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Abstract

Web services––Web-accessible programs and devices––are a key application area for the Semantic Web. With the

proliferation of Web services and the evolution towards the Semantic Web comes the opportunity to automate various

Web services tasks. Our objective is to enable markup and automated reasoning technology to describe, simulate,

compose, test, and verify compositions of Web services. We take as our starting point the DAML-S DAML + OIL

ontology for describing the capabilities of Web services. We define the semantics for a relevant subset of DAML-S in

terms of a first-order logical language. With the semantics in hand, we encode our service descriptions in a Petri Net

formalism and provide decision procedures for Web service simulation, verification and composition. We also provide

an analysis of the complexity of these tasks under different restrictions to the DAML-S composite services we can

describe. Finally, we present an implementation of our analysis techniques. This implementation takes as input a

DAML-S description of a Web service, automatically generates a Petri Net and performs the desired analysis. Such a

tool has broad applicability both as a back end to existing manual Web service composition tools, and as a stand-alone

tool for Web service developers.

� 2003 Published by Elsevier Science B.V.

Keywords: Knowledge representation formalisms and methods; Representation languages; Representations; Predicate logic; Frames

and scripts; Algorithms; Design; Standardization; Languages; Theory; Verification; Semantic web; DAML; Ontologies; Web services;

Web service composition; Distributed systems; Automated reasoning
1. Introduction

The vision of the semantic Web [8] is to provide
computer-interpretable markup of the Web�s con-

tent and capability, thus enabling automation of

many tasks currently performed by human-beings.
q An earlier version of this paper appeared in the Eleventh

International World Wide Web Conference (WWW11), 2002.
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A key application for Semantic Web technologies is

Web services––Web-accessible programs and de-

vices that will proliferate the Web. Examples of
such Web services include the book-buying ser-

vice at www.amazon.com, or the travel service

at www.travelocity.com. Semantic markup of

the content and capability of Web services––what

a service does, how to use it, what its effect will

be––will enable easy automation of a variety of

reasoning tasks, currently performed manually

by human beings, or through arduous hand-
coding that enables subsequent automation. Such

tasks include automated Web service discovery,
ce B.V.
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automated invocation, automated interoperation,

automated selection and composition, and auto-

mated execution monitoring [15,22,29].

In this paper, we are motivated by issues related

to the composition of Web services. Compositions

of Web services are created in many different ways.
Many compositions are created manually by the

service provider by taking simple Web-accessible

programs, such as a form-validation program, or

database lookup program, and composing them

using typical procedural programming constructs

such as if-then-else, sequence or while-loop. The

book-buying service at www.amazon.com is an

example of a composite service.
A number of software systems are available to

facilitate manual composition or orchestration of

programs, and more recently Web services. Such

programs, which include a diversity of workflow

tools [1,17], and more recently service composition

aids such as BizTalk Orchestration [26] enable a

user to manually specify a composition of pro-

grams to perform some task using process mod-
eling languages [4] such as WSCI [4], BPML [3],

XLANG [36], WSFL [25], WSCL [5], and more

recently, BPEL4WS [12]. Most recently, technol-

ogies have been proposed that use some form of

semantic markup of Web services in order to au-

tomatically compose Web services to perform

some desired task (e.g., [7,29,30,38]). Regardless of

how the compositions originated, we are interested
here in describing and proving properties of these

services––to test the system by simulating its exe-

cution under different input conditions, to logically

verify certain maintenance and safety conditions

associated with the service, and to automatically

compose services. In summary, our objective is to

enable markup and automated reasoning tech-

nology to describe, simulate, automatically com-
pose, test and verify Web service compositions.

Our starting point is the DAML-S ontology for

Web services [13,14], which we exploit to provide

semantic markup of the content and capabilities of

Web services. In Section 3, we provide a semantics

for a portion of the DAML-S language we require

to describe compositions of Web services. In Sec-

tion 4, we provide an operational semantics using
Petri Nets. In Section 5, we describe decision

procedures for Web services simulation, testing,
composition, and verification. We also provide an

analysis of the complexity of these tasks under

restricted classes of Web service compositions.

Finally in Section 6, we discuss our implementa-

tion of a software tool for performing the pro-

posed automated reasoning tasks. The theory and
implementation presented in this paper has broad

applicability both as a back end to enhance exist-

ing manual composition tools, and as a stand-

alone tool for simulation, testing, verification and

automated composition of Web services.
2. DAML-S

Critical to the vision of the Semantic Web is the

provision of a markup language, (or in artificial

intelligence (AI) terminology, a knowledge repre-

sentation language), that has a well-defined se-

mantics to enable unambiguous computer

interpretation. The language must also be suffi-

ciently expressive to describe the properties and
capabilities of Web services. Over the last several

years, a number of semantic Web markup lan-

guages have been proposed. These include XML,

RDF and RDF(S) and most recently DAML +

OIL [18,22,37]. We have adopted DAML + OIL as

our content language for describing Web services,

and in particular we have adopted DAML-S. Since

acceptance of this paper, the Ontology Web Lan-
guage (OWL) (http://www.w3.org/TR/owl-ref/) has

succeeded DAML + OIL, and likewise, DAML-S

is transitioning to OWL-S (http://www.daml.org/

services/). There is little difference between OWL,

OWL-S and DAML + OIL, DAML-S, respec-

tively. All results in this paper hold equally for

OWL and OWL-S.

DAML + OIL is an AI-inspired description
logic-based language for describing taxonomic

information. The DAML + OIL language builds

on top of XML and RDF(S) to provide a language

with both a well-defined semantics and a set of

language constructs including classes, subclasses

and properties with domains and ranges, for de-

scribing a Web domain. DAML + OIL can further

express restrictions on membership in classes and
also restrictions on domains and ranges, including

cardinality restrictions.

http://www.amazon.com
http://www.w3.org/TR/owl-ref/
http://www.daml.org/services
http://www.daml.org/services
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DAML-S is a DAML + OIL ontology for Web

services developed by a coalition of researchers, 1

under the auspices of the DARPA Agent Markup

Language (DAML) program. The latest release of

this ontology is located at [13] and an earlier ver-

sion is described [14]. The DAML-S ontology de-
scribes a set of classes and properties, specific to

the description of Web services. The upper onto-

logy of DAML-S comprises the service profile for

describing service advertisements, the process

model for describing the actual program that re-

alizes the service, and the service grounding for

describing the transport-level messaging informa-

tion associated with execution of the program. The
service grounding is akin to the Web Service De-

scription Language, WSDL.

It is the process model that provides a declara-

tive description of the properties of the Web-

accessible programs we wish to reason about. To

illustrate the salient features of the DAML-S pro-

cess model, we use the example of a fictitious book-

buying service offered by the Web service provider,
Congo Inc. The Congo example was described in

the original release of DAML-S, and its markup

can be found at http://www.daml.org/services. We

use a variant of it here for illustration purposes.

The process model conceives each program as

either an atomic or composite process. It addi-

tionally allows for the notion of a simple process,

which is used to describe a view, abstraction or
default instantiation of the atomic or composite

process to which it expands. We focus here on

atomic and composite processes.

<daml:Class rdf:ID¼ 00Process00>

<daml:unionOf rdf:parseType¼ 00daml:collection00>

<daml:Class rdf:about¼ 00#AtomicProcess00/>

<daml:Class rdf:about¼ 00#SimpleProcess00/>

<daml:Class rdf:about¼ 00#CompositeProcess00/>

</daml:unionOf>

</daml:Class>

An atomic process is a non-decomposable Web-

accessible program. It is executed by a single (e.g.,

http) call, and returns a response. It does not re-
1 DAML Services Coalition: A. Ankolekar, M. Burstein, J.

Hobbs, O. Lassila, D. Martin, D. McDermott, S. McIlraith, S.

Narayanan, M. Paolucci, T. Payne, K. Sycara, H. Zeng.
quire an extended conversation between the calling

program or agent, and the Web service.

<daml:Class rdf:ID¼ 00AtomicProcess00>

<daml:subClassOf rdf:resource¼ 00#Process00/>

</daml:Class>

An example of an atomic process is the Lo-

cateBook service that takes as input the name of

a book and returns a description of the book and

its price, if the book is in Congo�s catalogue.

<daml:Class rdf:ID¼ 00LocateBook00>

<rdfs:subClassOf

rdf:resource¼ 00&process;#AtomicProcess00/>

</daml:Class>

In contrast, a composite process is composed of

other composite or atomic processes through the

use of control constructs. These constructs are

typical programming language constructs such as

sequence, if-then-else, while, fork, etc. that dictate

the ordering and the conditional execution of

processes in the composition. We provide a subset
of the markup below.

<daml:Class rdf:ID¼ 00CompositeProcess00>

<daml:intersectionOf

rdf:parseType¼ 00daml:collection00>

<daml:Class rdf:about¼ 00#Process00/>

<daml:Restriction daml:minCardinality¼ 00100>

<daml:onProperty rdf:resource¼ 00#composedOf00/>

</daml:Restriction>

</daml:intersectionOf>

</daml:Class>

<rdf:Property rdf:ID¼ 00composedOf00>

<rdfs:domain rdf:resource¼ 00#CompositeProcess00/>

<rdfs:range rdf:resource¼ 00#ControlConstruct00/>

</rdf:Property>

An example of a composite process might be

the Find-n-Buy service that composes Lo-

cateBook, together with order request and fi-
nancial transaction services. The composition

constructs allow for multiple different execution

pathways to termination depending, in this case,

on whether the book is sold by Congo, is in stock,

and whether the user wishes to buy it.

Associated with each process is a set of prop-

erties. Using a program or function metaphor, a

process has parameters to which it is associated.
Two types of parameters are the DAML-S prop-

erties input and (conditional) output.

http://www.daml.org/services
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<rdf:Property rdf:ID¼ 00parameter00>

<rdfs:domain rdf:resource¼ 00#Process00/>

<rdfs:range

rdf:resource¼ 00http://www.daml.org/. . .#Thing00/>

</rdf:Property>

<rdf:Property rdf:ID¼ 00input00>

<rdfs:subPropertyOf rdf:resource¼ 00#parameter00/>

</rdf:Property>

An input for LocateBook might be the name

of the book.

<rdf:Property rdf:ID¼ 00bookName00>

<rdfs:subPropertyOf

rdf:resource¼ 00&process;#input00/>

<rdfs:domain rdf:resource¼ 00#LocateBook00/>

<rdfs:range rdf:resource¼ 00&xsd;#string00/> 2

</rdf:Property>

Inputs can be mandatory or optional. In con-

trast, outputs are generally conditional. This is

important. For example, when you search for a

book in the Congo catalogue, the output may be a

detailed description of the book, if Congo carries

it, or it may be a ‘‘Sorry we don�t carry.’’ message.
Such outputs are characterized as conditional

outputs. We define a conditional output class that

describes both a condition and the output based on

this condition. An unconditional output has a zero

cardinality restriction on its condition.

<rdf:Property rdf:ID¼ 00output00>

<rdfs:domain rdf:resource¼ 00#parameter00/>

<rdfs:range rdf:resource¼ 00#ConditionalOutput00/>

</rdf:Property>

<daml:Class rdf:ID¼ 00ConditionalOutput00>

<daml:subClassOf

rdf:resource¼ 00http://www.daml.org/. . .#Thing00/>

</daml:Class>

<rdf:Property rdf:ID¼ 00coCondition00>

<rdfs:comment>

The condition of the conditional output.

</rdfs:comment>

<rdfs:domain rdf:resource¼ 00#ConditionalOutput00/>

<rdfs:range rdf:resource¼ 00#Condition00/>

</rdf:Property>

<rdf:Property rdf:ID¼ 00coOutput00>

<rdfs:comment>

The output of the conditional output.

</rdfs:comment>
2 Observe that the range of many properties is currently

stipulated as #Thing or #string. Some of these ranges will be

changed to well-formed formulae in first-order logic, as soon as

that ontology is complete.
<rdfs:domain rdf:resource¼ 00#ConditionalOutput00/>

<rdfs:range

rdf:resource¼ 00http://www.daml.org/. . .#Thing00/>

</rdf:Property>

In addition to the program or function meta-

phor, it is also useful to use an action, event or

process metaphor to conceive services. In this

context we can consider services to have the

properties precondition and (conditional) effect.

Preconditions and conditional effects are described
analogously to inputs and conditional outputs.

Preconditions specify things that must be true

of the world in order for an agent to execute a

service. A precondition of every process is that the

agent knows the input parameters of the process.

For example, one precondition for LocateBook

is that the agent Knows(bookName). Stipulating

knowledge preconditions pertaining to the input
parameters is redundant with the input parameters

and are only distinguished as knowledge precon-

ditions in the semantics. Many Web services that

are embodied as programs on the Web only have

these preconditions. At the level of abstraction we

are modeling Web services, there are no physical

preconditions to the execution of a piece of soft-

ware on the Web. In contrast, Web-accessible de-
vices may have many physical preconditions such

as bandwidth resources or battery power.

<rdf:Property rdf:ID¼ 00precondition00>

<rdfs:domain rdf:resource¼ 00#Process00/>

<rdfs:range

rdf:resource¼ 00http://www.daml.org/. . . #Thing00/>

</rdf:Property>

Conditional effects characterize the physical

side-effects, execution of a Web-service has on the

world. An example of a conditional effect for a

BuyBook service might be Own(bookName),
when InStock(bookName). Note that not all

services have physical side-effects, in particular,

services that are strictly information providing do

not. The DAML-S markup for conditional effects

is analogous to that for conditional outputs.
3. The semantics of DAML-S

The DAML-S DAML + OIL ontology provides

a set of distinguished classes and properties for

http://www.daml.org
http://www.daml.org/
http://www.daml.org/
http://www.daml.org/
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describing the content and capabilities of Web

services. The DAML + OIL language in which it is

specified has a well-defined semantics, however the

expressive power of DAML + OIL is not sufficient

to restrict DAML-S to all and only the intended

interpretations. Our objective in this section is to
describe a semantics for that portion of DAML-S

that is relevant to our work on Web service com-

position. In particular, we ascribe a semantics to

the notion of atomic and composite processes.

One compelling way to do this, as has been

done with the semantics of DAML + OIL [18], is

to describe DAML-S in a more expressive lan-

guage, such as first-order logic, and to add a set of
axioms to this theory that constrains the models of

the theory to all and only the intended interpre-

tations. Since DAML-S is actually a process

modeling language, and its relationship to other

process modeling languages is important to in-

teroperability, an even more compelling way to

ascribe a semantics to DAML-S is to map it to the

US National Institute of Standard�s (NIST) Pro-
cess Specification Language (PSL) [35]. PSL is a

process specification ontology described in the

situation calculus, a (mostly) first-order logical

language for reasoning about dynamical systems

[34]. PSL�s role is to serve as the lingua franca for

all business and manufacturing process specifica-

tion languages. Once the DAML-S language is

stabilized, we should easily be able to translate the
situation calculus description in Section 3.1 into

the PSL ontology [20].

3.1. From DAML-S to situation calculus

The situation calculus language we use [34] is a

first-order logical language for representing dy-

namically changing worlds in which all of the
changes are the direct result of named actions

performed by some agent. Situations are sequences

of actions, evolving from an initial distinguished

situation, designated by the constant S0. If aðyÞ 3 is

an action and s, a situation, the result of per-

forming a in s is the situation represented by the
3 Actions are parameterized aðyÞ. Where possible, we

suppress the parameters for the sake of parsimony.
function doða; sÞ. Functions and relations whose

values vary from situation to situation, called flu-

ents, are denoted by a predicate symbol taking a

situation term as the last argument (e.g.,

OwnðbookName; sÞÞ. Finally, Possða; sÞ is a distin-

guished fluent expressing that action a is possible
to perform in situation s.

The dialect of the situation calculus that we use

includes a means of representing knowledge. In

particular, there is a distinguished fluent Kðs; s0Þ
that describes the accessibility relation between

situations. The notation Knowsð/; sÞ denotes that

the formula / is known in situation s (e.g.,

Knows(Owns(‘‘On the Road’’,s))). The notation
Kwhetherð/; sÞ is an abbreviation for a formula

indicating that the truth value of / is known i.e.,

Kwhetherð/; sÞ ¼ Knowsð/; sÞ _ Knowsð:/; sÞ. Fi-

nally, the abbreviation Kref ðu; sÞ abbreviates a

formula indicating that the functional value of u is

known. The situation calculus is fully described in

[34]. We dispense with further details and focus

here on the salient features relevant to this paper.
Atomic processes in DAML-S are actions aðyÞ

in the situation calculus. The input parameters of

an atomic process are the parameters y of action a.
E.g., the atomic process BuyBook is the parame-

terized action BuyBook(bookName).

Conditional effects and outputs: The conditional

effects of an atomic process are represented in the

situation calculus as positive and negative effect
axioms of the following form:

Possða; sÞ ^ cþF ðx; a; sÞ ! F ðx; doða; sÞÞ
Possða; sÞ ^ c
F ðx; a; sÞ ! :F ðx; doða; sÞÞ

cð�Þ
F ðx; a; sÞ contains all the different combinations

of actions and conditions that would make fluent

F (e.g., Own(bookName,s)) respectively true/false

after execution of the action. The following is an

example of a positive effect axiom for the Buy-

Book service with respect to its effect on

Own(bookName). In this example,

cþF ðx; a; sÞ is a ¼ BuyBookðbookNameÞ
^ InstockðbookNameÞ

Possða; sÞ ^ a ¼ BuyBookðbookNameÞ
^ InstockðbookName; sÞ

! OwnðbookName; doða; sÞÞ
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In our example, we do not illustrate a service that

has a negative effect on the fluent Own. To make it

more interesting, we add the following.

Possða; sÞ ^ a ¼ SellBookðbookNameÞ
! :OwnðbookName; doða; sÞÞ

Although specified as outputs rather than effects in

the DAML-S markup, the conditional outputs of

an atomic process a are treated as knowledge ef-

fects semantically. This is an important distinction

captured in our semantics. E.g.,

Possða; sÞ ^ a ¼ LocateBookðbookNameÞ
^ IncatalogueðbookName; sÞ

! Kref ðPriceðbookNameÞ; doða; sÞÞ

The output of a service is the information the

agent is being told. Hence the effect will either be a

Kref, Kwhether or Knows expression.

To address the frame problem representation-

ally [34], effect axioms are compiled into successor

state axioms, by appealing to a causal complete-

ness assumption––that the effect axioms for a flu-

ent F characterize all and only actions that cause a
change in the (truth) value of fluent F . Successor

state axioms express all the conditions underwhich

a fluent value can change. This ensures that the

models of the situation calculus represent all and

only the intended interpretations.

Successor state axioms, one for each fluent in

the language, are of the following form:

F ðx; doða; sÞÞ � cþF ðx; a; sÞ _ ðF ðx; sÞ ^ :c
F ðx; a; sÞÞ
i.e., the fluent F is true in do(a,s) iff an action made

it true (i.e., cþF ðx; a; sÞÞ or it was already true and an

action did not make it false (i.e., ðF ðx; sÞ ^
:c
F ðx; a; sÞÞÞ.

OwnðbookName; doða; sÞÞ
� ða ¼ BuyBookðbookNameÞ

^ InstockðbookName; sÞÞ
_ ðOwnðbookName; sÞ

^ a 6¼ SellBookðbookNameÞÞ

Successor state axioms for knowledge are dis-

cussed in [34].

Preconditions and inputs: DAML-S precondi-

tions for an atomic process are represented as well-
formed formulae in the situation calculus. Each

precondition of an atomic process is expressed as a

necessary condition for actions in the situation

calculus.

Possða; sÞ ! pi

where pi is a formula relativized to s. E.g.,

PossðCheckGPSðlocationÞ; sÞ
! ChargedðGPSbattery; sÞ

For multiple preconditions, this generalizes to:

Possða; sÞ ! p1 ^ p2 ^ � � � ^ pn

Just as outputs are treated as knowledge effects, so

too are inputs treated as knowledge preconditions

semantically. The agent must know the value of

the inputs to the service before it can execute the

service. For example, in order to execute Locate-
Book, the agent must know the values of all the

inputs. Hence for every input ui, of an atomic

process a,

Possða; sÞ ! Kref ðu1; sÞ ^ � � � ^ Kref ðun; sÞ
Under the completeness assumption, that the

preconditions encode all and only the precondi-
tions for an atomic process, these necessary con-

ditions for action are compiled into action

precondition axioms of the following form:

Possða; sÞ � p1 ^ p2 ^ � � � ^ pn ^ Kref ðu1; sÞ ^ � � �
^ Kref ðun; sÞ

e.g.,

PossðCheckGPSðlocationÞ; sÞ
� ChargedðGPSbattery; sÞ ^ Kref ðlocation; sÞ

The complete situation calculus axiomatization of

a DAML-S description includes the sets of axioms

described above,

• successor state axioms, DSS,

• action precondition axioms, Dap, as well as the

following axioms described in [34], namely

• foundational axioms of the situation calculus, R,

• axioms describing the initial situation, DS0,

• unique names for actions, Duna,

• domain closure axioms for actions, Ddca.
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These axioms collectively capture the intended

interpretation of the portion of DAML-S we have

described here.

Note that we have not described the translation

of DAML-S composite processes into the situation

calculus. This translation follows nicely from the
representation of complex actions in the situation

calculus using Golog [19]. Further discussion of

this point is beyond the scope of this paper.
4. An operational semantics

In the previous section we ascribed a semantics
to a relevant subset of DAML-S. With this se-

mantics in hand, we can reason about the execu-

tion of Web services. We use the situation calculus

as a lingua franca and translate into a represen-

tation that provides special-purpose machinery for

the tasks we wish to address. Specifically, we use

the distributed operational semantics of processes

provided by Petri Nets [32]. Several other options
present themselves, including simple finite state

automata, or process algebras such as the Pi-Cal-

culus. The latter provides the theoretical founda-

tions for Microsoft�s XLANG. However, most of

these approaches do not offer techniques for

quantitative analysis. We selected Petri Nets for its

combination of compelling computational seman-

tics, ease of implementation, and its ability to ad-
dress both offline analysis tasks such as Web

service composition and online execution tasks

such as deadlock determination resource satisfac-

tion, and quantitative performance analysis. We

also note the existence of several well-known

techniques mapping from Petri Nets to process

logics and vice versa [31,32].

There are tradeoffs associated with any choice
of computational machinery. In the most general

case, Petri Nets with inhibitory arcs are Turing

equivalent. Hence, the translation from situation

calculus does not limit the systems we can analyze.

Nevertheless, the situation calculus is more parsi-

monious for large theories. Petri Nets have a form

of computational completion semantics that en-

ables easy mapping from the situation calculus and
that addresses the frame problem in a very nice

way [33]. Their natural representation of change
and concurrency allows us to construct a distrib-

uted and executable operational semantics of Web

services. We are also able to bring to bear well-

established theories from the vast computer science

literature on Petri Nets [32] to define subclasses of

the DAML-S process model with respect to their
computational complexity. Finally, Petri Nets also

have the advantage of dealing with resources,

something that will be important in reasoning about

Web service devices.

In the subsection to follow we describe our

approach in detail. We introduce the notion of a

Petri Net and describe the representation of our

situation calculus theory in Petri Nets. We then go
on to describe computational analysis techniques

to realize many Web service automation tasks.

4.1. Petri Nets

We have constructed an execution semantics for

DAML-S based on Petri Nets. A Petri Net is a

bipartite graph containing places (drawn as circles)
and transitions (drawn as rectangles). Places hold

tokens and represent predicates about the world

state or internal state. Transitions are the active

component. When all of the places pointing into a

transition contain an adequate number of tokens

(usually 1) the transition is enabled and may fire,

removing its input tokens and depositing a new set

of tokens in its output places. The most relevant
features of Petri Nets for our purposes are their

ability to model events and states in a distributed

system and to cleanly capture sequentiality, con-

currency and event-based asynchronous control.

Our extensions to the basic Petri Net formalism

include typed arcs, hierarchical control, durative

transitions, parameterization, typed (individual)

tokens and stochasticity. For this paper, the cru-
cial fact about our representation is that it is active

with a well-defined real-time execution semantics

for service descriptions.

The rest of this section details our mapping.

The section to follow describes our automatic

model construction, simulation and analysis of

DAML-S markups using the theory of Petri Nets.

While we are aiming for this paper to be self-suf-
ficient, we will borrow results from the well-

developed theory of concurrent systems. For specific
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relevant results, we refer the reader to the appro-

priate citation. For a more general introduction to

the theory and analysis of distributed and con-

current systems using Petri Nets, the reader is re-

ferred to one of several excellent surveys (e.g.,

[1,9,32,39]).

Definition 1 (Petri Nets). A Petri Net (PN) is an

algebraic structure (P, T, I, O) composed of:

• finite set of places, P ¼ fp1; p2; . . . png,

• finite set of transitions, T ¼ ft1; t2; . . . tmg,

• Transition Input Function, I . I maps each tran-

sition ti to a multiset of P .
• Transition Output Function, O. O maps each

transition ti to a multiset of P . 4
Definition 2 (Markings/tokens/initial marking). A

marking in a Petri Net PN(P, T, I, O) is a function

l, that maps every place into a natural number. If

for a given marking l, lðpiÞ ¼ x, then it is said that
the place pi holds x tokens at the marking l. A

special marking, denoted by l0, will be called the

initial marking.

Definition 3 (Enabled/Fireable transitions at mark-
ing l). At a given marking l, if for any ti 2 T ,

lðpÞP #½p; IðtiÞ�; 8p 2 P , then ti is said to be en-
abled by the marking l. Here #½p; IðtiÞ� denotes the
number of occurrences of place p in the multiset

IðtiÞ. Let us denote the set of all enabled transi-

tions at a given marking l by ENðlÞ. In conven-

tional Petri Nets every enabled transition may fire.
This is not always true for other kind of Petri Nets,

particularly the timed ones. If we denote by F ðlÞ
the set of all fireable transitions at a given marking

l, then for conventional Petri Nets F ðlÞ ¼ ENðlÞ.
4 For ease of exposition, we leave out the case of typed or

colored nets, which represent predicate transition nets. For

finite domains (finite colors), such nets can be unfolded to the

ordinary case considered here. The tool described in Section 6

handles both prepositional (ordinary) and predicate (with

types) nets.
Definition 4 (Transition firing/occurrence se-
quence). The firing of any enabled transition, ti,
at marking l, causes the change of the marking l
to a new marking l0 as follows: 8p 2 P , l0ðpÞ ¼
lðpÞ 
 #½p; IðtiÞ� þ #½p;OðtiÞ�, where #½p; IðtiÞ� and
#½p;OðtiÞ�, denotes, the number of occurrences

of place p in the multiset IðtiÞ and in the multiset

OðtiÞ respectively. In other words, the new mark-

ing l0, for each place p, is equal to the old num-

ber of tokens in that place, minus the number of

occurrences of p in the input. A sequence of fir-

ings (t1 . . . tn) that take an initial marking l0

to a new marking lN is called an occurrence
sequence.

Graphical representation: The algebraic struc-

ture of a Petri Net PN(P, T, I, O) may be

represented graphically. In this graphical repre-

sentation, a Petri Net will be represented by a

bipartite graph, where every place will be repre-

sented by a circle; every transition will be repre-
sented by a rectangle; the function I will be

represented by directed arcs linking every p 2 IðtiÞ
to the transition ti. These arcs are called input arcs

to the transition ti; and the function O will be

represented by directed arcs linking each transition

ti to every p 2 OðtiÞ. Analogously with the input

arcs, these arcs are called output arcs to the tran-

sition ti.
Modeling discrete systems with Petri Nets:

When modeling a discrete system with a Petri

Net, partial states of the system are represented

by places. Whether the system is in a particular

partial state or not is represented by the pres-

ence/absence of a token in the place represent-

ing this partial state. Events are represented by

the transitions. Conditions allowing an event to
occur are represented by the input arcs to the

associated transition of this event. These are

normally called pre-conditions. The input places

of these arcs represent the combination of the

several partial states that must be valid in order

that the event represented by the transition oc-

curs. After the occurrence of an event (firing of

an enabled transition) a new set of partial states
will be valid. These are called the post condi-

tions and are represented by the output arcs of

the fired transition.
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4.2. A Petri Net semantics for DAML-S

Section 3 defined the semantics of DAML-S

atomic processes in terms of a set of situation

calculus axioms. We start by showing the mapping
from the situation calculus axioms to the corre-

sponding Petri Net structure. After describing the

basic mapping, we describe the net structures for

the various control constructs that define compos-

ite processes in DAML-S.

4.2.1. DAML-S atomic processes as Petri Nets

Recall, the basic set of axioms representing the
DAML-S atomic process were the effect axioms,

i.e.,

Possða; sÞ ^ cþF ðx; a; sÞ ! F ðx; doða; sÞÞ
Possða; sÞ ^ c
F ðx; a; sÞ ! :F ðx; doða; sÞÞ

and the necessary conditions for actions. The latter
embody both the physical preconditions described

in the DAML-S markup, and the knowledge pre-

conditions reflecting the requirement that an agent

know the values of the input parameters of the

process. We distinguish these by the subscript w

(world) and k (knowledge):

Posswða; sÞ ! p1 ^ p2 ^ � � � ^ pn
Posskða; sÞ ! Kref ðu1; sÞ ^ � � � ^ Kref ðun; sÞ
Possða; sÞ ! p1 ^ p2 ^ � � � ^ pn ^ Kref ðu1; sÞ

^ � � � ^ Kref ðun; sÞ

In the situation calculus, a completion assumption

is made to reflect that (1) the effect axioms specify

all and only the conditions under which a fluent

can change, and (2) the necessary conditions for

actions specify all and only the conditions under

which an action a is possible to execute. This
completion assumption is captured axiomatically

by translating effect axioms into successor state

axioms and necessary conditions for actions into

action precondition axioms. Petri Nets provide a

computational mechanism for achieving this

completion. The graph structure defines the com-

pletion and computation over the graph structure

achieves the computational completion semantics.
Hence, the solution to the frame problem is cap-

tured in the computational semantics of Petri Nets.
Fig. 1 illustrates the graphical Petri Net repre-

sentation of a DAML-S atomic process. With

multiple conditional effects, there would be a

transition for each possible conditional effect, with

a preset of the specific condition(s) and a postset of

the effect of excecuting that action under those
conditions. To ease exposition in this paper, we

will not consider multiple conditional effects. In

the discussion to follow, the atomic process in Fig.

1 will be represented as a single transition (in blue,

where visible).

4.2.2. DAML-S composite processes as Petri Nets

Having illustrated the mapping from the situa-
tion calculus description of a DAML-S atomic

process, we now turn to modeling composite pro-
cesses as Petri Net structures. DAML-S composite

processes are compositions of sub-processes––

other composite or atomic processes. All com-

posite processes bottom out in atomic processes.

The DAML-S composedOf property specifies the

control flow and data flow of its sub-processes,
yielding constraints on the ordering and condi-

tional execution of these sub-processes.

Fig. 2 illustrates the canonical graphical Petri

Net representation of a DAML-S composite pro-

cess, comprising start, finish, and a component

control construct (the hexagon is used to depict an

embedded composition of components). We con-

sider each construct of DAML-S version 0.6 [13]
and provide the appropriate net structure that

captures a possible execution semantics of that

construct. The basic control constructs we con-

sider are the sequence, parallel, condition, choice,
and the various iterate classes of DAML-S. Fig. 3

depicts the Distributed OPErational (DOPE) se-

mantics for the various DAML-S composite con-

structs.
We have implemented a DAML-S interpreter

that translates DAML-S markups to the Petri Net

based simulation and modeling environment

KarmaSIM [33]. The KarmaSIM tool allows for

interactive simulation and supports the various

verification and performance analysis techniques.

In Fig. 3, the thickened arcs correspond to the

result of transition firing and token transfer as the
system moves from state to state. The thickened

(filled) transitions depict the enabled transitions.



Fig. 1. Atomic DAML-S process.

Fig. 2. Canonical DAML-S composite process.
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As is clear from the state shown in Fig. 3, the

overall system has a distributed operational se-

mantics, i.e., each transition fires based on its local

input conditions, and transition firings correspond

to system evolution.

We now describe the various DAML-S com-
posite constructs and their DOPE semantics. Note

that in Fig. 3, DAML-S atomic processes corre-

spond to transition and embedded composite

processes are recursively built up from their

ground atomic processes. In Section 6, we illus-

trate a book buying example [13] that utilizes and

illustrates many of these constructs.

The sequence construct: In DAML-S, Sequence
has a list of component sub-processes that specify

the body. As shown in Fig. 3 ðSeqðP1; P2ÞÞ, the

semantics of sequence is a total ordering on the

process list, where Process1 ðP1Þ and Process2

ðP2Þ are executed in sequence. Assuming its pre-

conditions are satisfied, P2 can execute upon the

completion of P1.

The split construct: A split composite process
consists of concurrent execution of a bag of sub-

processes. No further specification about waiting,

synchronization, etc. is made at this level of the

DAML-S ontology. Our model of the Split con-

struct assumes a process that initiates a set of
concurrent processes and terminates. We use spe-

cial constructs to model the synchronization as-

pects, both local and barrier types. Thus, in the

situation shown in Fig. 3 (Split(P1, P2)), the two

split processes Process1 and Process2 are initiated,

and the composite process is ready to transition to
a FINISHed state.

The split and join (concurrent) construct: A split-

and-join composite process consists of concurrent

execution of a bag of sub-processes. The default

assumes barrier synchronization. With Split and

Split and Join, we can define processes which have

partial synchronization (e.g., split all and join

some subset). In the example network shown in
Fig. 3 ðConcðP1; P2ÞÞ, both processes are concur-

rently enabled and the overall composite process

waits until both processes are completed. One can

analogously construct cases of Split n join m
(m6 n), etc.

The choice construct: A choice composite pro-

cess selects a process for execution from among a

bag of processes. The choose property, takes a
choice bag and returns a chosen bag. The cardi-

nality of the bag can be specified through a re-

striction to get chooseðnÞ (0 < n6 jbagj). DAML-S

does not distinguish choice from alternative. As

shown in Fig. 3 ðChoiceðP1; P2ÞÞ, the DAML-S

specification corresponds to both Process1 and

Process2 being possible choices; selecting and

completing either choice would allow the com-
posite process to finish. The semantic framework

supports probabilistic choice, but DAML-S has

not (yet) been augmented with probabilities.

The if-then-else construct: An if-then-else com-

posite process is a simple construct that has a re-
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lation whose domain is a process and whose range

is a binary value. This internal process usually
corresponds to one or more test actions, but it may

alternatively be some evaluation of world state,

resource levels, timeouts or other conditions that

affect the evolution of processes. DAML-S condi-

tions have a property conditionValue which is a

boolean. The specific execution branch (i.e., which

process/action to execute) depends on the value of

this property. In the example shown in Fig. 3 (If-
Then-Else), the Condition value is TRUE and the

Then branch of the If-Then-Else is enabled. If the

Condition value were FALSE, the Else process

bag would be active.
The repeat-condition construct: DAML-S has

both repeat-while and repeat-until composite
processes. Repeat-while specializes the Control-
Construct class with properties whileCondition
(whose DAML-S range is of type Condition)
and whileProcess (range is of type Repeat). No

commitments are made about whether this is

asynchronous (w/o prioritized interrupts) or syn-

chronous (with specific polling/busy-wait strate-

gies), etc. This is left for the particular execution
model to specify. Similarly, repeat-until special-

izes the ControlConstruct class with properties

untilCondition (range is of type Condition) and

untilProcess (range is of type Repeat). Fig. 3



5 Note that we are mainly interested in the analysis of the

control compositions. For instance, we assume finite domains.

It is well known that in infinite domains (nets with infinite

colors), many verification problems become undecidable [33].

Also, the reachability analysis relies on an interleaving seman-

tics which corresponds to a total ordering on tasks. This is

consistent with results in AI planning [6].
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(repeat-until) shows the execution semantics of the

Repeat-until construct. The Repeat-while seman-

tics is analogous except that input places for the

DAML-S conditionValue (the Condition¼ true

and Condition¼False nodes in Fig. 3) are re-

versed.

5. Analysis of Web services tasks

Whether created manually by Web service

providers, value-adding third party Web service

providers, or by some automated tool, the se-

mantic Web will be replete with composite ser-
vices. Assessing the correctness, effectiveness,

safety and efficiency of composite services is vital

to safe and reliable automation of Web services. In

this section we provide a set of computational

analysis tools, based on our Petri Net representa-

tion, that enable us to automate Web service tasks

such as

• Simulation––simulate the evolution of a Web

service under different conditions.

• Validation––test whether a Web service behaves

as expected.

• Verification––establish the upholding of certain

properties of a Web service (e.g., that it main-

tains certain properties, that it ensures safety,

etc.).
• Composition––generate a composition of Web

services that achieves a specified goal.

• Performance Analysis––evaluate the ability of a

service to meet requirements with respect to

throughput times, service levels, and resource

utilization.

While our tools provide for sophisticated per-
formance analysis, detailed discussion of these

techniques is outside the scope of this paper. In

Section 6, we discuss the implementation of these

analysis tools together with their application to

DAML-S described Web services.

5.1. Simulation, validation, verification and compo-

sition

Simulation of a PN is straightforward. Simi-

larly, validation can be done by interactive simu-
lation: hypothetical cases, in many cases a

predefined test suite, are fed to the system to see

whether they generate the expected output and the

expected effects relative to the PN representation.

For verification, composition and performance

analysis more advanced analysis techniques are
needed. Fortunately, many powerful analysis

techniques have been developed for Petri Nets

[9,16,32]. Linear algebraic techniques can be used

to verify many properties, e.g., place invariants,

transition invariants, and (non-)reachability.

Coverability graph analysis, model checking, and

reduction techniques can be used to analyze the

dynamic behavior of a Petri Net. Simulation and
Markov-chain analysis can be used for perfor-

mance evaluation.

Three of the most important verification prob-

lems are: reachability, liveness and existence of

deadlocks. With the proliferation of embedded

devices, the issue of safe operation is becoming

central to device verification. In the context of

Web services, verification that a composite service
upholds a safety constraint (e.g., ensuring that a

credit card is only debited once per transaction, or

not executing the order to send the merchandise

until the goods are paid for) is critical. In what

follows, we show that the verification of safety

constraints, the detection of deadlock, and the

automated composition of Web services can be

characterized in terms of the notion of reachabil-
ity. 5

Definition 5 (Reachability). A marking M is

reachable if it is the marking reached by some

occurrence sequence (Definition 4). Given a

marking M of N , the set of reachable markings of

the net ðP ; T ; F ;MÞ (i.e., the net obtained by re-

placing the initial marking M0 by M) is denoted
by ½Mi.



6 Consider the case where an agent (fictitious, of course) may

go to Congo.com to browse reviews of books and then buy

them from a cheaper rival. This is possible if Congo.com

includes the browse review process in its service description.
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Notice that the empty sequence is an occurrence

sequence and that it reaches the initial marking

M0. The reachability problem for a net N is the

problem of deciding for a given marking M of N if

it is reachable.

Safety of a distributed system is defined as lack
of reachabilility to an unsafe state.

Definition 6 (Safety of Web Service Composi-
tions). Let S be a Web service composition with

associated net ðP ; T ; F ;MÞ. Let / be a safety con-

straint, and let marking M 0 encode the negation

(i.e., the violation) of the safety constraint. Then a

Web service composition S is safe with respect to /
iff there is no occurrence sequence of the net of S
that reaches M 0.

Analogously we define the task of generating a

composition of Web services to achieve a goal as

the problem of finding an occurrence sequence

that reaches the marking depicting the user�s de-

sired goal state. The occurrence sequence dictates
the sequence of Web services whose execution

leads to the goal. Sequential composition of

atomic services to achieve a goal state can be re-

alized using DAML-S and reachability analysis as

described here. We may automatically compose

composite services using the same technique by

compiling composite processes into macros fol-

lowing [28].

Definition 7 (Automated composition of Web ser-
vices). Let A be a set of atomic Web services and

let N ¼ ðP ; T ; F ;MÞ be the net that depicts the

behavior of all the services in A. Further, let u
represent the user�s goal, and let M 0 be the

marking that depicts this goal in N . Then

a1; a2; . . .; an is a sequential composition of
atomic services that achieves user goal u iff

a1; a2; . . .; an is an occurrence sequence in the

reachability analysis of M 0 in N . Note, that the

case of Web service composition is one of service

input–output composition where an individual

service is treated as atomic. This is in contrast to

general process composition, where all possible

interleavings should be considered. Of course,
given some agent goal, a service description and

our process semantics, a smart agent with suffi-
cient computational resources could compute

optimal compositions by combining partial ser-

vice executions. 6

This notion of automated composition of Web
services with macros is analogous to AI planning

in systems such as Blackbox [24] or Graphplan [10]

where we have complete information about the

initial situation [28]. In contrast, however, these

planners look for plans of a bounded length, hence

reducing the complexity of search as we will see

below. It is important to observe in the general

case that the search space for most practical Web
service compositions is very branchy (there are

many services to choose from). Fortunately, the

resulting composition tends to be short.

In addition to the verification of safety con-

straints, another important analysis to perform is

the determination of deadlock. Deadlock is obvi-

ously an important property to consider in the

composition of services, since one wishes to avoid
compositions that lead to reachable states where

the service hangs and no further interaction is

possible.

Definition 8 (Deadlock). A marking of a net is a

deadlock if it enables no transitions. The deadlock

problem for a net is the problem of deciding if any

of its reachable markings is a deadlock.

5.2. Complexity of DAML-S services tasks

In this subsection, we relate the complexity of

various Web service task to the expressiveness

of DAML-S. We first establish basic subclasses of

DAML-S and relate them to Petri Net subclasses.

We are then able to map results for the Petri Net
literature onto DAML-S service descriptions.

Theorem 1. The reachability problem for process
models built on DAML-S 0.5 service descriptions is
PSPACE-complete.
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Proof Sketch. The proof relies on the results of [11]

which showed P -Space completeness of a specific

subclass of Petri Nets which are 1-safe nets. Their

proof was based on a polynomial reduction from

reachability for 1-safe nets to the Linear Bounded
Automaton Acceptance problem, which is known

to be PSPACE-complete.

Definition 9 (1-Safe Nets). A marking M of a

net N is 1-safe if for every place p of the net

MðpÞ6 1. We identify a 1-safe marking M with

the set of places p such that MðpÞ ¼ 1. A net

N is 1-safe if all its reachable markings are 1-
safe.

Lemma 1. DAML-S 0.5 service descriptions result
in 1-safe nets.

Proof Sketch. The proof is fairly straightforward.

The base case of the inductive proof are the in-

dividual control constructs. It is quite easy to see
that the individual constructs (Fig. 3) satisfy the

1-safe property. Then the inductive case shows

that assuming that the ith composition is 1-safe,

adding the next component (from one of the

control constructs) results in a 1-safe net. Details

of the various cases can be found at the URL

http://www.icsi.berkeley.edu/~snarayan/www11.

html.

Proposition 1 (Complexity of Verification and

Composition). From Theorem 1, we can conclude
that the complexity of Web service safety verifi-
cation and automated sequential composition of
atomic services is P-SPACE in the general case.
Note however that in the case of safety verification,
the net is simply the net of the individual composite
service being verified, which will in general be ex-
tremely small. In contrast, the net used for Web
service composition is the net characterizing the
behavior of all atomic Web services under consid-
eration for composition. It will be large, though the
resulting occurrence sequence will in general be
short. These results are consistent with the com-
plexity results for AI planning [6]. From Theorems
2 and 3 below we can draw similar conclusions
about the complexity of our Web service automa-
tion tasks.
Theorem 2. Without the iterate constructs (iterate,
repeat-until, repeat-while) the reachability problem
for a DAML-S 0.5 process model is NP-Complete.

The proof makes use of the following fact.

Proposition 2. DAML-S 0.5 without the iterate
constructs results in an acyclic network.

Proof Sketch (Theorem 2). For general acyclic

networks, there is a well known polynomial-time

reduction to Integer Linear Programming [11],

because in an acyclic net N with initial marking M0

a marking M is reachable iff the system of equa-

tions corresponding to the state equation

M ¼ M0 þ CðX Þ, where C is the incidence matrix

of N , has an integer vector solution X . (For the

definitions of incidence matrix and state equation,

see, for instance, [32].) Since Integer Linear Pro-

gramming is in NP [11], so is the reachability

problem for DAML-S 0.5 without the iterate
constructs.

Proposition 3 (Complexity of restricted verifica-

tion and composition). From Theorem 2 we can
conclude that Web Service Safety Verification is
NP-Complete for composite services without the
iterate constructs. Theorem 2 is not relevant to au-
tomated composition since the net used to generate
the composition does not represent a single process.
Theorems 3 and 4 below define classes of composite
Web services where safety verification is polynomial.

Theorem 3. Without the choice and condition con-
structs, DAML-S 0.5 forms a sub-language with
polynomial algorithms for reachability and deadlock
of a DAML-S process.

Proof Sketch. The proof makes use of the theory

of conflict-free nets.

Definition 10 (Conflict-free nets). Conflict-free nets

are a subclass in which conflicts are structurally

ruled out. A net N ¼ ðP ; T ; F ;M0Þ is conflict-free if

for every place p, if jp�j > 1, then p� � �p. Howell
and Rosier show [23] that the reachability, liveness,

and deadlock problems for 1-safe conflict-free nets

are solvable in polynomial time.

http://www.icsi.berkeley.edu/~snarayan/www11.html
http://www.icsi.berkeley.edu/~snarayan/www11.html
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Proposition 4. In DAML-S (see Fig. 3), (a) both
condition and choice introduce conflict constructs
(condition introduces a conflict between the
Then ðIterateÞ and Else ðFinishÞ transitions, while
choice is by definition a structural conflict) and (b)
no other control construct introduces structural
conflicts.

Theorem 4. Without just the condition construct,
DAML-S forms a sublanguage where reachability
of a DAML-S process is P -Space Complete and
deadlock is NP-Complete.

Proof Sketch. The proof makes use of the theory

of free-choice nets.

Definition 11 (Free-Choice Nets). A net N ¼
ðP ; T ; F ;M0Þ is free-choice if for any pair

ðp; tÞ 2 F \ ðTXP Þ, it is the case that p�: ¼ ftg or
�p ¼ ftg. In a free-choice net, if some transitions

share an input place p, then p is their unique input
place. It follows that if any of them is enabled,

then all of them are enabled. Therefore, it is always

possible to freely choose which of them occurs.

The reachability problem is still PSPACE-com-

plete for 1-safe free-choice nets.

Proposition 5. In DAML-S (Fig. 3), (a) condition
introduces nonfree constructs and (b) no other con-
trol construct introduces nonfree constructs.
DAML-S modulo condition constructs results in a
free-choice net.
Table 1

Tractability results for DAML-S subsets

DAML-S subset Reachability Deadlock

DAML-Sniterate and

choice and condition

Polynomial Constant

DAML-Sncondition P-Space

Complete

NP-Complete

DAML-Snchoice and

condition

Polynomial Polynomial

DAML-S 0.5 P-Space

complete

P-Space

complete

DAML-S +

resourcesniterate and

choice and condition

NP-Complete Linear

DAML-S + resources Exp-Space-

Time-hard [27]

Exp-Space-

Time-hard [27]
The principal verification tractability results are

shown in Table 1. We have not discussed the issue

of resources in this paper. Resources are not

common with Web-accessible programs, but they

are common with devices. With resources, the

DAML-S language becomes equivalent to general
place transition nets, for which reachability and

deadlock detection is known to be exponential in

both space and time. This result is included for

completeness since the DAML-S coalition plans to

introduce resources in a future release.
6. Implementation

We have implemented a DAML-S interpreter

that translates DAML-S markups to the simula-

tion and modeling environment KarmaSIM [33].

The KarmaSIM tool allows interactive simulation

and supports the various verification and perfor-

mance analysis techniques outlined earlier.

The DAML-S interpreter is a Java program
that reads in DAML-S files and outputs a network

description. The network is constructed recur-

sively. Atomic processes are created as shown in

Fig. 1. For each control construct specified in the

file, a template net is created as described in Sec-

tion 4. The recursive procedure bottoms out when

all the transitions correspond to atomic processes.

The network thus constructed can then be visual-
ized graphically using the KarmaSIM simulation

environment. Once created, a variety of analysis

techniques including reachability analysis, dead-

lock detection, invariant computations (T and S
invariants) can be performed for different intial

states. The service provider can also perform in-

teractive simulations to validate various hypo-

thetical interaction scenarios, as well as to enact
the canonical usage of the service. Built into the

framework are also quantitative analysis tech-

niques that can compute throughputs, as well as

most-likely paths using a variety of Markov Chain

analysis techniques. A more complete description

of the KarmaSIM framework can be found at

http://www.ai.sri.com/daml/services/.

We have already used our implementation to
model a variety of the existing DAML-S service

ontologies. An example network, constructed from

http://www.ai.sri.com/daml/services/
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the DAML-S Congo.daml book-buying Web ser-

vice, is illustrated in Fig. 4 of the paper and can
be found at http://www.daml.org/services/daml-s/

2001/05/Congo.daml. The thick arrow indicates

the stage of the interactive simulation (here the

customer is ready to finish the buy transaction). 7

The network here has a variety of non-free con-

structs as well as loops and exercises the full

functionality of DAML-S. An earlier version of

the system had a deadlock in that it does not allow
7 http://www.ai.sri.com/daml/services/ and also http://www.

icsi.berkeley.edu/~snarayan/www11.html show a set of the

screen dumps for different stages of the interactive simulation.
a user to create a new account if there is already

one known. This has since been corrected.
7. Related work

Throughout this paper we have related our Petri

Net-based operational semantics for DAML-S and

automation machinery to established research

within the Petri Net community. More recently,
Ankolekar et al. [2] have proposed a concurrent

operational semantics for DAML-S that incorpo-

rates subtype polymorphism. It is similar to our

Petri Net semantics in many respects. Our model

differs from [2] in it�s focus on modeling complex

coordination and synchronization constructs and

http://www.daml.org/services/daml-s/2001/05/Congo.daml
http://www.daml.org/services/daml-s/2001/05/Congo.daml
http://www.ai.sri.com/daml/services/
http://www.icsi.berkeley.edu/~snarayan/www11.html
http://www.icsi.berkeley.edu/~snarayan/www11.html
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supporting both qualitative and quantitative

graphical modeling and analysis techniques. Some

other differences are outlined in [2].

At the time of this writing, there is increasing

related work within the Web Services research and

industrial communities. Most notable is the work
on orchestration or flow languages for process

modeling and orchestration that have been pro-

posed by industry players, e.g., WSCI [4], BPML

[3], XLANG [36], WSFL [25], WSCL [5], and

more recently, BPEL4WS [12]. Over time, industry

players may agree upon one standardized lan-

guage. All these languages vary slightly in their

approaches to process modeling. All, like DAML-
S, provide an XML-based language for modeling

processes. Not all have a well-defined semantics.

Notably, Microsoft�s XLANG semantics is based

on pi-calculus, and IBM�s WSFL semantics is

based on a Petri Net operational semantics. Nev-

ertheless, these two efforts have recently been

eclipsed by BPEL4WS, developed by IBM, Mi-

crosoft and BEA, as a merge and extension of
XLANG and WSFL. Unfortunately, as of this

writing, a semantics has not been defined for

BPEL4WS.

It is interesting to contrast BPEL4WS and

DAML-S. They share many attributes, including

an ability to describe Web services as processes

and to ground them in WSDL. Where they most

notably differ is that DAML-S provides a declar-
ative description of both primitive service proper-

ties, and of the properties of service compositions.

These properties include both profile information

for locating or matching services as well as input,

output, precondition and effect information for

composing services. The declarative nature of

these descriptions enable Web services to be or-

ganized in a taxonomic structure that facilitates
discovery and match-making. They also enable

services to be described abstractly in terms of

properties, rather than URLs, thus facilitating

dynamic binding of services and automated Web

service composition. In contrast, BPEL4WS has

no means of describing rich properties of primitive

or composite services, in a declarative form. Or-

chestrations are described explicitly in terms of
individual Web services, rather than in terms of

abstract services with particular service properties.
The lack of declarative description has many re-

percussions. The most significant is that it pre-

cludes sophisticated discovery of services and

automated composition of services.
8. Conclusion

The Semantic Web is an exciting vision for the

evolution of the World Wide Web. Adding se-

mantics enables structured information to be in-

terpreted unambiguously. Precise interpretation is

a necessary prerequisite for automatic Web search,

discovery and use. Services are a particularly im-
portant component of the Semantic Web. A se-

mantic service description language can enable a

qualitative advance in the quality and quantity of

e-commerce transactions on the Web [21,29]. The

DAML Services Coalition, under the guise of

DAML-S [14], has taken some important first

steps in this direction. This paper is the first at-

tempt to provide a model-theoretic semantics as
well as a distributed operational semantics that

can be used for simulation, validation, verification,

automated composition and enactment of DAML-

S-described Web services. The benefits of our ap-

proach include:

Formal executable semantics: a service descrip-

tion is fully represented using the machinery of

situation calculus and its execution behavior un-
ambiguously described using Petri Nets.

Analysis techniques and tools: mapping DAML-

S onto situation calculus and Petri Nets allows us

to tap into a rich repository of analysis techniques

and tools.

Service implementation tool: we mapped the

DAML-S service description to an existing process

model which was able to perform simulation, en-
actment and analysis of composite service de-

scriptions.

Complexity and reasoning: the expressive power

of the DAML-S process model compares to ordi-

nary Petri Nets. We identified more tractable

subsets of DAML-S which trade expressiveness for

more efficient analysis for verification, composi-

tion and model checking.
We described an implemented system that is

able to read in DAML-S service descriptions and
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perform simulation, enactment and analysis that

can (a) aid the service provider to test the func-

tional correctness and tune the performance of her

service, and (b) enable service composition agents

to automatically configure a sequence of atomic

services to achieve a specific goal.
Furthermore, our model provides guidelines for

important future extensions to DAML-S in the

direction of richer execution monitoring constructs

and more expressive resource-based reasoning

constructs. While this paper outlined our compu-

tational model and implementation with respect to

the DAML-S markup language, we believe that

the tools and techniques described are broadly
applicable and necessary for realizing the vision of

a Semantic Web.
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