
A Unifying Framework for Planning with LTL and Regular Expressions

Eleni Triantafillou
Department of Computer Science

University of Toronto
Toronto, Canada

Jorge A. Baier
Depto. de Ciencia de la Computación

Pontificia Universidad Católica de Chile
Santiago, Chile

Sheila A. McIlraith
Department of Computer Science

University of Toronto
Toronto, Canada

Abstract

Temporally extended goals are critical to the specification of
many real-world planning problems. Such goals are typically
specified in the subset of Linear Temporal Logic (LTL) found
in the Planning Domain Description Language, PDDL3.0. In
this paper, we propose LTL-RE, a high-level language that
supports the specification of a wide variety of temporal goals,
not only using LTL but also using regular expressions. LTL-
RE derives its formal foundation from finite Linear Dynamic
Logic (LDLf), and its expressive power is no less than that of
regular expressions. LTL-RE augments LDLf with planning-
friendly syntax including LTL and typical programming lan-
guage constructs. It is also designed for use with AI au-
tomated planning transition systems, supporting both state-,
action-, and path-oriented temporal goal specification. Build-
ing on recent work focused on LTL, we propose a translation
of LTL-RE into Alternating Automata, which are then em-
bedded directly in domain descriptions for use with classical
planners. We evaluate the behavior of our translator and the
resultant planning problems, with comparison to alternative
LTL translators.

1 Introduction
Most real-world planning problems involve complex goals
that are temporally extended, necessitate the optimization
of preferences or other quality measures, require adherence
to safety constraints and directives, and/or may require or
benefit from following a prescribed high-level script that
specifies how the task is to be realized. By way of illustra-
tion, consider a logistics company that transports packages.
Package delivery may be governed by the following types of
(possibly inconsistent) goals:
• Always ship frozen food in a refrigerated truck.

• Prefer to deliver priority packages before regular packages.

• If the customer is a preferred customer, then always apply a 15%
discount to the final bill.

• Prefer to deliver domestic packages within 24 hours of receipt.

• While a truck is at a location and not full, load all packages
bound for a different destination on the truck; drive to the next
destination; unload all packages to be delivered to this destina-
tion.

While some forms of non-classical goal1 specification
were initially realized via special-purpose planners such as
the Hierarchical Task Network (HTN) planner SHOP2 (e.g.,

1A classical planning goal is limited to a conjunction of prop-
erties that must hold in the final state.

(Erol, Hendler, and Nau 1994)) or TLPLAN, the pioneering
planning system that accepts Linear Temporal Logic (LTL)
pruning rules (Bacchus and Kabanza 1998), more recent
efforts have focused on incorporating such non-classical
goals, which include both temporally extended goals and
preferences, into state-of-the-art domain independent plan-
ners (e.g., (Rintanen 2000; Doherty and Kvarnström 2001;
Cresswell and Coddington 2004; Edelkamp 2006; Baier
and McIlraith 2006; Benton, Kambhampati, and Do 2006;
Baier, Fritz, and McIlraith 2007; Coles and Coles 2011;
Lago, Pistore, and Traverso 2002)). Such systems have been
used in service of a diversity of planning and non-planning
applications from genomic rearrangement (Uras and Erdem
2010) and program test generation (Razavi, Farzan, and
McIlraith 2014) to story generation (Haslum 2012), auto-
mated diagnosis (Grastien et al. 2007; Sohrabi, Baier, and
McIlraith 2010), and verification (Albarghouthi, Baier, and
McIlraith 2009; Patrizi et al. 2011). In recognition of the
planning community’s need for non-classical planning ob-
jectives, PDDL3.0 (Gerevini et al. 2009) was designed to
capture a useful subset of LTL constraints which can either
be cast as hard constraints on the plan or aggregated in a
weighted sum to construct an objective function of soft con-
straints for optimization in the context of plan generation.

The provision of planning systems that accept temporally
extended goals is at the heart of synergies between the AI
Automated Planning community and the Model Checking
community, where similar types of constraints are used to
specify safety and liveness properties for software and hard-
ware verification, and to specify target behavior for the syn-
thesis of software and controllers. Historically the model
checking community has specified such properties in a tem-
poral logic such as LTL, or one of its branching time coun-
terparts – CTL or CTL∗. Such temporal logics are very good
at specifying state-centric properties but they don’t provide
a natural vehicle for specifying action-centric properties –
procedural properties involving the actions of a domain.

In a series of well-received lectures between 2011 and
2013, Moshe Vardi advocated convincingly for both the ben-
efits of LTL, but also for its limitations in the context of
industry-driven verification tasks (e.g., (Vardi 2012)). In re-
sponse, Vardi advocated for Linear Dynamic Logic (LDL), a
temporal logic that combines LTL and Regular Expressions
(REs) in a manner that avoids the exponential blowup that
typically plagues REs in such a context. Subsequently, De
Giacomo and Vardi (2013), proposed LDLf , which defines

23

LDL over finite traces, citing automated planning among the
applications for the logic.

While the AI planning community has increasingly stud-
ied state-centric path constraints in the form of temporally
extended goals (TEGs), there has been far less examination
of temporally extended goals that take the form of REs. An
exception to this is the work of Baier, Fritz, and McIlraith
(2007; 2008) which supports planning with action-centric
procedural control/goals in a Golog-like language that cap-
tures the syntax of REs. A second exception is the work by
Shaparau, Pistore, and Traverso (2008) which, building on
previous work on the EAGLE goal language (Lago, Pistore,
and Traverso 2002), also provides a form of REs for tempo-
rally extended goal specification.

In this paper we propose a goal specification language,
LTL-RE, that supports both LTL and REs. However, unlike
previous work noted above, it has its formal underpinnings
in one uniform language – LDLf – capturing the semantics
of LDLf while at the same time augmenting LDLf with fur-
ther syntax that we believe is more compelling to an end
user charged with specifying goals or constraints for plan
generation. LTL- RE is able to specify goals with respect
to planning domain actions as well as state properties in
the form of REs, using compelling programming constructs
such as “if then else” and “while” loops. We define the syn-
tax and semantics of LTL- RE and examine how to plan
for LTL-RE goals using state-of-the-art domain independent
planners via a reformulation into finite state automata. Un-
like previous reformulation approaches that exploited Non-
deterministic Finite State Automata (NFAs) (e.g., (Baier and
McIlraith 2006)), we exploit an approach based on Alternat-
ing Automata following Torres and Baier (2015) that avoids
the worst-case exponential blow-up inherent to NFAs. This
workshop paper represents a work in progress. We present
our algorithm and report on experimental results to date,
contrasting the efficacy of our reformulation to LTL-specific
LDL reformulations based on NFAs and Alternating Au-
tomata.

2 Preliminaries
In this section we recount how transition systems are com-
pactly described using a planning language and review the
syntax and semantics of LTL, LDL and their finite trace
counterparts, LTLf and LDLf .

2.1 A Planning-Language Transition System
The objective of this paper is to show how to plan for a rich
goal language based on LTL and REs uniformly captured
in LDLf . We assume that the “world” for which we want
to build our plan is described by a deterministic transition
system compactly described by an initial state and a set of
actions. In AI automated planning such a transition system
is typically specified using the Planning Domain Descrip-
tion Language (PDDL) of which there are several variants
of differing expressivity (McDermott 1998).

Formally, a transition system is given by a tuple (P,A, I),
where P is a set of propositions, which we use to describe a
state,A is a set of actions, and I ⊆ P is the initial state. For

every action a ∈ A, prec(a) and eff (a) denote, respectively,
the preconditions and effects of a. prec(a) is a set of fluent
literals over P and eff (a) is a set of elements of the form
C → L, where C is a set of literals over P and L is a literal
over P . When C → L is an effect of a, and a is applied on
a state s in which C holds, then L must hold in the state that
results from applying a in s.

An action a is applicable in a state s ⊆ 2P if s |= prec(a).
If a is applicable in s, then partial function δ : 22

P × A is
defined such that:

δ(s, a) = s\{p | C → ¬p ∈ eff (a)}∪{p | C → p ∈ eff (a)}
If a is not applicable in s, then δ(a, s) is undefined.

A sequence of actions a0a1 . . . an−1 is applicable in s0 if
δ(si, ai) is defined for each i ∈ {0, . . . , n − 1}. A state
trace s0s1 . . . sn+1 is induced by the execution of α =
a0a1 . . . an in a state s iff (1) α is applicable in s, (2) s = s0,
and (3) δ(si, ai) = si+1, for every i ∈ {0, . . . , n− 1}.

2.2 From Propositional Dynamic Logic to LDL

Propositional Dynamic Logic (PDL) was introduced by Fis-
cher and Ladner (1979) to describe interesting properties
of programs, such as correctness and termination. In PDL,
terms are actions and propositions, and modal operators are
exploited to directly reference regular programs within the
language. This allows, for instance, the use of a test operator
which results in the blocking of the program if the property
that is being tested is false. It also supports nondeterministic
choice of actions, sequencing of actions in a program, and
the repetition of a program for a nondeterministic number of
iterations. Within PDL, it is also possible to define program-
ming constructs such as “if then else” and “while do”.

LDL is an extension of PDL, which carries over the rich
expressive properties of PDL but interpretted with respect
to linear traces, just as LTL is used in planning and model
checking to express interesting state-centric properties of
linear traces (e.g., TEGs). LDL is a logic that is expressively
equivalent to Monadic Second Order Logic (MSO), and is
strictly more powerful than first order logic (FOL), or equiv-
alently, LTL. In their 2013 paper, De Giacomo and Vardi ar-
gue that LDLf witnesses the marriage of the best properties
of REs on finite traces (REf) and LTLf , namely the rich ex-
pressivity of RE with the declarative convenience LTLf (De
Giacomo and Vardi 2013). Since, however, in our opinion
LDLf is still not a very intuitive specification mechanism, we
augment it with syntax to allow for a more intuitive expres-
sion of temporal and dynamic properties and clarify its use
in the context of a transition system expressed via a planning
language, such as PDDL.

2.3 LTLf and LDLf
LTLf : LTL is a modal temporal logic, first proposed for veri-
fication (Pnueli 1977). It supports the expression of rich path
properties using modalities that include always (2), eventu-
ally (3), until (U), and next (). These temporal modalities
can be arbitrarily nested over well-formed formulae defined
over standard logical constructs such at ¬, ∨, ∧, etc. LTLf
is a finite variant of LTL that has been used extensively for

24

the specification of TEGs in automated planning. Below we
review the semantics of LTLf .

Given a finite trace π over an alphabet 2P , and an instant,
i of the trace, the LTLf operators are defined below.

• π, i |= ϕ iff i < last ∧ π, i+ 1 |= ϕ

• π, i |= ϕ1 Uϕ2 iff for some j such that i ≤ j ≤ last, we
have that π, j |= ϕ2 and for all k, i ≤ k < j, we have that
π, k |= ϕ2

The operators and can be defined in terms of the
above modal operators. Intuitively, φ denotes that formula
φ holds in every state of the trace from the current instant
forward, while φ denotes that φ will hold at some instant
in the subtrace from the current instant forward. More for-
mally,

• π, i |= ϕ iff π, i |= trueUϕ

• π, i |= ϕ iff π, i |= ¬¬ϕ
LDLf : LDLf (De Giacomo and Vardi 2013) features the prop-
erties of PDL, but formulae are evaluated over finite linear
traces. The syntax of LDLf is defined as follows:
ϕ ::= A | ¬ϕ | ϕ1 ∧ ϕ2 | 〈ρ〉ϕ
ρ ::= φ | ϕ? |ρ1 + ρ2 | ρ1; ρ2 | ρ∗
where A denotes atomic propositions, φ denotes a propo-

sitional formula over atomic propositions, ρ denotes path ex-
pressions, which are regular expressions over propositional
formulas φ, together with the test construct ?. Finally, ϕ de-
notes LDLf formulas formed by applying Boolean connec-
tives, combined with the modal operator 〈ρ〉ϕ.

The modal operator 〈ρ〉ϕ evaluates to true in a state if
there exists a trace, starting from the current state, which
satisfies ρ and ends in a state which satisfies ϕ. Its dual op-
erator, [ρ]ϕ, which can be defined as ¬〈ρ〉¬ϕ, is true in a
state if all traces starting from that state which satisfy ρ end
in a state that satisfies ϕ.

For a given finite trace π over an alphabet 2P , and an in-
stant, i, of the trace, i ∈ {0, . . . , last}, we inductively de-
fine what it means for an LDLf formula ϕ to be true, i.e
π, i |= ϕ:

• π, i |= A, for A ∈ P iff A ∈ π(i)

• π, i |= ¬ϕ iff π, i 6|= ϕ

• π, i |= ϕ ∧ ϕ′ iff π, i |= ϕ and π, i |= ϕ′

• π, i |= 〈ρ〉ϕ iff for some j such that i ≤ j ≤ last, we have
that (i, j) ∈ R(ρ, π) and π, j |= ϕ

where the relation R(ρ, s) is defined inductively as follows:

• R(φ, s) = {(i, i+ 1) | π(i) |= φ} (φ propositional)

• R(φ?, s) = {(i, i) | π, i |= φ}
• R(ρ1 + ρ2, s) = R(ρ1, s) ∪R(ρ2, s)

• R(ρ1; ρ2, s) = {(i, j) | exists k such that (i, k) ∈
R(ρ1, s) and (k, j) ∈ R(ρ2, s)

• R(ρ∗, s) = {(i, i) ∪ (i, j) | exists k such that (i, k) ∈
R(ρ, s) and (k, j) ∈ R(ρ∗, s)}

3 A Goal Language over LTL & REs
3.1 Overview
In this paper we propose Linear Temporal Logic with Reg-
ular Expressions for finite traces (LTL- RE)2, a high-level
language for the specification of temporally extended goals
that are evaluated over finite traces. This language functions
as a unifying framework, by supporting syntax from LTL and
LDL, programming constructs “if-then-else” and “while”,
and a modality “final”, for expressing properties that must
hold in the last state of a finite trace. It also supports direct
reference to planning language actions from within LTL-RE
through the use of a special predicate, “occ” which ranges
over the ground actions in a planning problem description,
A.

LTL- RE is as expressive as LDLf , which is equivalent
to Monadic Second Order Logic. This is strictly more ex-
pressive than LTLf . This fact allows the definition of LTL
operators, and the constructs ”if then else”, ”while” and ”fi-
nal” in terms of the syntax of LDLf , as we demonstrate in a
following section.

3.2 The Syntax of LTL-RE
Given a transition system (P,A, I), as defined in Section
2.1, the syntax of LTL-RE is given by the following gram-
mar:

φ ::=p : p ∈ P | occ(a) : a ∈ A | ¬φ | φ1 ∧ φ2
ϕ ::=φ | ¬ϕ | ϕ1 ∧ ϕ2 | final φ | 〈ρ〉ϕ | ϕ1 Uϕ2 |

ϕ | ϕ |ϕ

ρ ::=φ | ϕ? | ρ1 + ρ2 | ρ1; ρ2 | ρ∗ |
if-then-else(ϕ, ρ1, ρ2) | while(ϕ, ρ)

With this syntax, we can express typical LTL goals such
as ‘‘Always have your phone and eventually be at home.”

have(Phone) ∧at(Home)

but also TEGs that take the form of regular expressions, such
as “If it’s night time then take a taxi home, else take the
subway.”

if-then-else(night, occ(taxi(Home)), occ(subway(Home)))

3.3 Semantics
LTL-RE is interpreted over a pair π = (σ, α), where α is a
sequence of actions, and σ is the sequence of states induced
by the execution of α in a certain state.

We say that π |= ϕ, where ϕ is an LTL-RE formula, π =
(σ, α), σ = s0 . . . sn, and α = a0 . . . an−1 iff π, 0 |= ϕ.
Now we assume we include the same definitions in LDLf ’s
semantics that were listed in the previous section, taking into
account that π(i) now refers the the i-th state, i.e., si. In
addition we add the following rule for the occ operator:

• π, i |= occ(a) iff i < n and ai = a

2not to be confused with RELTL (e.g., (Eisner and Fisman
2007)).

25

This operator is what makes it possible to directly refer
to actions within the language, and not merely through their
effects on the state properties. Specifically, occ(a) is true
in the current state, if a is the next planning action to be
executed.

Now we define the semantics for the “if-then-else” and
“while” programming constructs. Following (Fischer and
Ladner 1979), we can express these constructs in terms of
standard LDL operators.

• π, i |= if-then-else(ψ,ϕ1, ϕ2) if π, i |= ψ?;ϕ1+¬ψ?;ϕ2

• π, i |= while(ψ,ϕ) if π, i |= (ψ?;ϕ)∗;¬ψ
We also define the semantics for the LTL operators , ,

 and U can be rewritten using the syntax of LDLf while
preserving their semantics as defined in the previous section.
This is shown in (De Giacomo et al. 2014).
• π, i |= ϕ iff π, i |= 〈true〉ϕ ∧ i < last

• π, i |= ϕ iff π, i |= 〈true∗〉ϕ
• π, i |= ϕ iff π, i |= [true∗]ϕ

• π, i |= ψUϕ iff π, i |= 〈(ψ?; true)∗〉ϕ
Finally, we define the semantics for the modality final:

• π, i |= final ϕ iff π, i |= ϕ ∧ i = last

3.4 Planning for an LTL-RE Goal
We end this section by defining what it means to plan for an
LTL-RE goal.
Definition 3.1. Let R = (P,A, I) be a transition system
and ϕ be an LTL-RE formula. Then the sequence of action
α is a plan forϕ overR iff α is applicable in I and generates
a state trace σ over I such that (σ, α) |= ϕ.

4 Planning for LTL-RE Goals with Standard
Planners

In this section we show how we can plan for LTL-RE goals
using state-of-the-art planners. To this end, we use a two-
step approach that follows (Torres and Baier 2015). In the
first stage, we build an alternating automaton for the LTL-
RE formula. Then, we show how this automaton can be
used to compile the temporal goal into a non-temporal (final-
state) goal. We do this by exploiting the fact that the dynam-
ics of an alternating automaton can be encoded efficiently in
a new transition system that is built from the original plan-
ning domain transition system.

4.1 Alternating Automata on Words
An Alternating Automaton on Words (AA) on the alphabet
2P is a tuple A defined as: A = (2P , Q, q0, δ, F), where
Q is a finite nonempty set of states, q0 is the initial state,
F is a set of accepting states, and δ is a transition function
δ : Q × 2P → B+(Q), where B+(Q) is a set of positive
Boolean formulas whose atoms are states of Q.

A run of an AA A = (2P , Q, q0, δ, F) over word w =
b1 . . . bn is a sequence of subsets of Q, Q0Q1 . . . Qn, such
that Q0 = {q0}, and Qi+1 |= δ(q, bi), for every q ∈ Qi, and
every i ∈ {0, . . . , n− 1}. An AA accepts a word w if it has
a run ending in a subset of F .

4.2 From LDLf to AA
Following (Fischer and Ladner 1979; De Giacomo and Vardi
2013), the Fisher-Ladner Closure of a LDLf formula ϕ is a
set CLϕ of LDLf formulas, recursively defined as follows:
ϕ ∈ CLϕ
¬ψ ∈ CLϕ if ψ ∈ CLϕ and ψ not of the form ¬ψ′
ϕ1 ∧ ϕ2 ∈ CLϕ implies ϕ1, ϕ2 ∈ CLϕ
〈ρ〉ϕ ∈ CLϕ implies ϕ ∈ CLϕ
〈φ〉ϕ ∈ CLϕ implies φ ∈ CLϕ (φ propositional)
〈ψ?〉ϕ ∈ CLϕ implies ψ ∈ CLϕ
〈ρ1; ρ2〉ϕ ∈ CLϕ implies 〈ρ1〉〈ρ2〉ϕ ∈ CLϕ
〈ρ1 + ρ2〉ϕ ∈ CLϕ implies 〈ρ1〉ϕ, 〈ρ2〉ϕ ∈ CLϕ
〈ρ∗〉ϕ ∈ CLϕ implies 〈ρ〉〈ρ∗〉ϕ ∈ CLϕ
De Giacomo and Vardi define an AA which accepts all

and only the traces that satisfy a given LDLf formula. Specif-
ically, given a set of propositions P , and a LDLf formula
ϕ which is in Negation Normal Form (NNF), the automa-
ton for ϕ that is defined in (De Giacomo and Vardi 2013)
is given by: A′ϕ = (2P , CLϕ, ϕ, δ

′, {}), where 2P is the
alphabet, CLϕ, denoting the Fisher-Ladner Closure of the
formula ϕ is the state set, and δ′ is their transition function.

We define an automaton Aϕ for a set of propositions P
and a LDLf formula in NNF ϕ as follows:Aϕ = (2P , CLϕ∪
{qF }, ϕ, δ, {qF }), where qF is a special automaton state in
which the AA transitions when the trace has ended. Also, δ
is the transition function, which differs from the aforemen-
tioned δ′ only in the transition for [φ]ϕ, as we elaborate on
later. For an interpretation Π, and assuming that A stands for
a propositional formula, we define δ below.
δ(A,Π) = true if A ∈ Π
δ(A,Π) = false if A /∈ Π
δ(qF ,Π) = false
δ(ϕ1 ∧ ϕ2,Π) = δ(ϕ1) ∧ δ(ϕ1)
δ(ϕ1 ∨ ϕ2,Π) = δ(ϕ1) ∨ δ(ϕ1)

δ(〈φ〉ϕ,Π) =

{
ϕ if Π |= φ (φ propositional)
false if Π 6|= φ

δ(〈ψ?〉ϕ,Π) = δ(ψ,Π) ∧ δ(ϕ,Π)
δ(〈ρ1 + ρ2〉ϕ,Π) = δ(〈ρ1〉ϕ,Π) ∨ δ(〈ρ2〉ϕ,Π)
δ(〈ρ1; ρ2〉ϕ,Π) = δ(〈ρ1〉〈ρ2〉ϕ,Π)

δ(〈ρ∗〉ϕ,Π) =

{
δ(ϕ,Π) if ρ is test-only
δ(ϕ,Π) ∨ δ(〈ρ〉〈ρ∗〉ϕ,Π) o/w

δ([φ]ϕ,Π) =

{
ϕ ∨ qF if Π |= φ (φ propositional)
true if Π 6|= φ

δ([ψ?]ϕ,Π) = δ(nnf(¬ψ),Π) ∨ δ(ϕ,Π)
δ([ρ1 + ρ2]ϕ,Π) = δ([ρ1]ϕ,Π) ∧ δ([ρ2]ϕ,Π)
δ([ρ1; ρ2]ϕ,Π) = δ([ρ1][ρ2]ϕ,Π)

δ([ρ∗]ϕ,Π) =

{
δ(ϕ,Π) if ρ is test-only
δ(ϕ,Π) ∧ δ([ρ][ρ∗]ϕ,Π) o/w

It is important to note that a LDLf formula can be rewritten
to an equivalent LDLf formula which is in NNF in linear
time. Further, that the state set of the AA for a LDLf formula
ϕ, namely CLϕ is linear in the size of ϕ.

Theorem 4.1. Let ϕ be an LDLf formula and Aϕ the AA
defined above. Then, for any interpretation π, π |= ϕ iff Aϕ
accepts π.

26

Proof. The correctness of the theorem stems from Theorem
17 in (De Giacomo and Vardi 2013). Our only modifica-
tion to the AA presented in that paper is in the transition
δ([φ]ϕ,Π): In the first of the two cases for this transition (ie
when Π |= φ), we add the disjunction with qf . To see why
this is necessary, consider the case where Π contains a sin-
gle state, and in that state φ is true and ϕ is false. Then, since
Π |= φ, we are in the first of the two cases of this transition,
so we transition to a state in which ϕ ∨ qf , ie false ∨ qf ,
is true. Had we not included qf in this disjunction, the au-
tomaton would not accept this trace, which is an incorrect
behavior. By allowing qf as an option for this transition, we
provide the automaton with the choice to end the trace and
accept it, as it should.

4.3 Building an AA for LTL-RE
LTL- RE augments LDLf with LTL, programming con-
structs, and a final modality, in order to make goal speci-
fication easier. These constructs can all be defined in terms
of native LDLf . The most significant extension of LTL-RE
over LDLf , from the perspective of translation, is the addi-
tion of the occ predicate that enables a goal to reference the
occurrence of a particular ground action.

Let (P,A, I) be a transition system, α be a sequence of
action applicable in I, and σ be the state trace that is induced
by the execution of α in I. Then we define a word β =
b0b1 . . . bn in which bi = si ∪ {ai}, for i ∈ {0, . . . , n− 1},
and bn = sn.

Given an LTL-RE formula ϕ, we first replace all program
constructs (“if-then-else” and “while”), as well as any LTL
constructs by the corresponding LDLf equivalent given by
the semantics defined in the previous section (i.e., we replace
any occurrence of ϕ by [true∗]ϕ, and so forth). Then, as
with LDLf we put the resulting formula in negation normal
form. Let ϕ′ be the resulting formula. The AA for the re-
sulting formula is like Aϕ′ described above for LDLf , but
includes the following additional definition for δ:

δ(occ(a),Π) = occ(a)

where occ(a) is the special fluent from the set Occ, which is
described in a following paragraph. By making occ(a) true,
we ensure that the ground action amust be the next action of
the plan in order for this trace to be accepting. The automa-
ton for ϕ that results from applying these steps is denoted as
Aϕ.

Theorem 4.2. Let Aϕ, σ be a state trace induced by the
execution of action sequence α, and β be defined as above.
Then (σ, α) |= ϕ iff Aϕ accepts β.

4.4 Compiling away LTL-RE goals
Now we describe a method to compile away LTL-RE goals
by representing the AA within a new (output) transition sys-
tem, constructed from the original planning transition sys-
tem. Our method is based on the one proposed in (Torres and
Baier 2015), which in their case compiled away LTL plan-
ning goals expressed as an AA. Although Torres and Baier
only deal with LTL rather than LDL, the main technical dif-
ference between their method and ours is the treatment of

action-centric constraints and in particular the special han-
dling of the occ predicate in order to support REs over ac-
tions.

Given a transition system T = (P,A, I), and an LTL-
RE goal ϕ, our method generates a new transition system
T ′ = (P ′,A′, I ′). A plan for T and goal ϕ can be ob-
tained by finding a sequence of action that reaches a final
state where a distinguished property in t′ holds. Satisfac-
tion of this property corresponds to successful transitioning
through the automaton Aϕ. Thus, the problem of planning
for a temporal goal is reduced to the problem of finding a
classical plan for which this distinguished property holds.
Such a plan can be obtained using optimized off-the-shelf
classical planners.

Following (Torres and Baier 2015), in T ′ there is one
(new) fluent q for each state q of Aϕ. If α = a1a2 . . . an
is applicable in the initial state of T , then there will exist a
corresponding set of action sequences (denoted Aα) of the
form α0a1α1a2α2 . . . anαn, where each αi is a sequence of
so-called “synchronization actions” which did not appear in
P and whose objective is to update the state of Aϕ.

Also in keeping with Torres and Baier, all actions in T
also appear in T ′. Execution in T ′ can be understood as hav-
ing two “modes”. In the so-called world mode, actions from
the original transition system T can be executed. In the so-
called synchronization mode actions that update the state of
the automaton can be executed. The set of propositions P ′
contains additional propositions representing the state of the
AA for ϕ plus additional flags that are used to switch ap-
propriately between modes. Synchronization actions update
the state of the automaton following the definition of the δ
function.
Fluents P ′ has the same fluents as P plus fluents that rep-
resent the states of the automaton (Q), flags for controlling
the different modes (copy, sync, world), and a special
fluent ok, which becomes false if the goal has been falsi-
fied. Finally, it includes the set QS = {qS | q ∈ Q} which
are “copies” of the automata fluents (described in detail be-
low), and Occ which contains a fluent occ(a′) for each a
such that occ(a) is a subformula of the original goal for-
mula ϕ. Formally, the set of fluents F ′ = F ∪ Q ∪ QS ∪
{copy, sync,world,ok} ∪Occ.

The set of planning operators O′ is the union of the sets
Ow and Os for the world-mode and synchronization-mode
actions, as follows.
World Mode Operators The set Ow contains the same
actions in A, but preconditions are modified to allow execu-
tion only in “world mode”. Effects, on the other hand, are
modified to allow the execution of the copy action, which
initiates the synchronization phase, and which is described
below. Formally, Ow = {a′ | a ∈ A}, and for all a′ in Ow:

prec(a′) = prec(a) ∪ {ok,world} ∪ notOcc(a′),
eff (a′) = eff (a) ∪ {copy,¬world},

where notOcc(a′) = {¬occ(a) | a 6= a′ and occ(a) ∈
Occ}. I.e., the preconditions for executing a′ are all the orig-
inal preconditions for action a, that the flags indicate the
planner is in world mode and the goal has not been falsified,

27

Sync Action Precondition Effect

tr(qS`) {sync, ok, qS` , `} {¬qS` }
tr(qSF) {sync, ok, qSF } {¬qSF ,¬ok}
tr(qSα∧β) {sync, ok, qSα∧β} {qSα , qSβ ,¬qSα∧β}
tr1(q

S
α∨β) {sync, ok, qSα∨β} {qSα ,¬qSα∨β}

tr2(q
S
α∨β) {sync, ok, qSα∨β} {qSβ ,¬qSα∨β}

tr(qS〈α?〉β) {sync, ok, qS〈α?〉β} {qSα , qSβ ,¬qS〈α?〉β}
tr1(q

S
〈α1+α2〉β) {sync, ok, q

S
〈α1+α2〉β} {q

S
〈α1〉β ,¬q

S
〈α1+α2〉β}

tr2(q
S
〈α1+α2〉β) {sync, ok, q

S
〈α1+α2〉β} {q

S
〈α2〉β¬q

S
〈α1+α2〉β}

tr(qS〈α1;α2〉β) {sync, ok, qS〈α1;α2〉β} {q
S
〈α1〉〈α2〉β¬q

S
〈α1;α2〉β}

α is ”test-only”:

tr(qS〈α∗〉β) {sync, ok, qS〈α∗〉β} {qSβ ,¬qS〈α∗〉β}
α isn’t ”test-only”:

tr1(q
S
〈α∗〉β) {sync, ok, qS〈α∗〉β} {qSβ ,¬qS〈α∗〉β}

tr2(q
S
〈α∗〉β) {sync, ok, qS〈α∗〉β} {qS〈α〉〈α∗〉β ,¬qS〈α∗〉β}

tr(qS〈α〉β) {sync, ok, α, qS〈α〉β} {qβ ,¬qS〈α〉β}
tr(qS〈α〉β) {sync, ok,¬α, qS〈α〉β} {¬qS〈α〉β ,¬ok}
tr1(q

S
[α?]β) {sync, ok, qS[α?]β} {qSnnf(¬α),¬qS[α?]β}

tr2(q
S
[α?]β) {sync, ok, qS[α?]β} {qSβ ,¬qS[α?]β}

tr(qS[α1+α2]β) {sync, ok, qS[α1+α2]β} {qS[α1]β , q
S
[α2]β ,¬qS[α1+α2]β}

tr(qS[α1;α2]β) {sync, ok, qS[α1;α2]β} {qS[α1][α2]β ,¬qS[α1;α2]β}
α is ”test-only”:

tr(qS[α∗]β) {sync, ok, qS[α∗]β} {qSβ ,¬qS[α1;α2]β}
α isn’t ”test-only”:

tr(qS[α∗]β) {sync, ok, qS[α∗]β} {qSβ , qS[α][α∗]β ,¬qS[α1;α2]β}
tr1(q

S
[α]β) {sync, ok, α, qS[α]β} {qβ ,¬qS[α]β}

tr2(q
S
[α]β) {sync, ok, α, qS[α]β} {qF ,¬qS[α]β}

tr(qSocc(a)) {sync, ok, qSocc(a)} {qocc(a),¬qSocc(a)}

Table 1: The synchronization actions generated for the trans-
lation of an LTL- RE goal ϕ in NNF. ` is assumed to be
a literal, and a (used in the last line) is assumed to be a
(ground) world action. The transition tr(qS〈α〉β) applies in
the case where α is propositional (otherwise one of the ear-
lier rules would be used). Similarly for tr(qS[α]β). We say that
α is test-only if it is a finite regular expression whose atoms
are only tests ψ?.

and it’s not the case that any of the other actions mentioned
in the temporal goal ϕ (the set Occ) are occuring now.

Synchronization Mode Operators The set of synchro-
nizing mode operators, Os, contains the actions copy,
world, and all actions defined in Table 1. Collectively these
actions realize the bookkeeping associated with the transi-
tioning of the AA Aϕ as a result of the actions executed in
so-called world mode.

Synchronization mode is divided into three consecutive
parts. In the first part, we execute the copy action which in
the successor states adds a copy qS for each fluent q that
is currently true, deleting q. Intuitively, during synchroniza-
tion, each qS defines the state of the automaton prior to syn-
chronization. In addition, copy removes any propositions of
the form occ(a). The precondition of copy is {copy,ok},

while its effect is defined by:

eff (copy) ={q → qS , q → ¬q | q ∈ Q}∪
{sync,¬copy} ∪Occ

As soon as the sync fluent becomes true, the second phase
of synchronization begins. Here the only executable actions
are those that update the state of the automaton, which are
defined in Table 1. Note that one of the actions deletes the
ok fluent. This can happen, for example while synchroniz-
ing a formula that actually expresses the fact that the action
sequence has to conclude now.

When no more synchronization actions are possible—i.e.,
when there are no fluents of the form qS—, we enter the
third phase of synchronization. Here only action world is
executable; its only objective is to reestablish world mode.
The precondition ofworld is {sync,ok}∪QS , and its effect
is {world,¬sync}.
New Initial State The initial state of the original problem
P intuitively needs to be “processed” by Aϕ before starting
to plan. Therefore, we define I ′ as I ∪ {qϕ, copy,ok}.
New Goal Finally, the goal of the problem is to reach
a state in which no state fluent in Q is true, except
for qf , which may be true. Therefore we define G′ =

{world,ok} ∪Q.

5 Experimental Results
We have implemented the translator for LTL-RE. Three im-
portant questions to assess in an experimental evaluation are:
1) how large are the automata resulting from translation of
the LTL- RE formulae, 2) how fast and space efficient is
the translation, and 3) how effectively do the automata help
guide search for a satisfying plan. Some of these are best
evaluated on realistic benchmarks but such benchmarks ex-
ist only in limited ways and only for the LTL fragment of
LTL- RE. As such, the comparative experimental analysis
reported here is solely for the LTL fragment of LTL-RE.

For the purpose of experimentally evaluating our ap-
proach, we compare the performance of our LTL-RE trans-
lator both to an NFA-based LTL translator initially intro-
duced in (Baier and McIlraith 2006), and to an AA-based
LTL translator (Torres and Baier 2015), similar to ours. The
NFA-based LTL translator is highly optimized to avoid, in
most cases, the exponential blow up in the size of the au-
tomata characteristic of NFA-based representations of LTL.
The AA translator exists in several versions including a
naive version without engineering optimizations, and an op-
timized version. In order to fairly compare against our LTL-
RE translator which currently lacks the implementation of
analogous optimizations, we compared against the similarly
unoptimized AA-based LTL translator. (The work reported
here remains in progress, and optimization of our transla-
tor, analogous to those used in the NFA and AA-based LTL
translators, constitutes ongoing work.) Even this compari-
son is not entirely appropriate. The LTL- RE translator is
designed to translate all of LDLf including regular expres-
sions, LTL, and additional programming language construc-
tors. One might expect that a special-purpose translator that

28

NFA translator AA-LTL LTL-RE
TT PL PT PS TT PL WPL PT PS TT PL WPL PT PS

p01 0.051 2 0.00 3 0.108 15 2 0.00 73 0.112 15 2 0.00 48
p02 0.044 3 0.00 4 0.093 22 3 0.00 139 0.110 22 3 0.00 96
p03 0.051 7 0.00 16 0.113 50 7 0.00 719 0.113 53 7 0.00 547
p04 0.058 10 0.00 27 0.112 75 10 0.01 3351 0.115 83 10 0.01 2959
p05 0.049 14 0.00 43 0.115 104 13 0.03 15575 0.139 121 13 0.04 16672
p06 0.303 14 0.00 43 0.117 99 13 0.04 16213 0.135 110 13 0.04 17153
p07 0.077 4 0.00 6 0.095 32 4 0.00 1555 0.115 32 4 0.00 1454
p08 3.568 7 0.00 11 0.116 55 6 0.04 20920 0.125 62 6 0.09 33262
p09 72.556 9 0.02 20 0.113 67 7 0.18 74360 0.133 78 7 0.57 156892
p10 72.614 9 0.02 20 0.119 68 7 0.22 89464 0.144 79 7 1.01 227686

Table 2: Results for domain Blocksworld, depicting translation time (TT), plan length (PL), total planning time (PT), number of
planning states that were evaluated before the goal was reached (PS), and world plan length (WPL), which denotes the number
of planning actions in PL; not including the actions that are responsible for the automaton synchronization.

NFA translator AA-LTL LTL-RE
TT PL PT PS TT PL WPL PT PS TT PL WPL PT PS

p01 0.057 7 0.00 10 0.109 41 7 0.04 14217 0.107 39 7 0.56 126511
p02 0.055 10 0.00 17 0.112 71 10 0.39 147017 0.115 81 10 18.35 1460496
p03 0.061 21 0.00 64 0.114 127 21 8.82 1010542 0.107 0 0 NR NR
p04 0.060 27 0.02 121 0.112 0 0 NR NR 0.123 0 0 NR NR
p05 0.056 0 NR NR 0.116 65 10 0.14 60253 0.124 71 10 3.69 574535
p06 0.062 14 0.00 35 0.114 78 13 0.52 148994 0.136 78 13 35.10 1642692
p07 0.058 21 0.00 61 0.115 113 21 0.83 221874 0.118 42 0 23.31 1006596
p08 0.045 20 0.00 70 0.085 111 20 0.98 226412 0.092 40 7 23.36 1006596
p09 0.058 10 0.00 14 0.118 73 10 10.92 1097329 0.089 106 10 11.57 1045964

Table 3: Results for domain Logistics, depicting translation time (TT), plan length (PL), total planning time (PT), number of
planning states that were evaluated before the goal was reached (PS), and world plan length (WPL), which denotes the number
of planning actions in PL; not including the actions that are responsible for the automaton synchronization.

NFA translator AA-LTL LTL-RE
TT PL PT PS TT PL WPL PT PS TT PL WPL PT PS

p01 0.057 5 0.00 7 0.107 31 5 0.01 5237 0.104 29 5 0.02 4455
p02 0.051 11 0.00 16 0.106 53 9 0.16 57597 0.109 52 9 0.21 61045
p03 0.050 15 0.00 28 0.110 74 13 2.65 436249 0.110 74 13 2.65 436249
p04 0.059 19 0.00 46 0.111 99 17 6.24 770784 0.128 96 17 20.71 1429295
p05 0.059 7 0.00 9 0.116 52 7 0.22 76082 0.118 53 7 0.22 54321
p06 0.051 12 0.00 20 0.123 76 11 2.89 485525 0.126 81 11 2.56 433910
p07 0.056 0 NR NR 0.117 0 0 NR NR 0.127 0 0 NR NR
p08 0.053 5 0.00 9 0.097 39 5 0.01 4015 0.112 59 5 0.01 4702
p09 0.058 8 0.00 14 0.114 68 8 0.05 20804 0.139 120 8 0.21 45778
p10 0.065 0 NR NR 0.120 0 0 NR NR 0.138 0 0 NR NR
p11 0.058 9 0.00 19 0.119 62 9 0.16 52978 0.125 75 9 0.12 27260
p12 0.060 11 0.00 22 0.116 89 11 5.84 747680 0.122 104 11 1.84 263967
p13 0.063 13 0.00 42 0.111 101 13 0.93 227407 0.132 149 13 2.77 334909
p14 0.063 15 0.00 46 0.121 0 0 NR NR 0.139 0 0 NR NR

Table 4: Results for domain ZenoTravel, depicting translation time (TT), plan length (PL), total planning time (PT), number of
planning states that were evaluated before the goal was reached (PS), and world plan length (WPL), which denotes the number
of planning actions in PL; not including the actions that are responsible for the automaton synchronization.

29

is tuned only to LTL would be more efficient than the LTL
portion of a more general LTL-RE translator – at least be-
fore implementation of optimizations.

The experiments were performed on three domains from
the International Planning Competition (IPC): Blocksworld,
Logistics and ZenoTravel. Goals arose from those intro-
duced in IPC 2002. All experiments were run on a 64-bit
machine, with a CPU of 1600 MHz. Each experiment was
limited to 15 minutes runtime and 1GB of memory. The re-
sults are illustrated in Tables 2, 3, and 4.

Tables 2, 3, and 4 illustrate the performance of three re-
formulations: the NFA-based one in the first column, the
AA-based LTL reformulation in the second and our AA-
based LTL- RE reformulation in the third. The headers of
these tables include translation time (TT), plan length (PL),
total planning time (PT), number of planning states that
were evaluated before the goal was reached (PS), and fi-
nally, world plan length (WPL), which denotes the number
of planning actions in PL; not including the actions that are
responsible for the automaton synchronization.

A merit of an AA-based translation approach relative to
an NFA-based approach is the avoidance of the exponen-
tial blowup in size that theoretically exists with the latter.
Indeed, this was an original impetus for selection of an AA-
based approach. Nevertheless, the NFA-based translator is
so optimized that it did not exhibit this theoretical blow-
up when originally developed and analyzed experimentally
(Baier and McIlraith 2006). Consistent with this, we ob-
serve that the optimized NFA-based translator outperforms
the two AA-based translators in many cases. However, there
are problem instances that the NFA translator does less well
on, marked by the drastic increase in total NFA transla-
tion time seen for example in p07 - p10 of Blocksworld.
These instances correspond to goal formulas of the form
(p1 ∧p2 ∧ ... ∧pn), where n = 3, 5, 6, 7 for the
instances p07 - p10 respectively.

The comparison of the two AA-based translators is par-
ticularly interesting. The two methods generate plans of the
same world plan length for all instances. The computational
cost that is associated with the use of the more general
framework of LTL-RE, however, is reflected in the number
of states expanded before the goal is reached, as well as in
the total planning time, and in the total plan length (which
includes both ”world” actions, and actions to synchronize
the automaton).

The difference in the total length of the translations is ev-
ident in every domain, reflecting that the syntactic rewriting
of LTL formulas using LDL syntax is not always the most
compact way of representing them. The difference in the
number of expanded states and the planning time, on the
other hand, is exhibited most dramatically in the Logistics
domain, shown in Table 3. Instance p06, in particular, exem-
plifies the gap in the planning times of the two last transla-
tors, while almost all instances of this domain showcase the
difference in the number of states that these two translators
generate, in favor of the AA-based LTL translator.

There are, however, instances in which our method out-
performs the AA LTL translator. Some examples of this can
be found in the ZenoTravel domain, in Table 4. In the case of

p12 for example, our translator takes significantly less time
to generate the plan, and expands significantly less states
while doing so.

We plan to further investigate the relationship between
these two reformulations, and run more experiments to shed
light on which formulas are better suited for each one. We
also plan to implement an optimized version of the transla-
tor, in order to be able to fairly compare with more efficient
reformulations of the AA-based LTL translation.

Our experiments did not examine the effectiveness of the
translation of regular expressions and programming con-
structs. We note that Baier, Fritz, and McIlraith (2007; 2008)
developed an automata-based translator for a Golog-like lan-
guage that included regular expressions. Comparison with
this translator would be interesting if suitable benchmarks
could be found or constructed.

6 Discussion and Concluding Remarks
In this paper, we introduce LTL-RE: a high-level language
for goal specification, which is rich enough to capture linear
temporal formulas, as well as regular expressions. LTL-RE
offers a convenient set of syntactic constructors, thus serving
as a compelling vehicle for goal specification. A further con-
tribution of our work is the implementation of a translation
of LTL-RE goals into classical planning domains, making it
feasible to plan for LTL-RE goals using state-of-the-art clas-
sical planners. We experimentally evaluate our approach by
comparing the performance of this translator with an NFA-
based translator and another AA-based translator, both spe-
cific to LTL formulas.

We are currently still running experiments, aiming to en-
hance our understanding of the differences in these refor-
mulations. We also plan to experiment with Golog domains,
to examine our translator’s performance on goals which are
equivalent to regular expressions. Finally, we are interested
in equipping our implementation with optimizations similar
to those in (Torres and Baier 2015).

Acknowledgements
We gratefully acknowledge funding from the Natural
Sciences and Engineering Research Council of Canada
(NSERC).

References
Albarghouthi, A.; Baier, J.; and McIlraith, S. A. 2009. On
the use of planning technology for verification. In Proceed-
ings of the ICAPS09 Workshop on Heuristics for Domain
Independent Planning.
Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goals. Annals of Mathematics and Artificial
Intelligence 22(1-2):5–27.
Baier, J., and McIlraith, S. 2006. Planning with first-order
temporally extended goals using heuristic search. In Pro-
ceedings of the 21st National Conference on Artificial Intel-
ligence (AAAI06), 788–795.
Baier, J. A.; Fritz, C.; and McIlraith, S. A. 2007. Exploit-
ing procedural domain control knowledge in state-of-the-art

30

planners. In Proceedings of the 17th International Confer-
ence on Automated Planning and Scheduling (ICAPS), 26–
33.
Benton, J.; Kambhampati, S.; and Do, M. B. 2006.
YochanPS: PDDL3 simple preferences and partial satisfac-
tion planning. In 5th International Planning Competition
Booklet (IPC-2006), 54–57.
Coles, A., and Coles, A. 2011. LPRPG-P: relaxed plan
heuristics for planning with preferences. In Proceedings of
the 21st International Conference on Automated Planning
and Sched. (ICAPS).
Cresswell, S., and Coddington, A. M. 2004. Compilation of
LTL goal formulas into PDDL. In de Mántaras, R. L., and
Saitta, L., eds., Proceedings of the 16th European Confer-
ence on Artificial Intelligence (ECAI), 985–986. Valencia,
Spain: IOS Press.
De Giacomo, G., and Vardi, M. Y. 2013. Linear temporal
logic and linear dynamic logic on finite traces. In Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI).
De Giacomo, G.; Masellis, R. D.; Grasso, M.; Maggi, F. M.;
and Montali, M. 2014. Monitoring business metaconstraints
based on LTL and LDL for finite traces. In Proceedings
of the 12th International Conference on Business Process
Management BPM, 1–17.
Doherty, P., and Kvarnström, J. 2001. Talplanner: A tempo-
ral logic-based planner. AI Magazine 22(3):95–102.
Edelkamp, S. 2006. Optimal symbolic PDDL3 planning
with MIPS-BDD. In 5th International Planning Competi-
tion Booklet (IPC-2006), 31–33.
Eisner, C., and Fisman, D. 2007. A practical introduction to
PSL. Springer Science & Business Media.
Erol, K.; Hendler, J.; and Nau, D. 1994. HTN planning:
Complexity and expressivity. In Proceedings of the 12th
National Conference on Artificial Intelligence (AAAI), vol-
ume 2, 1123–1128.
Fischer, M. J., and Ladner, R. E. 1979. Propositional dy-
namic logic of regular programs. Journal of computer and
system sciences 18(2):194–211.
Fritz, C.; Baier, J. A.; and McIlraith, S. A. 2008. ConGolog,
sin Trans: Compiling ConGolog into basic action theories
for planning and beyond. In Proceedings of the 11th In-
ternational Conference on Knowledge Representation and
Reasoning (KR), 600–610.
Gerevini, A.; Haslum, P.; Long, D.; Saetti, A.; and Di-
mopoulos, Y. 2009. Deterministic planning in the fifth
international planning competition: PDDL3 and experimen-
tal evaluation of the planners. Artificial Intelligence 173(5-
6):619–668.
Grastien, A.; Anbulagan; Rintanen, J.; and Kelareva, E.
2007. Diagnosis of discrete-event systems using satisfiabil-
ity algorithms. In Proceedings of the 22nd AAAI Conference
on Artificial Intelligence (AAAI), 305–310.
Haslum, P. 2012. Narrative planning: Compilations to clas-
sical planning. Journal of Artificial Intelligence Research
44:383–395.

Lago, U. D.; Pistore, M.; and Traverso, P. 2002. Planning
with a language for extended goals. In Proceedings of the
18th National Conference on Artificial Intelligence (AAAI),
447–454.
McDermott, D. V. 1998. PDDL — The Planning Domain
Definition Language. Technical Report TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Con-
trol.
Patrizi, F.; Lipovetzky, N.; De Giacomo, G.; and Geffner, H.
2011. Computing infinite plans for LTL goals using a classi-
cal planner. In IJCAI 2011, Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011, 2003–2008.
Pnueli, A. 1977. The temporal logic of programs. In Pro-
ceedings of the 18th IEEE Symposium on Foundations of
Computer Science (FOCS), 46–57.
Razavi, N.; Farzan, A.; and McIlraith, S. A. 2014. Generat-
ing effective tests for concurrent programs via AI automated
planning techniques. International Journal on Software
Tools for Technology Transfer (STTT) (STTT) 16(1):49–65.
Rintanen, J. 2000. Incorporation of temporal logic control
into plan operators. In Horn, W., ed., Proceedings of the
14th European Conference on Artificial Intelligence (ECAI),
526–530. Berlin, Germany: IOS Press.
Shaparau, D.; Pistore, M.; and Traverso, P. 2008. Fusing
procedural and declarative planning goals for nondetermin-
istic domains. In Proceedings of the 23rd AAAI Conference
on Artificial Intelligence (AAAI), 983–990.
Sohrabi, S.; Baier, J.; and McIlraith, S. 2010. Diagnosis
as planning revisited. In Proceedings of the 12th Interna-
tional Conference on Knowledge Representation and Rea-
soning (KR), 26–36.
Torres, J., and Baier, J. A. 2015. Polynomial-time reformu-
lations of ltl temporally extended goals into final-state goals.
In Proceedings of the Workshop on Model-Checking and Au-
tomated Planning (MOCHAP) at ICAPS-2015.
Uras, T., and Erdem, E. 2010. Genome rearrangement: A
planning approach. In Proceedings of the Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2010, At-
lanta, Georgia, USA, July 11-15, 2010.
Vardi, M. Y. 2012. The rise and fall of temporal logic.
Keynote, 13th International Conference on Principles of
Knowledge Representation and Reasoning.

31

