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Abstract. This paper integrates research in robot programming and reasoning
about action with research in model-based reasoning about physical systems to
provide a capability for modeling and programming devices and web agents,
which we term model-based programming. Model-based programs are reusable
high-level programs that capture the procedural knowledge of how to accom-
plish a task, without specifying all the device- and web-service-specific details.
Model-based programs must be instantiated in the context of a model of a specific
device/web service and state of the world. The instantiated programs are simply
sequences of actions, which can be executed by an appropriate agent to control
the behavior of the system. The separation of control and model enables reuse
of model-based programs across classes of related devices and services whose
configuration changes as the result of replacement, redesign, reconfiguration or
component failure. Additionally, the logical formalism underlying model-based
programming enables verification of properties such as safety, program existence,
and goal achievement. Our model-based programs are realized by exploiting re-
search on the logic programming language Golog, together with research on rep-
resenting actions and state constraints in the situation calculus, and modeling
physical systems using state constraints.

1 Introduction

We are seeing a tremendous increase in the prevalence of physical devices with embed-
ded digital controllers. Such devices range from smart children’s toys to smart photo-
copiers and buildings, power distribution systems, and autonomous spacecraft. We are
likewise seeing the web evolve from an information-based service provider to a net-
work populated by programs, sensors and other devices. It is predicted that in the next
decade, computers will be ubiquitous, that many device will have some sort of com-
puter inside them, and that many business services will be agent-enabled and delivered
over the web. Designing reliable software for these devices and web agents is often a
complex task. In our research, we examine formal techniques to model, diagnose, test,
and more recently, to program physical devices and web agents that are controlled by
digital computers.

In this paper we integrate and extend research on the agent programming language
Golog (e.g., [4]) and reasoning about action in the situation calculus with research in
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modeling physical systems and model-based reasoning about physical systems (e.g., [7–
9]) to provide a new capability for developing device and web agent software which we
term model-based programming12. Model-based programs are generic, reusable high-
level programs that capture the generic procedural knowledge of how to accomplish a
task for a class of devices, such as isolating valve leaks in spacecraft, without specifying
all the device-specific details, such as turning off valve-54 before valve-93. Model-
based programs (MBPs) are deductively instantiated in the context of a rich device-
specific model of device structure, behavior and function, and state. The instantiated
programs are simply sequences of actions, which are performed to realize the program.

The merits of model-based programming come from the exploitation of models of
system behavior and from the separation of those models from high-level procedural
knowledge about how to perform a task for classes of like devices. Model-based pro-
grams are written at a sufficiently high level of abstraction that they are amenable to
reuse in the face of device reconfiguration, replacement, redesign or component failure.
Also, they are easier to write than traditional control programs for devices, ridding the
engineer/programmer of keeping track of the potentially complex details of a system
design, with all its subcomponent interactions. Finally, because of the logical founda-
tions of model-based programming, certain properties of model-based programs such as
safety, program existence and goal achievement can be verified, and/or simply enforced
in the generation of program instances.

In this paper, we argue that the situation calculus [6, 14] and the logic programming
Golog [4] together provide a natural formalism for model-based programming. To de-
velop the models for our model-based programming paradigm, we take as our starting
point: a set of state constraints in first-order logic, that can describe the structure and
behavior of a physical device; and a set of actions. We appeal to a solution to the frame
and ramification problems in the situation calculus in order to provide an integrated
representation of our physical device and the actions that affect it. This representation
scheme is the critical enabler of our model-based programming capability. It provides
the representation scheme for declarative encoding of the model for our model-based
programs. With a representation for our models in hand, we introduce the notion of a
model-based program, show how to exploit Golog to specify model-based programs,
and show how to generate program instances from the program and the model using
deductive machinery. Finally, we show how the logical formalism underlying model-
based programming enables verification of certain properties such as safety, program
existence, and goal achievement. We conclude with a brief discussion of related work.

2 Model-Based Programming

Model-based programming comprises two components:

A Model which provides an integrated representation of the structure and behavior of
the complex physical system being programmed, the operator or controller actions

1 The term model-based programming did not originate with us (e.g., [16, 18], etc.) We each use
the term differently.

2 As a result of space limitations, we restrict our discussion to devices, leaving further explicit
discussion of web agents to a longer paper.



that affect it, and the state of the system. The model dictates the language for the
program, and is often shared over a class of like devices.

A Program which describes the high-level procedure for performing some task, using
the operator or controller actions.

2.1 The Model

The first step towards achieving our vision of model-based programming is to define a
suitable representation for our models. In this section we demonstrate that the situation
calculus will provide a suitable language for declarative specification of our device
models. Model-based reasoning often represents the structure and behavior of physical
systems as a set of state constraints in first-order logic. The first challenge we must
address is how to integrate operator or controller actions into our representation, in
order to obtain an integrated representation of our system. To do so, we appeal to a
solution to the frame and ramification problems proposed in [7, 10], that automatically
compiles a situation calculus theory of action with a a set of state constraints. We begin
with a brief overview of the situation calculus.

The Situation Calculus The situation calculus language we employ to axiomatize
our domains is a sorted first-order language with equality. The sorts are of type

�
for

primitive actions, � for situations, � for fluents, and � for everything else, including
domain objects ([14]). We represent each action as a (possibly parameterized) first-class
object within the language. Situations are simply sequences of actions. The evolution
of the world can be viewed as a tree rooted at the distinguished initial situation ��� . The
branches of the tree are determined by the possible future situations that could arise
from the realization of particular sequences of actions. As such, each situation along the
tree is simply a history of the sequence of actions performed to reach it. The function
symbol �	� maps an action term and a situation term into a new situation term. For
example, �	��
������� ����
���������� ��� � is the situation resulting from performing the action of
turning on the pump in situation � � . The distinguished predicate ���"!#!	
%$&� ! � denotes that
an action $ is possible to perform in situation ! (e.g., ���"!�!'
�(���)� ���*
����+� � �,� �#� ). Thus,
���"!#! determines the subset of the situation tree consisting of situations that are possible
in the world. Finally, those properties or relations whose truth value can change from
situation to situation are referred to as fluents. For example, the property that the pump
is on in situation ! could be represented by the fluent �)��
������-��! � . The situation calculus
language we employ in this paper is restricted to primitive, determinate actions. For the
present, our language does not include a representation of time or concurrency.

The Representation Scheme Our representation scheme automatically integrates a set
of state constraints, such as the ones found in a typical model-based reasoning system
description, .0/ [2] with a situation calculus theory of action to provide a compiled
representation scheme. We sketch the integration procedure in sufficient detail to be
replicated. We illustrate it in terms of an example of a power plant feedwater system.

The system consists of three potentially malfunctioning components: a power sup-
ply ( ��12� ); a pump ( ����� ); and a boiler ( 3546� ). The power supply provides power to



both the pump and the boiler. The pump fills the header with water ( 1 �(� � �&� � � � � $ � ),
which in turn provides water to the boiler, producing steam. Alternately, the header can
be filled manually ( � $ � ��� 464 ). To make the example more interesting, we take liberty
with the functioning of the actual system and assume that once water is entering the
header, a siphon is created. Water will only stop entering the header when the siphon
is stopped. The system also contains lights and an alarm, and it contains people. The
plant is occupied at all times unless it is explicitly evacuated. Finally we have stipulated
certain components of the plant as vital. Such components should not be turned off in
the event of an emergency.

Boiler

Power

Pump Head Steam

Lights

Alarm

Power Plant Feedwater System

This system is typically axiomatized in terms of a set of state constraints. The follow-
ing is a representative subset.3 All formulae are universally quantified with maximum
scope, unless otherwise noted.

�	� 3 
���1 � ��
 ��� 3 
����+� �
 ����
������ ��� 1 ��� � �&� � �"! � � $ �
����
�� $ � ��� 44 ��� 1 ��� � �&� � �"! � � $ �� 1 �(� � �&� � �'! � � $ � 
 ���*
�3546� ��� ����
 � 46$ ��� �� 3 
�3546� ��� ����
 � 46$ ��� �

�����
� 
%�)��
����+� ��
 ���*
�� $ � ��� 44 � �

��12���� �������� 3+4 ���� � ��� ��1 ���� � 46$ �)���� � $ � ��� 44
We also have a situation calculus action theory. One component of our theory of action
is a set of effect axioms that describe the effects on our power plant of actions per-
formed by the system, a human or nature. The effect axioms take the following form:

� �"!#!%$'&)(*!#+�,
conditions -/.10�2)354	6 $�78(:9;�$�&)(�!5+:+�<

Effect axioms state that if
� �"!#!;$�&)(�!5+

, i.e. it is possible to perform action
&

in situ-
ation

!
, and some conditions are true, then fluent will be true in the situation resulting

from doing action
&

in situation
!
, i.e. the situation

9;�$�&)(�!5+
. The following are typical

effect axioms.

���"!�!'
%$&�,! �=
 $ � ������� ����
������ ��� �)��
����+�����	��
%$&��! � �
���'!#!'
%$&�,! ��
 $ �?> 46� > 46�)1 � � 3 
�3+46�����	��
%$&��! � �

3 Note that for simplicity, this particular set of state constraints violates the no-function-in-
structure philosophy. This characteristic is not in any way essential to our representation.



In addition to effect axioms our theory also has a set of necessary conditions for
actions which are of the following general form:

� �"!#!;$�&)(*!#+ - nec conditions

These axioms say that if it is possible to perform action
&

in situation
!

then certain
conditions (so-called nec conditions) must hold in that situation. The following are
typical necessary conditions for actions.

���'!#!'
 > 4 � > 4 �)1 � ! ��� ����
�3+46����! �
���'!#!'
 > 4 � �;� ����! ��� � ����
�3+46����! �

We now have axioms describing the constraints on the system state, and also axioms
describing the actions that affect system state. Unfortunately, these axioms collectively
yield unintended interpretations. That is, there are unintended (semantic) models of
this theory. This happens because there are several assumptions that we hold about the
theory that have not been made explicit. In particular,

Completeness Assumption: we assume that the axiomatizer has done his/her job prop-
erly and that the state constraints, effect axioms and necessary conditions for ac-
tions capture all the elements that can affect our system.

Causal Structure: we assume a particular causal structure that lets us interpret how the
actions interact with our state constraints, i.e. how effects are propagated through
the system, and what state constraints preclude an action from being performed.
The causal structure must be acyclic.

We make these assumptions explicit and compile our assumptions, state constraints
and theory of action into a final model-based representation. The compilation process
is semantically justified and fully described in [10]. The resulting example axiomatiza-
tion is provided below. We will refer to this collection of axioms as a situation calculus
domain axiomatization and together with foundational axioms of the situation calcu-
lus, � [14] they form a situation calculus theory, � . � successor state axioms, ����� ,
� action precondition axioms, ���
	 ,
� axioms describing the initial situation, ����� ,
� unique names for actions, ������ ,
� domain closure axioms for actions, ������� .
The first element of the domain axiomatization after compilation is the set of suc-

cessor state axioms, compiled form the effect axioms and state constraints under the
assumptions above. Successor state axioms are of the following general form.
� �"!5!;$'& (�!#+ -�� .10 213 4	6 $'9%�$'&)(*!#+ +�� an action made it true�

a state constraint made it true�
it was already true,

neither an action nor a state constraint made it false]

I.e., if it is possible to perform action
&

in situation
!
, then .10�2)354	6 will be true in the

resulting situation if and only if an action made it true, a state constraint made it true,
or it was already true and neither an action nor a state constraint made it false.



The set of intermediate successor state axioms for our example:

���"!#!'
%$ � ! ����� ���*
����+��� �	��
%$&�,! � ��� $ � ������� ����
������ �
� 
%���*
����+���,! �=
 $ �� ������� � � ��
������ � ��� (1)

���'!#!'
%$&�,! ����� ����
 � ��� ��1 �)� �	��
%$&�,! � ��� $ � ��� �)� �)��
 � �;� ��1 � �
� 
%�)��
 � �;� ��1 �)� ! � 
 $ �� ��� �)� ��� ��
 � ��� ��12� � ��� (2)

���'!#!'
%$&�,! ����� ����
�3+4 �)�,�	��
%$ � ! � ��� $ � ������� ����
�3+46� �
� 
%���*
�3546����! � 
 $ �� ��� �)� ��� ��
�3546� � ��� (3)

���"!�!'
%$&�,! ����� �)��
 � 4 $���� �(�	� 
%$&��! � ��� $ � �(���)� �)��
 � 46$ �)� � � � 3 
�3+4 �)��
%�	��
%$&��! � �
� 
 � 1 �(� � �&� � � � � $ �&
%�	��
%$ � ! � �=
 �)��
�3546�)���	� 
%$&��! � � �
� 
%���*
 � 46$ �)� �,! �=
 $ �� �(����� � � ��
 � 46$ ��� ��� (4)

���"!#!	
%$&� ! ����� � 3 
�3+4 �)���	��
%$&��! � ��� $ � > 46� > 46��1 � 
 � 3 
�3546���,! � 
 $ �� > 46� �;� � ��� (5)

���"!#!	
%$&� ! ����� � 3 
���12�����	��
%$&��! � ��� $ � ��12� � $"� 4 ��� �
� 
 � 3 
���1 �)� ! � 
 $ �� ��� �)� �)��
 � �;� ��1 � �

 $ �� ��1 � �;� � ��� (6)

���"!�!'
%$&�,! ����� � 3 
��������(�	� 
%$&��! � ��� $ � ���+� > ����� ��� �
� 
 � 3 
���������! �=
 $ �� ���+� �;� � ��� (7)

���"!#!	
%$&� ! ����� �)��
�� $ � ��� 44 �,�	��
%$ � ! � ��� $ � ������� ����
�� $ � ��� 44 �
� 
%�)��
�� $ � ��� 44 ��! �=
 $ �� ������� � � ��
�� $ � ��� 44 � ��� (8)

���'!#!'
%$&�,! ���	� 1 ��� � �&� � � � � $��&
%�	��
%$&�,! � ��� �)��
�� $�� ��� 44 �,�	��
%$ � ! � �
� 
 �	� 3 
���12�����	��
%$&��! � �=
 �	� 3 
��������(�	� 
%$&��! � �

 ����
��������(�	� 
%$&��! � � �
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 ! ��
 $ �� !��(� � !�� � � ��� � (9)

���"!�!'
%$&�,! ���	� 4 ��
 � �,! �)� � 
%�	� 
%$&��! � ��� � 3 
���12���(�	��
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 � �)��
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%$&��! � ��� (10)
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%�	��
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%1 �(� � �&� � � � � $ �&
%�	��
%$ � ! � � 
 ��� 3 
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%$&��! � �

 �	� 3 
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 ���*
�3546��� �	� 
%$&��! � � ��� (11)

���'!#!'
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%�	� 
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%��� �'�;� � �&
 ! ��
 $ �� ��� $� � $ � � ��� (12)

These are intermediate successor state axioms because they can be further compiled by
substituting other intermediate successor state axioms for fluents relativized to situation



9%�$'& (�!#+
on the righthand side of the equivalence connective. For example, Axiom (5)

can be substituted into Axiom (4).
Additionally, there is a set of action precondition axioms that capture the necessary

and sufficient conditions for actions. They are a compilation of the necessary conditions
for actions and the state constraints under the assumptions above. They are of the form:

���'!#!'
%$&�,! ��� nec conditions 
 implicit conditions from state constraints

For example,

���"!#!'
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 ! ��
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�3546��� ! � (15)

���"!#!'
������� � � ��
 � 4 $���� � � ! ���

%1 �(� � �&� � � � � $ �&
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���"!#!	
�(����� ���*
�� $ � ��� 44 � �,! ��� � �)��
 � 46$ �)� ��! � 
 � ����
��������,! � (17)

���'!#!'
��� �)� �)��
����+� � �,! ��� � ����
�� $ � ��� 44 � ! � (18)

���"!�!'
�(���)� ���*
 � 46$ �)� � ��! ��� �(�)� � (19)

�*���
Our axiomatization will specify what is known of the initial situation of the world.

This will include the truth value of some fluents in the initial situation .�� . E.g.,

� �%��$�4(
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It will also include the state constraints relativized to the initial situation. E.g.,
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We have demonstrated that the situation calculus provides a suitable representation

for the model-based programming models.

Definition 1 (Model). A model-based programming model,
�

is a situation calculus
domain axiomatization on the situation calculus language � .

We henceforth refer to the model of our power plant feedwater example as
� ��� .



2.2 The Program

With the critical model representation in hand, we must now find a suitable represen-
tation for our model-based programs. Further, we must find a suitable mechanism for
instantiating our model-based program with respect to our models. We argue that the
logic programming language, Golog and theorem proving provide a natural formalism
for this task. In the subsection to follow, we introduce the Golog logic programming
language and its exploitation for model-based programming.

Golog Golog is a high-level logic programming language developed at the Univer-
sity of Toronto (e.g., [4]). Its primary use is for robot programming and to support
high-level robot task planning (e.g., [1]), but it has also been used for agent-based pro-
gramming (e.g., meeting scheduling). Golog provides a set of extralogical constructs
for assembling primitive actions defined in the situation calculus (e.g., 6 2��#4 � 4 $�� 0�� +
or
! 6 ��� !�����	 � 4 in our power plant example) into macros that can be viewed as complex

actions, and that assemble into a program.
In the context of our model-based representation, we can define a set of macros that

is relevant to our domain or to a family of systems in our domain. The instruction set for
these macros, the primitive actions, are simply the domain-specific primitive actions of
our model-based representation. Hence, the macros or complex actions simply reduce to
first-order (and occasionally second-order) formulae in our situation calculus language.
The following are examples of Golog statements.

if AB(
��
��

) then PMP FIX endIf

while
$���)+ <

ON(
�

) do TURN OFF(
�

) endWhile

proc PREVENTDANGER

if OCCUPIED then EVACUATE endIf
endProc

We leave detailed discussion of Golog to [4, 14] and simply describe the constructs
for the Golog language. Let ��� and ��� be complex action expressions and let � and

&
be so-called pseudo fluents/actions, respectively, i.e., a fluent/action in the language of
the situation calculus with all its situation arguments suppressed.

primitive action
&

test of truth ���
sequence

$ � ��� � � +
nondeterministic choice between actions

$ � ��� � � +
nondeterministic choice of arguments � � < �

nondeterministic iteration ���
conditional if � then ��� else ��� endIf

loop while � do � endWhile

procedure proc
� $�� + � endProc



A Golog program can in turn be comprised of a combination of procedures.
Golog also defines the abbreviation � � 
�����!"��!

�
� . It says that � ��
��)��!"��!

�
� holds when-

ever
! �

is a terminating situation following the execution of complex action � , starting
in situation

!
. Under / � , each of the programming constructs listed above is simply a

macro, equivalent to a situation calculus formula.
/ � is defined for each complex action construct. Three are defined below.

� ��
%$ �,!'�,!
�
� �� ���'!#!'
%$ � ! � �,! �=
 !

� � �	��
%$ � ! � ��! � 4

� ��
 � �������
	 � ��!"��!
�
� �� 
�� !� � � 
�� ��
���� � !"��!� �=
 � ��
��
	"��!�"�,!

�
� �

� � 
 
��=� � ��
 � � �,!"��! � � �� 
��"� � � � � 
���
 � � � !'�,! � �
Definitions of the rest of the complex actions can be found in [4] but their mean-

ing should be apparent from the examples below. Before returning to our example, we
define what we mean by a model-based program.

Definition 2 (Model-Based Program, � for model
�

). Given a model
�

in situation
calculus language � , � is a model-based program for model

�
iff � is a Golog program

that only mentions pseudo actions and pseudo fluents drawn from � .

We begin by defining a rather simple looking procedure to illustrate the constructs in
our language and to illustrate the range of procedures Golog can instantiate with respect
to the example model,

� ��� .

proc SHUTDOWN� $��1+
[VITAL

$��)+ �
OFF

$��)+
]? �$ � �)+ [[ON

$��)+ ,��
VITAL

$��1+
]?; TURNOFF

$��)+
];SHUTDOWN

endProc

The procedure SHUTDOWN directs the agent to turn off everything that isn’t vital.
If it is not the case that either everything is off or else it is vital, then pick a random
thing that is on and that is not vital, turn it off and repeat the procedure until everything
is either off or else it is vital.

From the simple procedures defined above, we can define the following model-
based program that dictates a procedure for addressing an abnormal boiler.

if AB(
� 0�� ) then

PREVENTDANGER; SHUTDOWN; BLR FIX; RESTART5

end if (30)

This program on its own is very simple and seems uninteresting since it exploits
little domain knowledge and thus doesn’t capture many of the idiosyncrasies of the
system. Instead, it illustrates the beauty of model-based programming. By using non-
deterministic choice, the program need not stipulate which component to turn off first,
but if there is a physical requirement to turn one component off before another, then

4 Notation: $ � ! � denotes the restoration of the situation arguments to any functional fluents men-
tioned by the action term $ .

5 Procedure not defined here.



it will be dictated in the model,
�

of the specific system, and when the model-based
program is instantiated,

�
will ensure that the instantiation of the program enforces

this ordering. This use of nondeterminism and exploitation of the model makes the pro-
gram reusable for multiple different devices without the need to rewrite the program.
It also saves the engineer/programmer from being mired in the details of the physical
constraints of a potentially complex specific system.

It is important to observe that model-based programs are not programs in the con-
ventional sense. While they have the complex structure of programs, including loops,
if-then-else statements etc., they differ in that they are not necessarily deterministic. As
such they run the gamut from playing the role of a procedurally specified plan sketch
that helps to constrain the search space required in planning, to the other extreme where
the model-based program provides a deterministic sequence of actions, much in the
way a traditional program might. Unfortunately, planning is hard, particularly in cases
where we have incomplete knowledge. Computationally, in the worst-case, a model-
based program will further constrain the search space, helping the search engines hone
in on a suitable sequence of actions to achieve the objective of the program. In the best
place, it will dictate a unique sequence of actions.

Indeed, what makes Golog ideal for model-based programming, is how Golog pro-
grams are instantiated with respect to a model.

Definition 3 (Model-Based Program Instance, � ). � is a model-based program in-
stance of model

�
and model-based program � iff � is a sequence of actions � & � ( < < <�(:&����

such that
� � � / �$ � ( . � (:9;�$ � &�� ( < < <	(*&���� ( . � + + 6 <

Recall that the program itself is simply a macro for one or more situation calculus for-
mulae. Hence, generation of a program instance can be achieved by theorem proving,
in particular, by trying to prove

�! � < / �$ � ( . � (*! � + from model
�

. The sequence of ac-
tions, � &�� ( < < <	(*& � � constituting the program instance can be extracted from the binding
for
! �

in the proof. We can see that in this context, the instantiation of a model-based
program is related to deductive plan synthesis [3].

Returning to our example, instantiating the model-based program (30) with respect
to our example model

� � � , which includes some constraints on the initial situation
. � as defined in Axioms (20)–(24), terminates at the situation

9;�$ 3
	 &�� 2 & 6 3 ( . � + . Conse-
quently, the model-based program instance is composed of the single action 3	 &�� 2 & 6 3 .
(All the other components of the system are off in the initial situation.) If the initial
situation were changed so that all components that could be on at the same time were
on, the proof of the program might return the terminating situation

�	� 
�(���)� ��� ��
����+� � � �	��
������� ��� ��
�3546� � �,�	� 
�(���)� ��� ��
 � 46$ �)� � ���	��
 ��� $  ��$	� � �,� � � � � �
thus yielding the model-based program instance

��� $� ��$	� � � ��� �)� ��� ��
 � 46$ �)� � ����� �)� ��� ��
�3546� � ����� �)� ��� ��
����+� � �
To illustrate the power of Golog as a model-based programming language, imagine

that our system is more complex than the one described by
� � � , that the pump must

6 Notation: �	� 
 � $��"� ����� ��$�� � � � � � abbreviates �	��
%$�� � 
%�	��
%$���� � � ���*� � 
%�	��
%$ � ��� � � � � � � .



be turned off after the boiler, and that before the boiler is turned off that there are
valves that must be turned off. If this knowledge is contained in the model

� ��� � , then
this same simple model-based program, (30) is still applicable, but its instantiation will
be different. In particular, to instantiate this model-based program, the theorem prover
will pick a random nonvital component to turn off, but the preconditions to turn off
that component may not be true, if so it will pick another, and another until it finally
finds the correct sequence of actions that constitutes a proof, and hence a legal action
sequence.

In this instance, an alternative to SHUTDOWN would be to exploit the knowledge of
an expert familiar with the device, and to write a device-specific shutdown procedure,
along the lines of the following, that captures at least some of this device-specific pro-
cedural knowledge.

proc NEWSHUTDOWN

SHUTVALVES; TURNOFF
$�� 0�� + ; TURNOFF

$���
 �)+
; TURNOFF

$�� 0 & � 
�+
endProc

proc SHUTVALVES� $��1+
[VALVE

$��)+ - OFF
$��)+

]? �$ � �)+ [[VALVE
$��1+ ,��

ON
$��1+

]?; TURNOFF
$��)+

]; SHUTVALVES

endProc

Indeed, in this particular example, writing such a program is viable, and NEWSHUT-
DOWN captures the expertise of the expert and in so doing, makes the the model-based
instantiation process more efficient. Nevertheless, with a complex physical system com-
prised of hundreds of complex interacting components, correct sequencing of a shut-
down procedure may be better left to a theorem prover following the complex con-
straints dictated in the model, rather than expecting a control engineer to recall all the
complex interdependencies of the system.

This last example serves to illustrate that model-based programs can reside along
a continuum from being underconstrained articulations of the goal of a task, to being
a predetermined sequence of actions for achieving that goal. SHUTDOWN is situated
closer to the goal end of the spectrum, whereas NEWSHUTDOWN is closer towards a
predetermined sequence of actions.

3 Proving Properties of Programs

It is often desirable to be able to enforce and/or prove certain formal properties of pro-
grams. In our model-based programming paradigm, we may wish to verify properties
of a model-based program we have written or of a program instance we have generated.
We may also wish to experiment with the behavior of our model-based program by
modifying aspects of our model

�
and seeing what effect it has on program properties.

A special case of this, is modifying the initial situation . � . Finally, rather than verifying
properties, we may wish to actually generate program instances which enforce certain



properties. Since our model-based programs are simply macros for logical expressions,
our programming paradigm immediately lends itself to this task.

Recall that model-based programs are generally written as generic procedures for
classes of devices. Hence, an important first property to prove is that a program instance
actually exists for a particular model-based program and specific device model. This
proposition also shows that the program terminates [4].

Proposition 1 (Program Instance Existence). A program instance exists for model-
based program � and model

�
iff

� � � �!%< / �$ � ( . � (�!5+ <

Another interesting property is safety. Engineers who write control procedures often
wish to verify that the trajectories generated by their control procedures do not pass
through unsafe states, i.e., states where some safety property

�
does not hold.

Proposition 2 (Program Instance Safety). Let
� $ !#+

be a first-order formula repre-
senting the safety property. A program instance, � � � & � ( < < <	(:& � � of model-based
program � and model

�
enforces safety property

� $'!#+
iff

� � � / �$ � ( . � (:9;�$ � ( . � + + - � $ � ( . � +�< 7

By a simple variation on the above proposition, we can prove several stronger safety
properties. For example, we can prove that a model-based program enforces the safety
property for every potential program instance.

Proposition 3 (Program Safety). Let
� $'!#+

be a first-order formula representing the
safety property. A model-based program, � and model

�
enforce safety property

� $ !#+
iff there is no situation

!
such that

� � � =! < / �$ � ( . � (*!#+ - ��� $�� ( . � +�(

where for each situation variable
! � 9%�$ � � � ( < < <�( � � � ( . � + , � � � � � ( < < <	( � � � .

A final property we wish to examine is goal achievement. Since our model-based
programs are designed with some task in mind, we may wish to prove that when the
program has terminated execution, it will have achieved the desired goal.

Proposition 4 (Program Instance Goal Achievement). Let
� $'!#+

be a first-order for-
mula representing the goal of model-based program � . A program instance, � �
� & � ( < < <�(:&�� � of model-based program, � and model

�
achieves the goal

� $'!#+
iff

� � � / �$ � ( . � (*9%�$ � ( . � +:+ - � $'9%�$ � ( . � +:+�<
7 Notation: �	� 
�� ��� � � is an abbreviation for �	� 
%$ �5� 
%�	��
%$ � � � � ����� ��
%�	� 
%$ � ��� � � � � � � .
� 
�� ��� � � is an abbreviation for � 
 � � � 
 � 
%�	� 
%$ � �,� � � �=
 ���*� 
 � 
%�	��
�� ��� � � � �



There are many variants on these and other propositions, regarding properties of
programs. For example, up until now, we have assumed that we have a fixed initial sit-
uation . � , whose state is captured in our model,

�
. We can strengthen many of the

above propositions by rejecting this assumption and proving Propositions 1, 3 for any
initial situation. This can be done by replacing .�� by initial situation variable

! � and
by quantifying, not only over

!
, but universally quantifying over

! � . Clearly, many pro-
grams will not enable the proof of properties for all initial situations, but the associated
propositions still hold.

Finally, we can exploit automated reasoning techniques to prove some of these prop-
erties. In particular, for procedure and while-loop free programs, we can exploit regres-
sion [17] followed by theorem proving in the initial situation, as we do to prove other
queries. We leave discussion of this topic to another paper.

4 Related Work

The work presented in this paper is related to several different research areas. In par-
ticular, this research is related in spirit only to work on plan sketches such as [11]. In
contrast, plan sketches are instantiated through hierarchical substitution. Further, plan
sketches generally don’t exploit the procedural programming language constructs found
in our model-based programming language. Model-based programming is also related
to various types of program synthesis and model-based software reuse (e.g., [5, 15, 16])
and to model-based generation of decision trees (e.g., [13]). A subtle distinction is that
whereas deductive program synthesis uses deductive machinery to synthesize a pro-
gram from a specification, model-based programming starts with a program, and uses
models and deductive machinery to simply fill in some details. Finally, model-based
programming is related to planning and in particular to deductive plan synthesis (e.g.,
[3]). A Golog program, despite its if-then-else’s and while loops, can be viewed as extra
formulae that are added to the domain axiomatization, including formulae that define
the terminating (or goal) situation. In so doing, these formulae reduce the search space
required to search for or plan a sequence of actions.

Needless to say, model-based programming is intimately related to cognitive robotics,
agent-based programming, and robot programming, particularly in Golog. This work
drew heavily from the research on Golog. A major distinction in our work has been
the challenge of dealing with large numbers of state constraints inherent to the repre-
sentation of complex physical systems, and the desire to prove certain properties of our
programs. In the first regard, our work is related to ongoing work at NASA on immobots
[18], and in particular to research charged with developing a model-based executive.

Finally, this work is related to controller synthesis and controller programming from
the engineering community. Comments on the distinction between model-based pro-
gramming and program synthesis also hold for controller synthesis. With respect to con-
troller programming, typical controller programming languages do not separate control
from models. Hence, programs are system specific and not model based. As a conse-
quence they are harder to write, much more brittle, and are not generally amenable to
reuse across classes of devices.



5 Summary and Discussion

The main contribution of this paper was to propose and provide a capability for pro-
gramming devices and web agents. Specifically: we envisaged the concept of model-
based programming; proposed a representation and compilation procedure to create
suitable models of physical systems in the situation calculus; proposed and demon-
strated the effectiveness of Golog for expressing model-based programs themselves,
and theorem proving as a model-based program instantiation mechanism. We also pro-
vided a set of propositions that characterized interesting properties of programs that
could be verified or enforced within our model-based programming framework via re-
gression and theorem proving.

The merits of model-based programming come from the exploitation of models of
system behavior and from the separation of those models from high-level procedural
knowledge about how to perform a task. Model-based programs are written at a suf-
ficiently high level of abstraction that they are very amenable to reuse over classes of
devices. Also, they are easier to write than traditional control programs, ridding the
engineer/programmer of keeping track of the potentially complex details of a system
design, with all its subcomponent interactions. Further, because of the logical foun-
dations of model-based programming, important properties of model-based programs
such as safety, program existence and goal achievement can be verified, and/or simply
enforced in the generation of program instances.

There are several weaknesses to our approach at this time, The first is inherent in
Golog – not all complex actions comprising our Golog programming language are first-
order definable. Hence, in its general form, our model-based programming language is
second order. However, as observed by [4] and experienced by the authors, first order is
adequate for most purposes. The second problem is that the Prolog implementation of
Golog relies on a closed-world assumption (CWA) which has suited our purposes, but
is not a valid assumption in the general case. Finally, not all physical system behavior
can be expressed as logical state constraints. This can be addressed by extending our
model representation language to include ODE’s (e.g., [12]).
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