or are) denied in that session.
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(g1 . . . gn, a1 . . . am)
AND−−→ g :

FD(g, s) ↔
(∨

i

FD(gi, s)

)
∨

(∨

j

FD(aj , s)

)
(8)

(g1 . . . gn, a1 . . . am)
OR−→ g :

FD(g, s) ↔
(∧

i

FD(gi, s)

)
∧

(∧

j

FD(aj , s)

)
(9)

Axioms (10) to (13) describe the contribution links between goals. With the in-
troduction of these links, the goal graph may become cyclic and conflicts may arise.
We say a conflict holds if we have both FD(g, s) and ¬FD(g, s) in one execution
session s. Since it does not make sense, for diagnostic purposes, to have a goal be-
ing both denied and satisfied at the same time, conflict tolerance in Sebastiani et al.
(2004) is not supported within our diagnostic framework.

g1
++S−−−→ g2 : ¬FD(g1, s) → ¬FD(g2, s) (10)

g1
--S−−−→ g2 : ¬FD(g1, s) → FD(g2, s) (11)

g1
++D−−−→ g2 : FD(g1, s) → FD(g2, s) (12)

g1
--D−−−→ g2 : FD(g1, s) → ¬FD(g2, s) (13)

The following propagation axiom is generated for the goal g4 in the SquirrelMail
example, stating that g4 is denied if and only if at least one of its subtasks a3, a4, or
a5 is denied:

FD(g4, s) ↔ FD(a3, s) ∨ FD(a4, s) ∨ FD(a5, s)

The conjunction of axioms (8) to (13) encodes the �goal component of the propo-
sitional formula � (equation (1)). These axioms represent the AND/OR decomposi-
tions and contribution links in the goal model.

4.6 Characterizing diagnoses

Definition 2 (Diagnosis) A Diagnosis D for a software system is a set of FD and
¬FD predicates over all the goals and tasks in the goal graph, indexed with respect
to timesteps and a session, such that D ∪ � is satisfiable.

For example, consider a goal g that is AND-decomposed to tasks a1 and a2. If
there are a total of 2 timesteps in the execution session s, and if both a2 and g are
denied at timestep 2 during s, the diagnosis to the system would contain: ¬FD(a1,1),
¬FD(a1,2), ¬FD(a1, s), ¬FD(a2,1), FD(a2,2), FD(a2, s), ¬FD(g,1), FD(g,2),
FD(g, s).
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Theorem 1 Let D be a set of FD and ¬FD predicates over all the goals and tasks in
the goal graph, indexed with respect to timesteps and a session. D is a diagnosis for
a software system if and only if � is satisfiable, and D is extracted from a satisfying
assignment.

Theorem 1 follows directly from Definition 2, and it establishes the soundness
and completeness of our diagnostic approach (presented in Sect. 5). According to the
theorem, the diagnostic component finds a complete set of correct diagnoses defined
in Definition 2, representing all the possible denied and satisfied goals and tasks, that
can account for aberrant system behaviors recorded in the log file. The root cause
of a goal denial is the denial of one or more tasks associated with the goal or its
subgoals. Therefore, task level denial is the core or root cause of a diagnosis given in
Definition 2. If a goal or a task is denied at any timestep t during an execution session
s, it is denied during s (Axiom 3). It is more useful for the diagnostic component to
infer task level denials (root causes) during specific sessions.

Definition 3 (Core Diagnosis) A Core Diagnosis CD for a software system is a set
of FD and ¬FD predicates over all the tasks in the goal graph, indexed with respect
to a session, such that CD ∪ � is satisfiable.

Consider the same example where goal g and task a2 are denied at timestep 2
during the execution session s, the core diagnosis to the system would only contain
¬FD(a1, s), and FD(a2, s).

Corollary 1 Our diagnostic approach finds all the core diagnoses to the software
system.

The proof to Corollary 1 follows from Theorem 1. When the software system is
monitored at the functional level, leaf level tasks are monitored and the most com-
plete log data is generated. A single core diagnosis may be inferred containing denials
of leaf level tasks. When the software system is monitored at the requirement level,
higher level goals in the goal model are monitored and less complete log data is gen-
erated. If the diagnostic component infers that a goal is denied, it returns a complete
set of core diagnoses representing all the possible combinations of task denials for
leaf level tasks associated with the denied goal during the session. Therefore, in the
worst-case, the number of core diagnoses is exponential to the size of the goal graph.
To address this problem, we introduce the concept of participating diagnostic com-
ponents (PDC) that correspond to individual task denial predicates that participate
in core diagnoses. A core diagnosis can be thought of as a set of participating diag-
nostic components. Therefore, instead of returning all core diagnoses that represent
all the possible combinations of task denials, the diagnostic component returns all
participating diagnostic components for scalability.

Definition 4 (Participating Diagnostic Component) A participating diagnostic com-
ponent PDC for a software system is an FD predicate over some task in the goal
model, indexed with respect to a session, such that PDC ∪ � is satisfiable.
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Corollary 2 Our diagnostic approach finds all the participating diagnostic compo-
nents to the software system.

The proof to Corollary 2 follows from Theorem 1.

5 Algorithms

This section discusses the four main algorithms of our framework, namely two en-
coding algorithms (Algorithms 1 and 2) for encoding an annotated goal model into
the propositional formula, �, and two diagnostic algorithms (Algorithms 3 and 4) for
finding all core diagnoses and all participating diagnostic components, respectively.

The difference between the two encoding algorithms, Algorithms 1 and 2, lies
in whether the algorithm preprocesses the log data when encoding the goal model
into �. Algorithm 1 does not preprocess log data and generates a complete set of
axioms for all the timesteps during one execution session. The problem with this
encoding algorithm is the exponential increase in the size of � with the size of a goal
model. Algorithm 2 addresses this problem by generating all necessary axioms while
keeping the growth of the size of � polynomial with respect to the size of the goal

Algorithm 1 Encode � without Log Preprocessing

encode_�_without_log_preprocessing (goal_model, total_timesteps) {
for each task a {

//encode denial axioms
if (a is associated with p and q) {

for each ti ∈ [1, total_timesteps] {
� = � ∧ encodeTaskDenialAxiom(a, ti);
� = � ∧ encodeTaskSessionDenialAxiom(a, ti);}}}

for each goal g {
//encode denial axioms
if (g is associated with p and q) {

for each ti ∈ [1, total_timesteps]
for each tj ∈ [ti , total_timesteps] {
� = � ∧ encodeGoalDenialAxiom(g, ti , tj );
� = � ∧ encodeGoalSessionDenialAxiom(g, ti , tj );}}

//encode goal model structure
for each ti ∈ [1, total_timesteps]

� = � ∧ encodeLabelPropagation (goal_model, ti)}
for each fluent f {

for each ti ∈ [1, total_timesteps]
� = � ∧ encodeExplanationClosureAxiom(f , ti);}

for each contribution link l {
for each ti ∈ [1, total_timesteps]

� = � ∧ encodeContributionLink(l, ti)}
return �;}
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Algorithm 2 Encode � with Log preprocessing

encode_�_with_log_preprocessing(goal_model, log) {
for each task a {

//encode denial axioms
if (a’s occurrence, and associated p and q are recorded in log) {

tocca = task occurrence time during s

tp = maxt {t ≤ tocca and p(t) ∈ log}
tq = mint {t > tocca and q(t) ∈ log}
if (tp ≤ tocca < tq ) {

� = � ∧ FD(a, s) ↔ occa(a, tocca ) ∧ (¬ptp ∨ ¬qtq )

for each goal g {
//encode denial axioms
if (g’s associated p and q are recorded in log) {

//g’s occurrence is between timesteps t1 and t2
t1 = mint {occa(a, t) ∈ log and a ∈ descendents(g)}
t2 = maxt {occa(a, t) ∈ log and a ∈ descendents(g)}
tp = maxt {t ≤ t1 and p(t) ∈ log}
tq = mint {t > t2 and q(t) ∈ log}
if (tp ≤ t1 ≤ t2 < tq ) {

� = � ∧ FD(g, s) ↔ occg(g, t1, t2) ∧ (¬ptp ∨ ¬qtq )

//encode goal model structure
� = � ∧ encodeLabelPropagation (goal model, s)}

for each contribution link l {
� = � ∧ encodeContributionLink(l, s)}

return �;}

model. We present and compare experimental results using these two algorithms in
Sect. 7.

For each task a in the goal model that is associated with a precondition p and an
effect q , Algorithm 1 generates a task denial axiom, and a task session denial axiom
(axioms (2) and (4)) for all the timesteps during the execution session. These axioms
cover all the possible task occurrence and denial timesteps. Similarly, for each goal g

with precondition p and an effect q , the goal denial axiom and the goal session denial
axiom (axioms (3) and (5)) are generated for all possible combinations of timesteps ti
and tj (ti ≤ tj ). These axioms cover all possible goal occurrence and denial timesteps.
In addition, explanation closure axioms (axioms (6) and (7)) are generated for all
fluents and all timesteps, to specify that after each goal/task execution, truth values
of unaffected fluents remain the same from timestep to timestep. Finally, axioms
encoding the goal structure and contribution links (axioms (8) to (13)) are generated
for all timesteps. The SAT solver input formula � is a conjunction of all the generated
axioms. The size of � grows exponentially with the size of the goal model under
Algorithm 1.

To address the scalability issue, for each task a, if its occurrence and truth values
of its precondition and effect are observed in the log file, Algorithm 2 finds in the
log three timesteps: tocc: a’s occurrence timestep during the execution session s; tp:
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the latest observation timestep of a’s precondition before a’s execution; and tq : the
earliest observation timestep of a’s effect after a’s execution. Then the algorithm gen-
erates and adds to � an axiom stating that if a occurred at timestep tocca and if either
p or q was false at timesteps tp and tq respectively, a is denied for the execution ses-
sion s. It is possible for a task to occur more than once during an execution session. In
this case, the algorithm repeats for each of a’s occurrences during the session. Simi-
larly, for each goal g whose truth values of associated precondition and effect appear
in the log, the algorithm calculates the start and the end timesteps of g’s occurrence,
t1 and t2, from the occurrence timesteps of the tasks under g’s decomposition. The al-
gorithm generates and adds to � an axiom stating that if g occurred between timestep
t1 and t2 and if either p or q was false at timesteps tp and tq respectively, g is denied
for the execution session s. Therefore, Algorithm 2 generates goal/task denial axioms
only for the timesteps at which the goals/tasks actually occur as recorded in the log.
Axioms encoding goal model structural and contribution links are generated for the
execution session s. As will be illustrated in Sect. 7, Algorithm 2 allows polynomial
growth in the size of � with respect to the corresponding goal model, and allows the
diagnostic component to scale to larger goal models.

Theorem 2 Let �′ be the � computed by Algorithm 2. Let D be any set of FD and
¬FD predicates over all the tasks in the goal graph, indexed with respect to a specific
session. D is a diagnosis to the system if and only if D ∪ �′ is satisfiable.

Theorem 2 establishes the soundness and completeness of Algorithm 2.
Algorithm 3 finds all possible core diagnoses accounting for aberrant system be-

haviors recorded in the log. If the input formula � is satisfiable, the algorithm decodes
the solver result μ2 into diagnostic instances that constitute a diagnosis. The diagno-
sis is then filtered into a core diagnosis that contains only FD and ¬ FD predicates

Algorithm 3 Find All Core Diagnoses

find_all_core_diagnoses(�) {
while (� is satisfiable) {

μ = satisfying assignments for all variables in �

//map μ to diagnostic instance
oneDiagnosis = decodeToDiagnosis(μ)
//obtain a new oneCoreDiagnosis containing session
//level task satisfaction and denial predicates
oneCoreDiagnosis =

session level task satisfactions and denials in oneDiagnosis
//add to � the negation of both session level and timestep
//level task denials and satisfactions in oneDiagnosis
� = � ∧ ¬μtask denials and satisfactions in oneDiagnosis

}}

2Without loss of generality we treat the set as a conjunction of its elements.



Autom Softw Eng

Algorithm 4 Find All Participating Diagnostic Components

find_all_participating_diagnostic_components(�) {
while (� is satisfiable) {

μ = satisfying assignments for all variables in �

//map SAT result to diagnostic instance
oneDiagnosis = decodeToDiagnosis(μ)
//complete failure configuration containing session
//level task satisfactions and denials in oneDiagnosis
oneCoreDiag =

session level task satisfactions and denials in oneDiagnosis
//partial failure configuration containing only task denials
partialCoreDiag = task denials in oneCoreDiag
allCoreDiag = allCoreDiag ∧ oneCoreDiag
//calculate which part of μ to add back to the SAT solver
boolean negateCompleteConfig = false;
for (each FD(taski , s) in oneCoreDiag)

if (taski is associated with a contribution link) and
if (FD(taski , s) is not already part of a core diagnosis)

negateCompleteConfig = true;
if (negateCompleteConfig)

//add to � the negation of complete failure configuration
� = � ∧ ¬μoneCoreDiag;

else //add to � the negation of partial failure configuration
� = � ∧ ¬μpartialCoreDiag;}

AllParticipatingComps = filter(allCoreDiag);}

over tasks, indexed with respect to a session. To have the SAT solver search only on
predicate symbols that encode the combinations of denials and satisfactions of tasks,
the part of μ that encodes task denials and satisfactions (both at the session level and
at the timestep level) in oneDiagnosis is negated and added back to �. The solver is
invoked again to solve the new �. When satisfied, a new μ is returned and a new core
diagnosis is inferred. The procedure repeats until the formula becomes unsatisfiable,
by which time it has found all possible core diagnoses that explain errors in the log
file. Algorithm 3 finds a complete set of core diagnoses, which, in the worst-case, is
exponential in number to the goal graph size, and may not scale to large goal models.

To address the scalability problem, Algorithm 4 returns all participating diag-
nostic components defined in Definition 4, instead of all core diagnoses. As with
Algorithm 3, Algorithm 4 decodes the solver result μ into a core diagnosis if � is
satisfiable. And as with Algorithm 3, Algorithm 4 negates part of μ and adds it back
to �, to have the SAT solver return another satisfying truth assignment, until � be-
comes unsatisfiable. However, the key difference between the two algorithms lies
in which part of μ the algorithm negates and adds back to the solver. Algorithm 3
always negates and adds back all task denials and satisfactions in the returned di-
agnosis. Consequently, the algorithm has the solver search for all combinations of
task denials and satisfactions. Algorithm 4 negates and adds back to the solver ei-
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ther task denials only, or both task denials and satisfactions, depending weather any
denied task is associated with contribution links. Consequently, under Algorithm 4
the solver focuses on searching for individual task denials, instead of their exhaustive
combinations.

The algorithm works as follows. It finds one core diagnosis and checks it to see
if any denied task in it is associated with a contribution link (such as a MAKE (++)
or a BREAK (--) contribution link). If any of the denied tasks is associated with a
contribution link, and if the task is not already part of a previously returned diagnosis,
the boolean flag negateCompleteConfig is set to true. When this happens, the algo-
rithm negates and adds to � the complete session level task failure configuration in
μ (corresponding to both task denials and satisfactions, i.e., the oneCoreDiagnosis).
Negating and adding to the solver the complete failure configuration in μ, when con-
tribution links are present, avoids contradictions between the negation and the con-
straints imposed by the contribution links themselves. Consequently, the algorithm
avoids situations where � becomes unsatisfiable because of these contradictions be-
fore all the participating diagnostic components can be found. On the other hand, if
the boolean flag negateCompleteConfig is false, all the denied tasks in μ are either
not associated with contribution links, or else are associated with contribution links,
but have already been found by the process. In this case, the algorithm negates only
the part of μ that encodes task denials, guiding the solver to move on quickly to other
denied tasks.

The SAT solver solves the new � and returns another μ, which is decoded to
another core diagnosis, if � is satisfiable. This process repeats till � becomes un-
satisfiable, by which time a set of core diagnoses are returned. The algorithm then
filters all the returned core diagnoses to obtain all possible individual participating
diagnostic components. The aim of Algorithm 4 is to return as few core diagnoses as
possible. Nonetheless, the set of core diagnoses returned is still complete enough to
cover the set of all possible participating diagnostic components.

The total diagnostic time taken by the framework is proportional to the number
of times the SAT solver is invoked. This is equal to the number of core diagnoses
returned. Algorithm 4 outperforms Algorithm 3 because Algorithm 3 finds all core
diagnoses, whereas Algorithm 4 only finds the core diagnoses necessary to cover
all possible participating diagnostic components (corresponding to individual task
denials). However, it is noteworthy that core diagnoses contain more useful diagnostic
information than participating diagnostic components, such as which tasks may or
may not fail together. In situations where diagnostic performance is not a concern,
one may decide to use Algorithm 3 instead of Algorithm 4.

6 Implementation

6.1 General considerations

The presented monitoring and diagnostic framework has been implemented using the
Java programming language. The source code contains 11 Java classes with about
5000 LOC. We use SAT4J (Le Berre 2007), an efficient SAT solver, by including its
jar file in the framework’s compile path.
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Monitoring specifications and instrumentation code can be generated semi-
automatically using AspectJ (Kiczales et al. 2001). Aspect Oriented Programming
(AOP) is a technology that implements crosscutting concerns, such as logging, in
modular units. AspectJ is an aspect oriented extension to Java. The Goal Driven In-
strumentation component (in Fig. 2) obtains monitoring information such as “what”
to monitor (from the goal model), and “where” the monitors should be inserted (from
the traceability links). Using this information, the instrumentation component can
semi-automatically generate monitoring specifications in AspectJ terminologies. The
AspectJ compiler can then use these specifications to automatically instrument the
software at its byte code level. Interested readers can refer to Zhou (2008) for a
complete account of the monitoring component.

6.2 System optimizations

The scalability of our framework is largely due to optimizations of our encoding and
diagnostic algorithms and optimizations in their implementation. In particular, uses
of Algorithms 2 and 4, instead of Algorithms 1 and 3, enhance scalability. In this
section, we discuss how Algorithm 4 works differently from Algorithm 3.

The performance comparison of Algorithms 3 and 4 is straightforward when no
MAKE/BREAK contribution links are present. Algorithm 3 finds all core diagnoses
corresponding to possible combinations of task denials. Algorithm 4 only finds all
Participating Diagnostic Components—that is, all individual task denials for tasks
under the decomposition of denied goals. If a denied goal G has n tasks in its decom-
position, Algorithm 3 returns up to 2n core diagnoses. Algorithm 4 only returns up to
n Participating Diagnostic Components.

The situation is more complicated when the goal model has contribution links. We
cannot estimate the number of diagnostic returns for either algorithm, because these
depend on the number and kind of contribution links in the goal graph. We report
a set of 8 experiments in Table 2 that compare the efficiency of the two algorithms
when contribution links are present. All 8 experiments use the same goal model with
27 tasks and 23 goals. The 8 experiments feather different numbers and types of con-
tribution links between the tasks in the goal model. For each experiment, the program

Table 2 Optimization of Algorithm 4 over Algorithm 3

#Contr
links

#Core TimeC (s) #Core to
obtain all PDC

#PDC TimePDC (s) %Improv

0 n/f n/f 27 27 1.391 ≈100%

1 n/f n/f 42 27 2.047 ≈100%

10 n/f n/f 53 27 2.782 ≈100%

15 4096 7318.00 91 27 5.219 97.78%

(>2 h)

20 299 62.40 18 27 1.276 94.08%

22 128 17.02 17 27 1.286 86.46%

25 107 15.28 17 27 1.307 84.06%

27 16 1.38 10 27 0.953 37.50%
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randomly generates and inserts a number of MAKE/BREAK links between tasks. We
injected an error in the log file that corresponds to the denial of the root goal. The ta-
ble compares the performance of the two algorithms in terms of the numbers of core
diagnoses returned. Note that, the number of returned core diagnoses is equal to the
number of times the SAT solver is invoked. This, in turn, is proportional to the time
the algorithms take to complete their runs.

Column 1 (#Contr Links) lists the number of contribution links in the goal model.
Columns 2 and 3 give the performance of Algorithm 3. Column 2 (#Core) lists the
number of core diagnoses returned. Column 3 (TimeC ) lists the total diagnostic time
(in seconds) taken to find all these core diagnoses. Columns 4 to 7 give the perfor-
mance of Algorithm 4. Column 4 (#Core to Obtain All PDC) lists the total number of
core diagnoses returned. Column 5 (#PDC) lists the number of Participating Diag-
nostic Components obtained from parsing the core diagnoses listed in Column 4. Col-
umn 6 (TimePDC) lists the total diagnostic time (in seconds) taken to find these core
diagnoses. Column 7 (%Improv) gives the percentage improvement of Algorithm 4
over Algorithm 3. Observe that Algorithm 4 generally returns a small fraction of the
core diagnoses returned by Algorithm 3. The percentage improvement is calculated
by subtracting this fraction from 1. The fraction is calculated by dividing the num-
ber of core diagnoses returned by Algorithm 4 (Column 4) by the number of core
diagnoses returned by Algorithm 3 (Column 2) (equation (14)).

%Improv = 1 − #Core Diagnoses to Obtain All PDC (Algorithm 4)

#Core Diagnoses(Algorithm 3)
(14)

The number of MAKE/BREAK contribution links increased from 0 to 27 over
the course of the 8 experiments. As the number of contribution links increases, the
number of core diagnoses decreases. This results from the fact that contribution links
add constraints to the SAT solver search space, reducing the number of valid satis-
fying truth assignments. Note that Algorithm 3 did not finish the first 3 experiments
(the first 3 rows in the table) in real time (represented in the table as “n/f”s). With-
out “enough” constraining contribution links, there were too many core diagnoses
for Algorithm 3 to find within a reasonable period of time. In contrast, Algorithm 4
returned few core diagnoses for these experiments, while still obtaining the complete
set of 27 PDCs. The percentage improvement is therefore essentially 100%.

15 contribution links were inserted in the goal mode for the 4th experiment (the 4th
row of the table). Algorithm 3 took 7318 seconds (more than 2 hours) to return 4096
core diagnoses. Algorithm 4 returned only 91 of these core diagnoses, from which it
obtained the complete set of 27 PDCs. Its entire run took only 5.219 seconds. The
percentage improvement is calculated as 1 − 91/4096, or 97.78%. Over the course
of experiments 5 to 8 (rows 5 to 8), the number of contribution links increased from
20 to 27. The number of core diagnoses returned by Algorithm 3 decreased from
299 to 16. In contrast, Algorithm 4’s returns decreases from 18 to 10. In each case,
Algorithm 4 obtained all 27 PDCs.

Observe that the percentage improvement decreases as the number of contribu-
tion links increases. This is because the number of core diagnoses decreases as the
number of constraining contribution links increases. As the number of core diagnoses
decreases, Algorithm 3 is able to finish more quickly, narrowing its performance gap.
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Where the goal graph contains many contribution links, one might decide to use Al-
gorithm 3 instead of Algorithm 4. This will yield a complete set of core diagnoses
with more informative diagnostic information (i.e. which tasks/goals failed together).

The implementation of our framework involves other optimizations, as well. For
example, we also optimized the encoding algorithm (Algorithm 2) in addition to pre-
processing log data. We replaced “String” objects with “StringBuilder” objects with
large buffers during the encoding of the propositional formula � used by the SAT
solver. Using larger buffers allows for more efficient string concatenations, avoid-
ing excessive memory allocation and copying. This seemingly trivial optimization
resulted in a noticeable performance improvement for the encoding component.

7 Evaluation

We applied our framework to two medium-size public domain software systems to
evaluate its correctness and performance: SquirrelMail (Castello 2007), a Web-based
email client, and an ATM (Automated Teller Machine) simulation (Bjork 2007). We
used the SquirrelMail case study as a running example to illustrate how our frame-
work works. We then used the ATM simulation case study to show that our solution
can scale up to the goal model size and can be applied to industrial software applica-
tions with medium-sized requirements. All experiments reported were performed on
a machine with a Pentium 4 CPU with 1 GB of RAM.

7.1 The SquirrelMail running example

The encoding component preprocesses the SquirrelMail log data (Sect. 3.2) as de-
scribed in Algorithm 2. The diagnostic component infers that the goal g4 and the
task a7 are denied during execution session s. Then it infers that at least one of g4’s
subtasks, a3, a4, a5, must have been denied to account for the denial of g4. Algo-
rithm 3 returns the following 7 core diagnoses:

Core Diagnosis 1: FD(a3, s); FD(a7, s)

Core Diagnosis 2: FD(a4, s); FD(a7, s)

Core Diagnosis 3: FD(a5, s); FD(a7, s)

Core Diagnosis 4: FD(a3, s); FD(a4, s); FD(a7, s)

Core Diagnosis 5: FD(a3, s); FD(a5, s); FD(a7, s)

Core Diagnosis 6: FD(a4, s); FD(a5, s); FD(a7, s)

Core Diagnosis 7: FD(a3, s); FD(a4, s); FD(a5, s); FD(a7, s)

Algorithm 3 returns all core diagnoses which are possible combinations of tasks
denials for tasks a3, a4, and a5—the tasks which account for the denial of goal g4.
In contrast, Algorithm 4 returns individual task denials under one denied parent goal,
leaving out their possible combinations. The following 4 participating diagnostic
components were returned by Algorithm 4:

Diagnostic Component 1: FD(a3, s)

Diagnostic Component 2: FD(a4, s)

Diagnostic Component 2: FD(a5, s)

Diagnostic Component 3: FD(a7, s)
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7.2 Performance evaluation with ATM

The ATM simulation case study is an illustration of OO design used in a software de-
velopment class at Gordon College (Bjork 2007). The application simulates an ATM
performing customers’ withdraw, deposit, transfer and balance inquiry transactions.
The source code contains 36 Java Classes with 5000 LOC, which we reverse engi-
neered to its requirements to obtain a goal model with 37 goals and 51 tasks. We
show a partial goal graph with 18 goals and 22 tasks in Fig. 3.

We report on two sets of experiments in this section. The first contains five exper-
iments with increasing monitoring granularity, all applied to the goal model shown
in Fig. 3. The goal graph is encoded in the SAT input formula � using the log pre-
processing algorithm (Algorithm 2). We demonstrate and discuss the tradeoff be-
tween monitoring granularity and diagnostic precision. The second set reports 20
experiments on 20 progressively larger goal models containing 50 to 1000 goals and
tasks. We obtain these larger goal models by cloning the ATM goal graph to itself. We
performed this second set of experiments using both encoding Algorithms 1 and 2 to
compare their efficiency on larger goal graphs. In both sets of experiments, the diag-
nostic component uses Algorithm 4 to return all participating diagnostic components.

The second set of experiments shows that our diagnostic framework scales to the
size of the relevant goal model, provided the encoding is done with log file pre-
processing (Algorithm 2) and the diagnostic component returns all participating di-
agnostic components (Algorithm 4). Our approach can therefore be applied to indus-
trial software applications with medium-sized requirement models.

Fig. 3 Partial ATM goal model
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Table 3 Tradeoff between monitoring overhead and diagnostic precision (first set of experiments)

#Mon #Diag #Lit #Clauses Tavg (s) Tsum (s)

1 19 62 66 0.053 1.000

3 14 68 76 0.065 0.906

5 11 73 86 0.073 0.798

8 4 82 101 0.133 0.531

11 1 87 116 0.390 0.390

Table 3 reports the results of the first set of experiments. We injected an error
into the implementation of task a15, update balance, with the goal of pinning down
a single precise participating diagnostic component, namely FD(a15). Column 1 in
Table 3 lists the number of monitored goals/tasks in the goal graph. Column 2 lists
the number of participating diagnostic components returned by the diagnostic com-
ponent. Columns 3 and 4 give the total numbers of literals and clauses in the proposi-
tional formula, �, encoded for the SAT solver, using log preprocessing (Algorithm 2).
Column 6 gives the total time (in seconds) taken by the diagnostic component to find
all participating diagnostic components. Tsum is the sum of the time taken to encode
the goal graph into � (Tencode), and the time taken to find all diagnostic components.
This latter time is calculated by multiplying the time taken to find one diagnostic
component (Tdiagnose) by the total number of returned diagnostic components (#Diag
Set) (equation (15)). Tdiagnose includes the time taken by the SAT solver to solve the
propositional formula � (Tsolve), and the time taken to decode the SAT result into
one diagnostic component (Tdecode) (equation (16)). Column 5 lists the average time
(Tavg) the solver took to find one participating diagnostic set (in seconds), calculated
by dividing Tsum by #Diag Set (equation (17))

Tsum = Tencode + Tdiagnose × (#Diag Set) (15)

Tdiagnose = Tsolve + Tdecode (16)

Tavg = Tsum/(#Diag Set) (17)

In the first experiment (row 1 in Table 3), we monitored only the root goal g1
(highest level of monitoring granularity). The diagnostic component inferred that g1
was denied and at least one of the executed tasks under g1’s decomposition must
have been denied to account for this. A total of 19 participating diagnostic compo-
nents were returned (column 2). The diagnostic framework took 1 second to find all
diagnostic components, which averages to 0.053 second per diagnosis.

In experiments 2 to 5 (rows 2 to 5 in Table 3), the number of goals and tasks
that were monitored increased from 3 to 11. With increased monitoring overhead and
more complete log data, diagnostic precision improved (fewer diagnostic components
were returned). Numbers of generated literals and clauses increased with increasing
monitoring granularity, with the average time taken to find a single participating di-
agnostic component increasing from 0.065 to 0.390 seconds. It’s interesting to note
that, even with this increase, the total amount of time the solver took to find all par-
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Table 4 Scalability to goal model size with log preprocessing (second set of experiments)

Goal model
size

Tsum (s) Tencode (s) Tdiagnose (s) #Lit #Clauses

50 0.469 0.044 0.425 81 207

100 0.647 0.066 0.581 157 411

150 0.819 0.100 0.719 233 615

200 1.006 0.119 0.887 309 819

250 1.134 0.128 1.006 385 1023

300 1.260 0.156 1.103 461 1227

350 1.384 0.200 1.184 537 1431

400 1.529 0.225 1.304 613 1635

450 1.650 0.241 1.410 689 1839

500 1.787 0.278 1.509 765 2043

550 1.969 0.312 1.656 841 2247

600 2.159 0.341 1.819 917 2451

650 2.316 0.375 1.941 993 2655

700 2.397 0.406 1.991 1069 2859

750 2.516 0.434 2.082 1145 3063

800 2.725 0.487 2.238 1221 3267

850 2.900 0.528 2.372 1297 3471

900 2.975 0.526 2.450 1373 3675

950 3.259 0.584 2.675 1449 3879

1000 3.444 0.628 2.816 1525 4083

ticipating diagnostic components decreased from 1 to 0.390 second. This happened
because the total number of core diagnoses decreased from 19 to 1.

This first set of experiments showed that the number of participating diagnostic
components returned is inversely proportional to monitoring granularity. When mon-
itoring granularity increases, monitoring overhead, SAT search space, and average
time needed to find a single participating diagnostic component all increase. The
benefit of monitoring at a high monitoring granularity is that we are able to infer
fewer diagnostic components identifying a smaller set of possible faulty components.
It is also noteworthy that the total amount of time taken to find all diagnostic com-
ponents may not increase despite the fact that it takes longer to find one diagnostic
component. The reverse is true when monitoring granularity decreases: we have less
monitoring and diagnostic overhead, but the number of participating diagnostic com-
ponents increases if the system is behaving abnormally. However, if the system is
running correctly, and no requirements are denied, no faulty component will be re-
turned, so minimal monitoring is advisable.

Table 4 reports the results of the second set of experiments, performed with the
log file preprocessing algorithm (Algorithm 2). We experimented on 20 progressively
larger goal models containing from 50 to 1000 goals and tasks in order to evaluate
the scalability of the diagnostic component. We obtain these larger goal graphs by
cloning the ATM goal graph structure (Fig. 3) to itself. All the experiments are per-
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Fig. 4 Scalability to goal model size (encoding with log preprocessing)

formed with complete (task level) monitoring. Only 1 diagnostic component is there-
fore returned for each experiment. Column 1 in Table 4 lists the number of goals/tasks
in the goal model. Column 3, Tencode, lists the time taken (in seconds) to encode the
goal model into the SAT propositional formula � with log file preprocessing. Col-
umn 4, Tdiagnose, lists the time taken by the SAT solver to solve � plus the time taken
to decode the SAT result into a diagnostic component. Column 2, Tsum, calculated
by adding Tencode and Tdiagnose, represents the total time taken (in seconds) to find
the diagnostic component. The total numbers of literals and clauses in � are listed in
columns 5 and 6.

Figure 4 depicts the relationship between the total time taken for diagnostic rea-
soning (the y-axis—the values in columns 2, 3, and 4 of Table 4) and the goal model
size (the x-axis—the values of column 1 of Table 4). The three curves in Fig. 4 show
that the diagnostic component scales to the size of the goal model when using Algo-
rithms 2 and 4, and our approach can be applied to industrial software applications
with medium-sized requirement graphs.

To compare the efficiency between the two encoding Algorithms 1 and 2, we per-
formed this second set of experiments using also Algorithm 1, which encodes without
log file preprocessing. Figure 5 depicts the relationships between the total time taken
(in seconds) for encoding and diagnostic reasoning, and the goal model size, using
the two encoding algorithms. Figure 6 depicts the relationships between the size of �

(the total number of literals and clauses) generated by the two encoding algorithms
and the goal model size. As discussed in Sect. 6, encoding without log preprocessing
gives exponential growth in the size of � with respect to the size of the goal model;
an “out of memory” error was returned with experiments on goal models containing
more than 400 goals/tasks. In contrast, the experiments using encoding with log file
preprocessing scaled well to the goal model size. These experimental results are con-
sistent with our claim that our diagnostic framework scales to the size of the relevant
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Fig. 5 Comparison of encoding and diagnostic time taken by the two encoding algorithms

Fig. 6 Comparison of size of � generated by the two encoding algorithms

goal models, provided log file preprocessing is used, and all participating diagnostic
components (instead of all diagnoses) are returned.

8 Multi-layer monitoring and diagnosis

8.1 Multi-layered architectures

Today’s software systems are components of complex socio-technical systems con-
sisting of business processes, applications and computing infrastructure. Service-
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Fig. 7 ATM global goal model at the 3 layers of SOA

Oriented Architectures (SOA) constitute a popular example of such complex, multi-
layered systems. To further enhance the scalability of our framework, we introduce
the concept of hierarchical monitoring and diagnosis. Hierarchical monitoring and
diagnosis enables the framework to analyze a software system at different layers in
isolation for scalability.

SOA was defined in the late 1990s, and it presents a loosely coupled, multi-tier ar-
chitecture. Under SOA, software applications are encapsulated as services with well-
defined interfaces. In order to support software interoperability and a heterogeneous
environment, the interfaces follows web-service standard (W3C 2002). SOA offers
three abstraction layers containing the business process layer (the top layer), the com-
ponent layer (the middle layer), and the infrastructure layer (the back-end layer). The
business process layer treats services as black boxes. The component layer gives the
business logic of the services in the business process layer. The back-end infrastruc-
ture that the services depend on resides in the infrastructure layer.

To monitor requirement satisfaction of systems that have adopted a SOA, the re-
quirements at each layer are represented in a goal model. The correct functioning at
each layer depends on the correct functioning of the layer beneath it. As a result, leaf
level tasks at an upper layers decompose to the root goals in the layer beneath it.
Figure 7 illustrates the ATM case study in terms of the 3 layers of SOA. On top is the
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business process layer, with the highest level of abstraction. Here, software services
are portrayed as black boxes with well defined interfaces. We represent black boxes
as leaf level atomic tasks in the goal graph.

In Fig. 7, the business process layer consists of three composite services depicted
as goals: issue customers new card service (g2), replace lost/stolen card service (g3),
and cancel card service (g4). The issue customers new card service can be further
decomposed into four sub services depicted as tasks: receive customers’ applications
for new cards (a1), issue customers temporary cards (a2), issue customers permanent
cards (a3), and provide customers ATM service (a4).

The middle layer, or the component layer, offers a medium level of abstraction.
The leaf level tasks from the business process layer are “zoomed into”; here they are
viewed as components with internal requirements that can be reasoned with. For ex-
ample, the atomic task a4 (provide customers ATM service) from the business process
layer decomposes into the root goal g5 (Manage ATM) in the component layer. G5
is then further decomposed to the goal graph presented in Fig. 3 (representing the
requirements for the ATM service), and the task a5 (Provide CPU) (representing the
requirements of the underlying infrastructure). The infrastructure layer, the third and
bottom layer, represents the underlying servers, hardware devices, databases etc. re-
quired for the correct functioning of the uppers layers. The entire infrastructure level
goal graph can be treated as a black box at the component layer. In practice, each leaf
level task at the component level depends on different parts of the infrastructure, and
all these parts together form the entire infrastructure level goal graph. Thus satisfac-
tion of the infrastructure level root goal g6 (provide CPU) depends on the availability
and the correct functioning of the physical ATM (g7), the underlying connection be-
tween the ATM and the bank (g11), and central bank (g12).

Our framework can hierarchically monitor requirement satisfaction on each layer
in isolation, or on all the layers as a connected global goal graph. The tradeoff lies
between scalability and diagnostic precision. Monitoring at the business process layer
offers the highest level of scalability because each component is treated as a black
box. The framework infers requirement denials of black boxes as whole and does not
look for root causes within them. Monitoring at the component level is less scalable,
since each atomic task at the business process layer is treated here as a decomposable
root goal. The benefit of monitoring at the component level is more precise diagnoses,
pinpointing the source of the problem within the denied component. Monitoring at
the infrastructure level is the least scalable. Here the framework not only analyzes
denials of subcomponents, but also failures with the underlying infrastructure the
component depends on. The benefit is that the diagnoses capture failures at a fine
grained infrastructure level. Note that the domain expert specifies which layers are to
be monitored by giving the framework their corresponding goal graphs.

8.2 Evaluation

In this section we discuss the scalability of our framework to goal model size at each
layer of the SOA. The goal model shown in Fig. 7 is a partial goal graph representing
the requirements of 1 business process, provide ATM service, with its 3 SOA layers.
We conducted 20 sets of experiments on 20 progressively larger goal models rep-
resenting 1 to 20 business processes. Each of the 20 sets of experiments contained
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Table 5 Number of goals and tasks at each SOA layer

#Business
processes

#Goals/tasks at business
process level

#Goals/tasks at
component level

#Goals/tasks at
infrastructure level

1 2 50 173

2 3 100 346

3 4 150 519

4 5 200 692

5 6 250 865

6 7 300 1038

7 8 350 1211

8 9 400 1384

9 10 450 1557

10 11 500 1730

11 12 550 1903

12 13 600 2076

13 14 650 2249

14 15 700 2422

15 16 750 2595

16 17 800 2768

17 18 850 2941

18 19 900 3114

19 20 950 3287

20 21 1000 3460

3 experiments on 3 different goal graphs representing the 3 layers of SOA, for a total
of 60 experiments. We generated the larger goal models by cloning the goal graph
to itself. Table 5 lists the numbers of goals and tasks for all 60 experiments. Each
row corresponds to one set of experiments. Column 1 lists the numbers of business
processes. Columns 2 through 4 list the numbers of goals/tasks in the business process
layer, the component layer, and the infrastructure layer respectively. Observe that the
total numbers of goals/tasks increase as the level of abstraction decreases. All the
experiments were performed with log file preprocessing (Algorithm 2). We injected
one error into the log files of each experiment. In each experiment, all the tasks were
monitored, and Algorithm 4 was used for diagnosis.

Figure 8 reports the results of the experiments. It depicts the relationship between
the total time taken for diagnostic reasoning (in seconds) and the size of the goal
model at the different layers of SOA (the x-axis). The figure shows that the frame-
work is most efficient (takes the least amount of time) at the business process level,
and is least efficient at the infrastructure level. Our data further confirm our claim
that our framework scales to the size of the relevant goal graph and the number of
diagnostic results it returns.

These experiments review that monitoring and diagnosing at higher layers of SOA
can be effective. When the system is running correctly, monitoring at the business
process level is advisable. Only if the system is not running correctly should the
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Fig. 8 ATM global goal model at the 3 layers of SOA

framework monitor at lower layers of SOA. Multi-layered monitoring and diagnosis
allows our framework to model and analyze software systems at different levels of
granularity, as appropriate in the circumstances. This enables our framework to be
applied effectively to larger scale software systems.

9 Related work

9.1 Requirements monitoring systems

Requirement monitoring aims to track a system’s runtime behavior so as to detect
deviations from its requirement specification. Fickas’ and Feather’s work (Feather
et al. 1998; Fickas and Feather 1995) presents a run-time technique for monitoring
requirements satisfaction. This technique identifies requirements, assumptions and
remedies. If an assumption is violated, the associated requirement is denied, and the
associated remedies are executed. The approach uses Formal Language for Express-
ing Assumptions (FLEA) to monitor and alert the user of any requirement violations.
The main difference between our work and Fickas’ and Feather’s is that their pro-
posal focuses on monitoring for changes in the domain, rather than malfunctions of
the system. Moreover, there is no need for diagnostic reasoning in their approach,
because their framework predefines requirement/assumption/remedy tuples.

Robinson has also presented a requirement monitoring framework, ReqMon in
Robinson (2005). If an observed event is a satisfaction (or violation) event, satisfac-
tion (or denial) status is updated for the requirement. The main difference between
our approach and Robinson’s is that ReqMon requires diagnostic formulae to be gen-
erated manually using obstacle analysis (Lamsweerde and Letier 2000). Our work, on
the other hand, makes assumptions about what can fail. This allows our framework
to automatically infer diagnoses given a model of system requirements and log data.



Autom Softw Eng

More recently, Winbladh et al. (2006) presented a goal-driven specification-based
testing prototype that aims to find mismatches between actual and expected system
behaviors. Their monitoring component accomplishes this by monitoring software
systems at the finest (i.e. leaf) level of monitoring granularity. The satisfaction of
higher-level goals is inferred from the satisfaction of their leaf level functional sub-
goals. Winbladh’s proposal may therefore not readily scale to industrial sized appli-
cations.

None of the research discussed above (Feather et al. 1998; Fickas and Feather
1995; Winbladh et al. 2006) presents framework performance evaluations or discus-
sions of scalability. It is therefore difficult to compare our respective approaches in
terms of performance and scalability.

9.2 AI theories of diagnosis

Our work relies upon theories of diagnosis from AI (Reiter 1987; De Kleer et al.
1992; McIlraith 1998; Iwan 2002). Early AI research on diagnosis focused on static
systems, and determined which components of the system were behaving normally
and which were behaving abnormally. Two widely accepted AI definitions of diagno-
sis are consistency-based diagnosis (Reiter 1987; De Kleer et al. 1992) and abductive
explanation (De Kleer et al. 1992).

Diagnosing dynamic systems has recently received more attention. McIlraith
(1998) added a theory of action to traditional AI model-based diagnosis (Reiter 1987;
De Kleer et al. 1992) and proposed a new type of diagnosis, explanatory diagnosis.
Explanatory diagnosis conjectures a sequence of actions responsible for the system’s
aberrant behavior. McIlraith showed that conjecturing an explanatory diagnosis is
analogous to AI planning. Iwan (2002) further extended McIlraith’s work and pro-
posed history based explanatory diagnosis (in which the basic action theory was
extended to take into account the possibility that some actions may not occur when
they should, or occurred but did not achieve their intended effects).

We extend McIlraith’s and Iwan’s work in several important ways. The distin-
guishing feature of our approach is its ability to assess satisfaction of the system’s
requirements and goals as well as to diagnose atomic actions. This ability to diagnose
at different levels of granularity is afforded by the richness and hierarchical structure
of goal models. Moreover, the purpose of our diagnoses is to pin down which tasks
have failed, whereas in McIlraith’s and Iwan’s work, the purpose of diagnosis is to
find a sequence of actions that can account for aberrant system behaviors.

9.3 SAT-based goal analysis

In Sebastiani et al. (2004) a SAT based qualitative framework is proposed for finding
satisfaction labels for a set of input goals, satisfying desired satisfaction labels for
a set of target goals, using two SAT solvers. We adopted the goal model formalism
in this work and extended it by associating with goals and actions their monitoring
switches, preconditions, effects and occurrences. We concern ourselves with goal and
task denial using AI theories of diagnosis. Goal/task denial is then propagated along
the goal graph using SAT solvers. In contrast, the focuses of Sebastiani et al. (2004) is
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on satisfaction/denial label propagation only. In so far as satisfiability and deniability
are two sides of the same coin, our work is in line with Sebastiani et al. (2004) with
respect to label propagation.

10 Conclusions

We have presented a framework for monitoring and diagnosis of software systems’
requirements, founded on AI theories of diagnosis. The framework has been imple-
mented and evaluated through a series of experiments on two public domain software
systems. The results of our experiments suggest that the framework is scalable and
can be used with industrial-size software.

Before concluding, we note some features and limitations of our proposal. Firstly,
The framework only monitors system task failures and would need extensions to
handle failures caused by erroneous domain assumptions or malicious attacks. In
addition, monitoring is limited to functional requirements and needs to be extended
to handle non-functional requirements.

Along a different dimension, the proposed framework depends on the availability
of requirements goal model and traceability links, in addition to application’s source
code. The hierarchical and layered structure of goal models enables us to model (and
analyze) a software system at different levels of granularity. A large-scale, complex
software system can be modeled using few goals and tasks at a high level of granu-
larity. Take for example the two cases studies discussed in this paper: the Squirrel-
Mail case study (69711 LOC) is larger than the ATM simulation (5000 LOC). Yet
SquirrelMail’s goal graph (11 goals/tasks) is smaller than that of the ATM simulation
(88 goals/tasks) because it is modeled at a coarser level of granularity. In cases where
a fine-grained goal model is not available, the system can be modeled with a few
high level goals/tasks with relatively less effort. Ideally, a requirements model along
with traceability links to code will already exist for software systems of the future,
developed in accordance with recommended (e.g., model-driven) practices. However,
even if these models and traceability links do exist, some effort may be required to
instrument the code so that truth values of preconditions and effects (specified for
goals/tasks) can be monitored. This instrumentation is automatic if the literals used
to define goal/task preconditions and effects correspond directly to code-level arti-
facts (e.g., variables). If such a correspondence does not exist, the instrumentation
procedure proposed in Zhou (2008) only generates instrumentation templates that
need to be filled in manually.

Traceability links are required to map requirement denials to monitored system’s
source code to pinpoint possible failing components. Traceability links may also be
represented at different granularity levels. Higher level traceability links map high
level goals to larger-scaled software components, such as sub-systems and servers.
Lower level traceability links map lower level goals and tasks to smaller-scaled com-
ponents, such as one or several methods. If low-level, detailed traceability links are
not available, higher level traceability links can be use to relate high level goals to
larger-scaled sub-systems of the monitored system.

To evaluate the performance of our framework, we experimented with 20 progres-
sively larger goal models containing from 50 to 1000 goals/tasks. We started with



Autom Softw Eng

an initial goal model with 50 goals/tasks. The larger goal graphs are obtained by
cloning/copying the structure of this initial goal model multiple times. For example,
the goal graph with 1000 goals/tasks contains 20 clones of the initial goal model
with 50 goals/tasks. All the copies of the goal graphs are connected, with each copy
becomes part of a bigger goal model. As can be seen from Fig. 6, the numbers of gen-
erated literals and clauses in the propositional formula � increased proportionally to
the size of the goal model. This is because each goal/task is identified by a unique ID,
and consequently unique literals are generated to present the denial and occurrence
of each goal/task. Similarly for preconditions and effects, new literals are generated
for them if their true values are observed at new timesteps in the log. Therefore, the
cloning of goal models did not reduce the size of � that is used by the SAT solver.

In future work, we plan to investigate the impact of different, and randomly gen-
erated, goal model structures on the performance of the SAT solver. In addition, we
plan to extend our framework by introducing failure probabilities. This will enable
the diagnostic component to focus on finding the most probable diagnoses (those that
pass a certain probability threshold), instead of all possible diagnoses. This extension
is intended to further enhance the scalability of our framework. We also plan to com-
plete the autonomic MAPE (Monitor, Analyze, Plan, and Execution) loop, (Kephart
and Chess 2003) by designing, and providing tool support for failure repair.
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