
ConGolog, Sin Trans:
Compiling ConGolog into Basic Action Theories for Planning and Beyond

Christian Fritz Jorge A. Baier Sheila A. McIlraith
Department of Computer Science,

University of Toronto,
Toronto, ON M5S 3G4, Canada

Abstract

ConGolog is a logical programming language for agents that
is defined in the situation calculus. ConGolog agent control
programs were originally proposed as an alternative to plan-
ning, but have also more recently been proposed as a means
of providing domain control knowledge for planning. In this
paper, we present a compiler that takes a ConGolog program
and produces a new basic action theory of the situation cal-
culus whose executable situations are all and only those that
are permitted by the program. The size of the resulting the-
ory is quadratic in the size of the original program – even
in the face of unbounded loops, recursion, and concurrency.
The compilation is of both theoretical and practical interest.
From a theoretical perspective, proving properties of Con-
Golog programs is simplified because reification of programs
is no longer required, and the compiled theory contains fewer
second-order axioms. Further, in some cases, properties can
be proven by regressing the program to the initial situation,
eliminating the need for a higher order theorem prover. From
a practical perspective, the compilation provides the mathe-
matical foundation for compiling ConGolog programs into
classical planning problems, including, with minor restric-
tions, into the Plan Domain Definition Language (PDDL),
which is used as the input language for most state-of-the-art
planners. Moreover, Hierarchical Task Networks (HTNs), a
popular planning paradigm for industrial applications can be
represented as ConGolog programs and can thus now also
be compiled to a classical planning problem. Such compila-
tions are significant because they allow the best state-of-the-
art planners to exploit ConGolog and HTN search control,
without the need for special-purpose machinery.

1 Introduction
ConGolog (De Giacomo, Lespérance, & Levesque 2000)
is a logical programming language for specifying high-
level agent control, that is defined in the situation calculus.
ConGolog’s Algol-inspired programming constructs allow
a user to program an agent’s behavior while leaving parts
of the program underconstrained or “open” through the use
of non-deterministic constructs. These underconstrainedre-
gions of the program are later filled in by a planner. Such
integration of planning and programming has proven useful
in a variety of diverse applications including soccer playing

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

robots (Ferrein, Fritz, & Lakemeyer 2004), museum tour-
guide robots (Burgardet al. 1999), and Web service compo-
sition (McIlraith & Son 2002).

By way of illustration, consider a simple delivery prob-
lem in which we have an (infinite capacity) truck and the
task is to deliver packages from point A to point B. A classi-
cal planning problem would simply specify the initial state
and the goal state. Using ConGolog, we can provide the fol-
lowing program that constrains the space of possible plans,
while still leaving some work to the planner.If not at point
A, drive the truck to point A; while there are packages at
point A, pick a package and load it onto the truck; drive to
point B; while there are packages on the truck, pick a pack-
age and unload it from the truck.

A basic action theory of the situation calculus induces a
tree of possible action sequences or situations. A ConGolog
program further constrains the tree to those that adhere to
the program. In this paper we propose an algorithm forcom-
piling ConGolog programs into basic action theories of the
situation calculus whose tree of executable situations cor-
responds exactly to the one described by the program. We
prove the correctness of the compilation and show that its
output is of size quadratic in the size of the original pro-
gram. As a result, we provide semantics for ConGolog with-
out TransandFinal predicates, used to define ConGolog’s
standard transition semantics.

The compilation is of both practical and theoretical sig-
nificance. From a practical perspective, the compilation
provides the mathematical foundation for compiling Con-
Golog control knowledge into the Planning Domain Defini-
tion Language (PDDL) (McDermott 1998), ade factostan-
dard planning problem specification language. This in turn
enables state-of-the-art planners to exploit powerful control
knowledge without the need for special-purpose machinery
within their planners. We have recently shown how this can
be done for a subset of the language without concurrency
and procedures (Baier, Fritz, & McIlraith 2007). The exper-
imental results showed that state-of-the-art planners cangain
significant speed-ups from that. The current compilation of
ConGolog (including concurrency and procedures) can be
seen as an extension of this work – though some restrictions
apply when compiling into PDDL. This paper also provides
the theoretical justification for the previous compilation.

ConGolog has been used for a variety of purposes, all of

which can now benefit from this newly built connection to
modern planners. For instance, Hierarchical Task Networks
(HTN) have been translated to ConGolog (Gabaldon 2002).
In combination, this translation and our compiler provide the
means for compiling HTN control knowledge into a classical
planning problem. We anticipate this contribution to be of
significant interest to the planning community.

Another practical advantage resulting from our compila-
tion is that the compiled theory allows us to reason about the
executions of programs using regression. This has a variety
of interesting applications, including execution monitoring
(Fritz & McIlraith 2007).

From a theoretical perspective, the compilation elimi-
nates the need for ConGolog’s tedious reification of pro-
grams, as well as the second-order axioms necessitated by
its transition semantics. This facilitates proving properties
of programs (e.g. reachability, invariants, termination). Fur-
ther, since programs themselves can now be regressed, some
proofs can be reduced to first-order theorem proving through
the use of regression (cf. Reiter 2001).

This paper focuses on mathematical foundations. Pseudo-
code for our compilation is included in the appendix and
an implementation is available on our web site (www.cs.

toronto.edu/kr/). Experimental evidence in support of
our basic approach can be found in our previous paper
(Baier, Fritz, & McIlraith 2007).

2 Background
2.1 The Situation Calculus
The situation calculus is a family of many-sorted logical lan-
guages for specifying and reasoning about dynamical sys-
tems (Reiter 2001). Its basic elements are situations, ac-
tions, and fluents. A situation is ahistory of the primitive
actions performed from a distinguished initial situationS0.
The functiondo(a,s) denotes the situation resulting from
performing actiona in situations, inducing a tree of situa-
tions rooted inS0. Fluents are relations and functions that
take a situation argument (e.g.,F(~x,s)), and are used to de-
fine the state of the world.

A basic action theoryin the situation calculus,D, com-
prises fourdomain-independent foundational axioms, and a
set ofdomain-dependent axioms. Foundational axioms de-
fine basic properties of the tree structure of situations (full
details can be found in Reiter’s book (2001)), and contain
one second-order induction axiom required to properly de-
fine the tree of situations. Included in the domain-dependent
axioms are the following sets:
Axioms for the Initial State : sentences relativized to situa-
tion S0, specifying what is true in the initial state.
Successor State Axioms:provide a parsimonious represen-
tation of frame and effect axioms under an assumption of the
completeness of the axiomatization. There is one successor
state axiom for each fluent,F , of the formF(~x,do(a,s)) ≡
ΦF(~x,a,s), whereΦF(~x,a,s) is a formula with free variables
among~x,a,s. ΦF(~x,a,s) characterizes the truth value of the
fluentF(~x) in the situationdo(a,s) in terms of what is true
in situations. These axioms can be automatically generated
from effect axioms.

Action Precondition Axioms: are first-order axioms that
specify the conditions under which an action is possi-
ble. There is one axiom for each actiona of the form
Poss(a(~x),s) ≡ Πa(~x,s) where Πa(~x,s) is a formula with
free variables among~x,s.

Finally, we say that a situations is executable, denoted
in the language asexecutable(s), if all actions in the history
of s have their preconditions satisfied in the situation where
they are performed.

Although any situation calculus action theory is second-
order, many reasoning tasks can be reduced to first-order
theorem proving by using regression (Reiter 2001). Prop-
erties that hold in all executable situations can be shown by
induction over situations (Reiter 1993).

2.2 Golog and ConGolog
Golog is a programming language defined in the situation
calculus. It allows a user to specify programs whose set
of legal executions specifies a sub-tree of the tree of situ-
ations of a basic action theory. From a planning point of
view, it can be used to provide an effective way of prun-
ing the search by specifying the skeleton of a plan. Golog
has an Algol-inspired syntax extended with flexible non-
deterministic constructs. Its constructs are shown below.

a primitive action
φ? test conditionφ
(δ1;δ2) sequence
if φ then δ1 elseδ2 conditional
while φ do δ ′ loops
(δ1|δ2) non-deterministic choice
πv.δ non-deterministic choice of argument
δ ∗ non-deterministic iteration
{P1(~t1,δ1); . . . ;Pn(~tn,δn);δ} procedures

While deterministic constructs enforce the occurrence
of particular actions, non-deterministic constructs de-
fine “open parts” that are completed using planning.
In particular, the non-deterministic choice of argument
πv.δ introduces a program variable v that may oc-
cur in δ in place of an object. For instance
while (∃b).OnTable(b) do πv. OnTable(v)?;Remove(v) could be
a program that removes all blocks, one-by-one from a table.
ConGolog adds concurrency to Golog, by allowing addi-
tional constructs:

(δ1 ‖ δ2) concurrent execution
(δ1〉〉δ2) prioritized concurrency
δ ‖ concurrent iteration

Concurrency is defined as action interleaving. For example,
the program(a ‖ (b;c)) admits three executions:abc, bac,
andbca.

ConGolog introduced a so-calledtransition semanticsfor
programs. The semantics of a programδ is given through
two predicatesTrans(δ ,s,δ ′,s′) and Final(δ ,s). The for-
mer states that in situations programδ can perform a step,
resulting in a remaining programδ ′ and new situations′.
The latter states thatδ can be legally terminate ins. De Gia-
como, Lesṕerance, & Levesque (2000) provide the complete
axioms for the semantics; we show some of them below.

For a primitive action we haveTrans(a,s,δ ′,s′) ≡
Poss(a[s],s)∧ δ ′ = nil ∧ s′ = do(a[s],s), andFinal(a,s) ≡
False. One important role ofFinal is with sequences:

Trans(δ1;δ2,s,δ ′,s′)≡

(∃γ).δ ′ = (γ;δ2)∧Trans(δ1,s,γ,s′)∨

Final(δ1,s)∧Trans(δ2,s,δ ′,s′).

For concurrency constructs we have:

Trans(δ1‖δ2,s,δ ′,s′)≡

(∃γ).δ ′ = (γ ‖δ2)∧Trans(δ1,s,γ,s′)∨

δ ′ = (δ1‖γ)∧Trans(δ2,s,γ,s′)

Trans(δ1〉〉δ2,s,δ ′,s′)≡

(∃γ).δ ′ = (γ〉〉δ2)∧Trans(δ1,s,γ,s′)∨δ ′ = (δ1〉〉γ)

∧ Trans(δ2,s,γ,s′)∧ (6 ∃ζ ,s′′).Trans(δ1,s,ζ ,s′′)

Trans(δ ‖,s,δ ′,s′)≡

(∃γ).δ ′ = (γ ‖ δ ‖)∧Trans(δ ,s,γ,s′)

The first two programs are only “final” when both subpro-
grams are, while the third can be terminated at will:

Final(δ1‖δ2,s)≡ Final(δ1,s)∧Final(δ2,s)

Final(δ1〉〉δ2,s)≡ Final(δ1,s)∧Final(δ2,s)

Final(δ ‖,s)≡ True

A transition semantics facilitates the interleaving of program
interpretation (planning) and execution, and reasoning about
sensing actions. The downside of this semantics is its re-
quirement to reify programs: programs are represented as
terms, in order to quantify over them. The other shortcom-
ing is the requirement of an additional second-order axiom
for defining the transitive closure ofTrans, denotedTrans∗.
This axiom is needed to define theDo predicate that defines
the situations that result from executing a program:

Do(δ ,s,s′)
def
= (∃δ ′).Trans∗(δ ,s,δ ′,s′)∧Final(δ ′,s′).

We refer to the axioms defining the transition semantics as
ΣConGolog. This includes the mentioned second-order axioms
and axioms required for reification of programs.

3 From ConGolog to Basic Action Theories
In this section we describe an algorithm for compiling a
given ConGolog program into a basic action theory. For
readability, we focus our description on the intuitions be-
hind the algorithm. The actual pseudo code of the algorithm
can be found in the appendix, and a Prolog implementation
is available from our website.

Our algorithm accepts as input a basic action theoryD and
a ConGolog programP = {P1(~t1,δP1); . . . ;Pn(~tn,δPn);δmain}
containingn procedure definitions with formal arguments~ti
and procedure bodyδPi , and a main programδmain. It out-
puts a new basic action theoryDP whose tree of executable
situations corresponds to the sub-tree of situations inD that
are executions ofδmain in D.

The intuition behind our compilation is to model the dy-
namics of a ConGolog program as a Petri net with an infinite

stack, and then represent this Petri net and the stack as a ba-
sic action theory in the situation calculus. Roughly, a Petri
net is a finite state automaton that can be in more than one
state at the same time. To reflect that, in Petri net terminol-
ogy, states are calledplacesand active places are marked
by tokenswhich move from place to place using transitions.
The total number of tokens can change during execution,
for instance to model concurrency. To model the dynam-
ics of ConGolog programs, we use a so-calledcoloredPetri
net, where tokens have unique identifiers. We do not define
the Petri net induced by a program formally, but only use it
for illustration. Intuitively, places in the Petri net represent
the current position in the execution of the program (i.e., a
sort of program counter), while (labeled) transitions specify
which actions are legal at each stage during the execution.
Each token represents one of possibly several concurrently
executing threads. Given a programP, our algorithm gen-
erates the axioms required to model the underlying Petri net
as a basic action theory. To this end, we create (1) special
bookkeeping predicates, to represent the Petri net and the
stack, and (2) additional actions, to represent some of the
transitions of the machine.

It is important to note that our algorithm operates only
syntactically on the given inputs. In particular, it does not
perform any type of reasoning within the provided basic ac-
tion theory, which makes it easy to show that our algorithm
has modest complexity (see below).

The compilation proceeds in five steps.
(Step 1)For each procedurePj(t j1, . . . , t jkj

,δPj) in P we call

(ax j ,i j) = COMP(δPj ,{t j1, . . . , t jkj
},0,Pj)

where{t j1, . . . , t jkj
} are the formal parameters of the proce-

dure, andδPj is the body ofPj .1 The functionCOMP, defined
in Appendix A, takes as input a ConGolog program, a set of
program variables, an integer used as a program counter, and
a procedure name, used to distinguish different contexts. It
outputs a set of sentencesax, and an integeri j , intuitively
denoting the value of the program counter after the program
terminates. The set of sentences is later processed furtherto
generate the axioms ofDP , but before we get to this, let us
consider the functionCOMP in more detail.

COMP is defined recursively over the structure of pro-
grams. Starting from an initial place labeled(0,main),
COMP incrementally constructs the Petri net, generating
new network places as it recurses over the structure of the
program. AssumeCOMP is currently at a place labeled
with (i, p), where i is the program counter andp a pro-
cedure name, and that it encounters a primitive actionA
in the program. Then, it adds a new place to the Petri
net labeled with(i + 1, p) and a transition from the cur-
rent place to this new place, labeled withA. COMP gen-
erates and returns several sentences which will later be in-
cluded as axioms ofDP . First, it generates a sentence about
the preconditions ofA. In the described case it generates
Poss(A(th),s) ← Thread(th,s) ∧ state(th,s) = (i, p) which

1For simplicity of presentation we assume that procedures do
not contain additional procedure definitions.

1 2

3 4

5 6

7 8noop

noop

test〈ψ〉

test〈¬ψ〉

test〈φ〉

test〈¬φ〉

a

b

c

if

while
sequence

(a) Petri net forwhile φ do (if ψ then a elseb); c.

replacements

1

2 3

4 5

6
δ1

δ2

spawn join

(b) Petri net forδ1 ‖ δ2

Figure 1: Two example Petri nets.

states that we can executeA in threadth if th denotes an
active thread and its token is in(i, p). (Note that we give
an extra argument to each action, denoting the thread it is
being performed in.) It further generates an appropriate ef-
fect, stating that whenA is performed in(i, p), the token
moves to(i + 1, p). The sentence generated in this case is
state(th,do(A(th),s)) = (i +1, p)← state(th,s) = (i, p).

Example 1. Consider the program of Figure 1(a), where
specialtestactions are used to transition to a sub-net con-
ditioned on a formula, andnoopallows unconditional tran-
sitions.2 To keep the presentation simple, we only show the
sentences produced by the algorithm for the transitions from
state 1→ 2 and 7→ 8.

For transition 1→ 2, if φ does not mention program vari-
ables, the algorithm generates the following sentences:

Poss(test(th,1,2,main),s)← (Thread(th,s)∧φ(s)∧

state(th,s) = (1,main)),
(1)

state(th,do(test(th,1,2,main),s)) = (2,main). (2)

And for the transition 7→ 8 we get:

Poss(c(th),s)← (Thread(th,s)∧state(th,s) = (7,main)), (3)

state(th,do(c(th),s)) = (8,main)← state(th,s) = (7,main). (4)

In the remaining steps of the compilation (see below), the
successor state axiom for thestatefluent is formed and pre-
condition axioms are put into normal form. If inD the
precondition axiom forc was Poss(c,s) ≡ Πc(s), then the
new precondition axiom inDP is Poss(c(th),s)≡Πc(s)∧ϕ,
whereϕ stands for the right-hand side of Equation 3. §

So far, the Petri net is equivalent to a simple automaton,
since we’ve only been concerned with a single token. This
changes when one considers concurrency. Concurrency is
modeled using threads, where each thread is represented by
an identifiable token in the net. For instance, the basic con-
currency constructδ1 ‖ δ2 puts the current token in the initial
state of the sub-Petri net recursively generated forδ1, and
creates a new token which it puts into the initial state ofδ2.

2Names used for test actions in this example are simplified for
clarity. Refer to the pseudo-code for more details.

These tokens are joined back together when both programs
have finished executing (Figure 1(b)).

The greatest challenges we faced while devisingCOMP,
were caused by the interaction of various advanced pro-
gramming constructs, in particular program variables, pro-
cedures, and iterative concurrency. We elaborate briefly on
these difficulties.

Procedure calls are realized using two new actionscall and
return. The former moves the token of the current thread
to the initial place of the called procedure, whilereturn
returns it to the next state of the current program, once the
token has reached the final state of that procedure. Since
the compilation of the procedures themselves needs to be
independent from the context from which they are called,
we do not know the return state during compile time, but
need to store it during runtime instead. Since procedures
can be recursive, we require a stack, containing all (recur-
sive) return states. The stack is realized using two func-
tional fluentsstack(th,v,s) andsp(th,s), where the former
denotes the content of the stack entries, and the latter is a
stack-pointer, always pointing to the next free stack posi-
tion.

Concurrency is realized by using explicit thread names.
Each action is given an additional parameterth, denot-
ing the thread it is executed in. This is necessary since
there may be situations where two threads intend to ex-
ecute the same action next. Once that action executes,
we need the thread name to disambiguate which thread
actually proceeded. Thread names are also required for
other purposes, like program variables, described be-
low. The active threads are denoted by the relative fluent
Thread(th,s), initially only one thread,[0], is active. A
new thread is created by thespawnaction, which also sets
up some new data structures (fluents) for the new thread,
for instance its own procedure stack. Two threads are
joined back by the actionjoin.
For thread names, we use lists of numbers. The main
thread is[0], and its direct children are called[0,N] where
N is the number of the child. Thek-th child of then-
th child of the main thread is called[0,n,k]. This is
more complicated than increasing a single thread counter,
which would have been an alternative, but has the advan-
tage that thread names can be reused after threads termi-
nate. With numbers, for instance, an infinitely running
program with concurrency would require infinite num-
bers. This would also more severely limit the ability to
compile into PDDL.
Prioritized concurrency is governed by a new fluentPrio
which indicates any threads that take priority over others.
A thread can only proceed when no prioritized thread can
perform its next action.

Program variables as created byπ constructs, are realized
using the fluentsBound(x,s) andmap(x,s) = y. The for-
mer states whether a variable is bound or free, and if
bound,mapstates its value. The parameterx is a tuple
(th,y,v) whereth denotes the thread this variable was cre-
ated in,y the stack position, andv is the name as men-
tioned in the program (e.g.π v.δ). Thread names are

required to disambiguate in cases like(π v.δ)‖ where in
each thread a new variable of the same name is created.
Similarly stack positions are required when program vari-
ables are created in recursive procedures.
The combination of program variables and threads was
particularly challenging, since program variables may be
used in different context than where they were created.
Consider for instanceπ v.(v= 1?‖ v= 2?). This program
is unexecutable since thev’s refer to the same variable,
which from the perspective of the second thread belongs
to a different thread. We realize this through “pointers”,
formalized as a functional fluentpipo.

To compile the main procedure we call

(axmain,imain) = COMP(δmain,∅,0,main),

which yields the final program counterimain, which corre-
sponds to a particular “final” place of the Petri net. This will
be used as a goal: if there is a token in(imain,main), the pro-
gram has executed successfully, which roughly corresponds
to theFinal predicate in ConGolog.
(Step 2)Thus far we have generated program-specific sen-
tences, describing the dynamics of the Petri net. There
is also a number of program-independent sentences that
we require, which intuitively state the default dynamics of
the involved bookkeeping actions (see Appendix B for de-
tails). We denote these asaxcommonand define the setAX as
axmain∪

⋃
j ax j ∪axcommon.

The remaining steps of the compilation aggregate the sen-
tences inAX to produceDP , producing all the precondi-
tion axioms, successor state axioms, initial state axioms,and
unique names axioms.
(Step 3)Recall that procedure calls require two new actions
call andreturn. The effect axioms for both are domain inde-
pendent and thus inaxcommon, and the precondition axioms
for call are generated byCOMP. In Step 3 we need to create
the precondition axioms forreturn, which is possible in all
final states, i.e. for each procedurePj compiled in Step 1,
we enablereturnwhenstate(th,s) = (i j ,Pj).
(Step 4) For each place of each Petri net, all conditions
under which any action can execute in this place and con-
text are recorded. We generate axioms for a new fluent
trans(th,s), which indicates whether in situations a given
threadth can perform its next action. This definition is only
required in conjunction with prioritized concurrency, and
can be skipped if this language feature is not used.
(Step 5)For each primitive actionA (including bookkeep-
ing actions), Step 5 removes all sentencesPoss(A,s)← φ
from AX and combines them into a new precondition axiom
for A, by: (a) disjoining allφ ’s, (b) conjoining the result-
ing formula with any preexisting preconditions forA, and
(c) conjoining the result with an additional expression that
governs priority among threads and allows forced execution
of a selected thread. The latter is used to enable prioritized
concurrency, explicitly prohibiting threads from executing
for which there is a thread with higher priority that can ex-
ecute its next action. This condition is also used to ensure
so-calledsynchronizedwhile’s and if’s. Roughly, the latter
means that testing the conditions of these constructs is not

a transition by itself, but needs to be immediately followed
by a transition on its body, or otherwise backtrack to a place
before the test.
(Step 6)Since all thePosssentences have been removed,AX

now only contains sentences describing effects of actions.
On these, Step 6 applies Reiter’s solution to the frame prob-
lem, to produce successor state axioms.

The result is a set of precondition and successor state ax-
ioms, describing the dynamics of all procedures’ Petri nets.
We also add the axiomstate([0],S0) = (0,main), stating that
initially the main thread, denoted[0], is in the initial place of
the Petri net of themainprocedure.

While our compilation makes several second-order ax-
ioms, specific to ConGolog’s transition semantics, unneces-
sary, it does require second-order to define natural numbers
and lists. The former is used to address the elements of the
stack, the later to give names to threads. We assume stan-
dard definitions for these. These can be avoided when both
recursion, and the number of concurrent threads is bound by
a constant. This restriction is also required for further com-
pilation to PDDL (see below).

LetDP be the result of compilingP intoD. We can show
the following theorems which state that the compilation is
both correct and succinct. The proofs can be found in (Fritz,
Baier, & McIlraith 2008).

Theorem 1. Let Sbe any ground situation term ofD. Then
D |= Do(δmain,S0,S) iff there is a ground situation termS′ in
DP such thatS= filterD(S′) andDP |= executable(S′) and
(∃th).Thread(th,S′)∧state(th,S′) = (imain,main).

HerefilterD(s′) is a function that removes from the sit-
uation terms′ any actions not defined inD. This removes
all bookkeeping actions froms′, in order to compare the se-
quence of contained domain actions withs.

For the next theorem we define the size of a program as
the number of program constructs it contains plus the num-
ber of logical connectives mentioned in conditions. Simi-
larly, the size of an axiom is measured by the number of
logical connectives it contains.

Theorem 2. If the size ofP is n andD containsm axioms
each of size< k, thenDP containsO(n)+maxioms each of
sizeO(k+n).

Theorem 3. If the size ofP is n, then the time required to
compute the compilation isO(n2).

Intuitively, recursive procedure calls, while–loops, con-
currency and other seemingly problematic constructs do not
incur a significant increase in the size of the output, because
of the syntactic nature of the compilation and the careful use
of bookkeeping fluents and actions to model the desired be-
haviors. Similarly, the requirement for second-order logic to
define loops is cast into the induction axiom included in the
foundational axioms of the situation calculus, through the
use of bookkeeping fluents and actions.

4 Analysis
4.1 Theoretical Merits
To prove properties of a ConGolog programP, we now have
two alternatives. We can reason using the original transition

semantics of ConGolog, represented as a fixed set of axioms
ΣConGolog, or we can use the new basic action theoryDP

resulting from applying our compilation, extended with nat-
ural numbers and lists. (DP can be generated automatically
by our compiler implementation, which is available on our
website.) At first glance, usingΣConGologmay look simpler
since the axioms inΣConGolog are independent of the pro-
gram. However, we argue that reasoning itself is actually
simplified when usingDP .

One advantage ofDP is that it defines the dynamics of a
program in terms of fluents. For example, any executable sit-
uations for whichDP |= state([0],s) = (imain,main), with
imain as defined above, is a legal execution of the program.
Regressing the conditionstate([0],s) = (imain,main) over
the actions comprisings, together with all involved action
preconditions, results in a formula over the initial situation
S0. Following Theorem 1 and Reiter’s Regression Theo-
rem, this formula is equivalent to the question of whether
the actions comprisings are a legal execution of the pro-
gram. More generally, using regression we can determine
conditions under which a given sequence of actions (whose
parameters don’t need to be ground) will satisfy a given
formula while executing the program. These queries could
not be answered using regression in the transition semantics
since neither the semantics of Golog nor ConGolog were in
terms of regressable formulae3. One practical application
for this is noted in Section 4.2.

Another advantage of reasoning inDP is that the compi-
lation eliminates the need for ConGolog’s tedious (second-
order) reification of programs, as well as the second-order
axioms found inΣConGolog for defining theTrans and the
Trans∗ predicates. As such, proving properties of programs
in DP is not much different from proving properties in the
standard situation calculus. In some cases (e.g., when prov-
ing a property of a particular execution trace) we can apply
regression. In more general cases (e.g., when proving invari-
ants), we can simply use induction over situations (Reiter
1993). In fact, we have proven properties of simple Golog
programs by representingDP in the higher-order theorem
prover PVS (Owre, Rushby, & Shankar 1992). In PVS, sit-
uations, natural numbers, and lists, can be easily defined as
recursive data-types. We found the lack of reification inDP

together with the limited number of second-order axioms
made theorem proving less laborious and more intuitive than
previous attempts to prove properties of Golog programs in
PVS (Shapiro, Lesṕerance, & Levesque 2002).

In our translated domain it is particularly simple to prove
a property about a specific point during the program’s ex-
ecution. The main reason for this is that in our compiled
theories we can refer to points in the program’s execution
by referring to the states of the Petri net that represent those
points. For example, proving a property about the situa-
tions that result from executing the program to termination
reduces to proving that a certain formula is true for every
situation in which we are at the Petri net place that corre-
sponds to the end of the program. When proving these types
of properties using the second-order axioms of the original

3(Reiter 2001, p. 62) defines regressable formulae.

ConGolog semantics, as was done by Shapiro, Lespérance,
& Levesque (2002), one is forced to effectively simulate an
execution of the program by incrementally evaluating the
transitive closure of theTranspredicate. On the other hand,
in case we want to prove a property that holds during the
whole execution of a program using our compiled theory,
we have to resort to induction over situations. The course of
the proof in this case is very similar to the one that would
be obtained in the framework of Shapiro, Lespérance, &
Levesque (2002).

To demonstrate the feasibility of proving properties of
programs using automated theorem provers, we modeled
one of the Golog example programs in the blocks world used
by Liu (2002). This program consists of a while loop that
non-deterministically moves blocks until there is only one
block on the table. The task is to prove that there is a single
tower in the final situation. This could be proven automat-
ically by PVS in fractions of a second. Liu also obtained a
very simple proof but appealing to a Hoare-style proof sys-
tem on top of ConGolog’s semantics.

4.2 Practical Merits
ConGolog to PDDL A practical consequence of the com-
pilation is the possibility of further compiling the resulting
action theory into other action languages, like PDDL. The
advantage of this approach is the possibility of using the
fastest state-of-the-art planners to accomplish the planning
needed while interpreting ConGolog programs. This is not
only of interest to the agent programming community but
also for the planning community, since ConGolog can be
used to express domain control knowledge.

In previous work we have shown that it is possible to com-
pile Golog programs without procedures into PDDL (Baier,
Fritz, & McIlraith 2007), and shown that Golog domain con-
trol knowledge can speed up search of standard planning
benchmarks. In the compilation proposed in this paper we
are considering the richer variant ConGolog, that allows pro-
grams with possibly recursive procedures, and with various
forms of concurrency. Unfortunately, these additions all to-
gether cannot be compiled directly into current versions of
PDDL. The main reason is that PDDL does not provide the
functionality for defining unbounded data structures, which
we need, for example, for representing the stack for proce-
dure calls.

Recent versions of PDDL support natural numbers, but
these cannot be used as arguments to predicates, since num-
bers are not considered objects of the domain. The prag-
matic reason for this restriction is to avoid the possibility of
infinite branching factors (Fox & Long 2003, p. 68) since
actions could take numerical arguments. Since our compila-
tion does not introduce infinite branching factors, we believe
that PDDL could be extended accordingly to allow the full
expressiveness of ConGolog and HTNs. We hope that our
work may convince the planning community that such an
extension would lead to a significant increase in the expres-
siveness of PDDL.

It is still possible to translate ConGolog into PDDL if we
are willing to either disallow recursion and iterative concur-
rency or limit the depth of recursion and the number of con-

currently executing threads. The second option is probably
the most interesting one, since in practical applications in
which finite plans are needed, we will not require the power
of infinite recursion. The main challenge in this case, is to
generate a theory in which the stack and the lists which are
used to represent thread names are bounded. The following
are the main aspects that are needed to translate to PDDL.

1. All fluents that represent counters (e.g., the stack pointer
fluent) are now represented byrelational fluents, an ar-
gument of which corresponds to the value of the counter.
The value of the counter is represented by a PDDLob-
ject. We generate finitely many objects for counters, and
a static predicate to indicate the successor for each counter
object.

2. All other functional fluents (like e.g.mapandstate) are
represented in PDDL as relational fluents. In particular,
the relational fluent forstatecontains one argument for
each element of the(i, p) pair.

3. Threads, which in our basic action theories are repre-
sented as lists, and which are employed as arguments to
actions are represented in PDDL as (bounded) lists of size
equal to a parameterk. Moreover, actions, instead of hav-
ing a single thread parameter, are now represented as hav-
ing k additional parameters, where thei-th parameter of
the action corresponds to thei-th parameter of the thread
list. We emulate lists with fewer thank elements by using
a special constantnao(not-an-object) to represent a posi-
tion of the list that is not occupied by any object. Finally,
effects of the actionsspawn, and join, which modify the
current thread, can be straightforwardly modified to use
this new representation.

4. The precondition of thecall andspawnactions are mod-
ified such that they will not be possible if the capacity of
the stack/thread list is already at its maximum.

Our PDDL translation is defined for ConGolog programs,
that are assumed to operate over a preexisting PDDL domain
and problem specification. Thus, we assume that, instead of
receiving a basic action theory as input, the algorithm re-
ceives a PDDL domain and problem definition describing
preconditions and effects of actions, and the initial and goal
state of the planning problem. The steps of the compilation
procedure that integrate the basic action theory with the out-
put of the program compilation are trivially modified for the
PDDL case. Thus, new bookkeeping actions are added, and
existing domain actions receive additional parameters, pre-
conditions and effects as necessary. More details on the gen-
eral setup of this compilation can be found in (Baier, Fritz,
& McIlraith 2007).

HTN to PDDL Hierarchical Task Networks (HTNs)
(Erol, Hendler, & Nau 1994; Ghallab, Nau, & Traverso
2004) are a popular planning formalism used to provide do-
main control knowledge to a planner by representing plan-
ning solutions in a hierarchical fashion. They have broad
applications, including classical planning (Nauet al. 2003)
and web service composition (Kuteret al. 2004). The HTN
formalism has been in a sense divorced from classical plan-
ning since state-of-the-art planners do not handle HTNs.

Our approach enables the compilation of HTNs into basic
action theories and – when bounding recursion – to PDDL.
Compiling HTNs to PDDL is beneficial, as it provides the
means of combining their expressiveness with modern plan-
ning techniques.

Several HTN variants have been proposed in the litera-
ture, and one particular one has been previously translated
to ConGolog (Gabaldon 2002). Here we consider the HTN
formalism described by Ghallab, Nau, & Traverso (2004),
using a compelling subset of the language for constraints
allowed by the SHOP2 planner (Nauet al. 2003), which
obtained a second place in the 2002 International Planning
Competition. The translation of this flavour of HTN to Con-
Golog is almost trivial.

In the variant of HTN planning that we consider, we dis-
tinguish three entities, which are specified by the user:tasks,
operators, andmethods.Tasks represent parametrized ac-
tivities to perform. They can beprimitive or compound.
Primitive tasks are realized by operators, actions that can
be physically executed in the domain. Compound tasks
need to be decomposed using one of possibly several ap-
plicable methods. A methodm is of the form(:method

head(m) p1(~v) t1(~v) . . . pn(~v) tn(~v)) where the head spec-
ifies the task with formal arguments~v to which this method
is applicable,pi(~v) are preconditions and eachti(~v) is a list
of sub-tasks. As in SHOP2, we give an if–then–else seman-
tics to methods: ifp1(~v) holds, then the task is decomposed
into the sub-taskst1(~v). Otherwise,p2(~v) is tested and so
on. For a method to be applicable to a given task instance,
the task’s actual parameters have to unify with the method’s
formal parameters, and at least onepi has to be satisfied.
Each list of sub-tasksti(~v) can be a nesting of:ordered and
:unordered lists, stating restrictions on the order in which
these tasks can be carried out.

Space precludes us from providing the formal
translation algorithm of these HTNs to ConGolog
here, but roughly the construction proceeds as fol-
lows: For each methodm, we create a new procedure
m(~v, if p1(~v) then δ1 else if. . .else (pn(~v)?;δn)), where
δi is the following program representing sub-taskti :
Recursively, if ti is an :ordered set of tasks, thenδi is
simply the sequence of these tasks. Otherwise, ifti is an
:unordered set, thenδi is the concurrent execution of
all of these. For instance,(:unordered a (:ordered

b1 b2) (:ordered c1 c2 c2)), would be translated to:
(a ‖ (b1;b2) ‖ (c1;c2;c3)). Since there may be more than
one method applicable to a given task, we translate each
task into a non-deterministic choice over all of its applicable
procedures:(m1|m2| . . . |mn).

An HTN represented in such a way as a ConGolog pro-
gram can thus be compiled into a basic action theory just as
easily, and by limiting the recursion depth of methods, we
can again compile the resulting theory further into PDDL.

Execution Monitoring A third practical merit of our com-
pilation is that it allows us to lift existing execution monitor-
ing techniques used in planning for monitoring the execution
of ConGolog programs.

Monitoring the execution of a plan amounts to tracking

the state of the world, recognizing discrepancies between the
expected state of the world according to the model assump-
tions made during planning and the actual state of the world,
and determining whether a recognized discrepancy warrants
plan modification. One promising strategy is to annotate the
plan in each step with a sufficient and necessary condition
for its validity with respect to reaching the goal. Implicitly
or explicitly, many execution monitoring approaches in the
literature apply this technique and derive these conditions
by regressing the goal over the remaining actions of the plan.
We have shown that this can be generalized to the case where
not only the validity of a plan, but also its optimality must
be monitored (Fritz & McIlraith 2007).

When an agent is controlled by a Golog or ConGolog pro-
gram, we need to monitor more than just the stated final state
goal. Also, the constraints on the agent’s course of action
imposed by the program must be satisfied. Those tasks can
be accomplished using regression on our compiled theory.
Hence, we can adapt existing regression-based techniques to
the problem of monitoring the execution of ConGolog pro-
grams without any extra machinery.

5 Discussion and Related Work
In this paper we proposed an algorithm for compiling ar-
bitrary ConGolog programs into basic action theories in
the situation calculus. The size of the resulting theory is
quadratic in the size of the compiled program, and contains
a simpler set of axioms that avoids the need for program
reification and reduces the number of second-order axioms.
The compilation presents a significant contribution for at
least two reasons. First, it provides the mathematical foun-
dations for compiling powerful ConGolog and HTN search
control into basic action theories of the situation calculus.
These can in turn be translated into other action formalisms
including, with minor restrictions, PDDL. Such a transla-
tion enables most state-of-the-art planners to exploit power-
ful domain control knowledge without the need to construct
special-purpose machinery within their planner. The com-
piler is available for download from our web site. Second,
in eliminating the need for reification, the translated theory
facilitates automated proof of program properties in systems
such as PVS as well as, in some cases, enabling properties
to be proven by regression of ConGolog programs followed
by (first-order) theorem proving in the initial situation. Re-
gression of ConGolog programs has practical application to
execution monitoring.

There are several pieces of related work. In previous work
we provided a compilation of Golog programs without pro-
cedures into PDDL (Baier, Fritz, & McIlraith 2007), show-
ing that notable speedups can be obtained in planning bench-
marks. Our current work significantly extends the aforemen-
tioned compilation by showing how ConGolog programs
(with procedures and extended with useful features like con-
currency) can also be translated into classical planning, un-
der certain restrictions. While our previous work exploited
automata in the translation, the added expressivity of Con-
Golog necessitated the use of Petri nets.

Funge (1998) provided a compilation of Golog programs
into Prolog, to make program interpretation more efficient.

His approach is similar to ours in the sense that the out-
put can be viewed as representing a finite-state automaton.
However, the output is not a logical theory, the approach
cannot handle concurrency, and there are no immediate ap-
plications like planning.

There is also related work on the compilation of HTNs
into ConGolog and PDDL. As previously noted, Gabal-
don (2002) presented a means of translating the general
HTN formalism of Erol, Hendler, & Nau (1994) into Con-
Golog. In this paper, we showed how the HTN formalism
(Ghallab, Nau, & Traverso 2004) with the popular SHOP2
(Nau et al. 2003) language for constraints could be trans-
lated into ConGolog and in turn compiled into PDDL. We
limited ourselves to SHOP2 constraints because of its prac-
tical interest; this syntax also eliminated the need for addi-
tional predicates. Nevertheless, we could have just as easily
used Gabaldon’s more involved translation to ConGolog to
compile general HTNs with bounded recursion into PDDL.
Of further note, recently Lekavý & Návrat (2007) provided
a linear translation of a restricted acyclic subset of HTN into
STRIPS. Their translation generates a Turing machine with
a finite tape represented in STRIPS.

Finally, there is related work on proving properties
of Golog/ConGolog programs. Shapiro, Lespérance, &
Levesque (2002) used PVS to prove properties of ConGolog
programs appealing to a direct representation of theTrans∗

second-order axiom, and by reifying programs. As a result
it is possible to use induction to prove properties that hold
during the execution of programs, but it is not straightfor-
ward to prove properties that hold at particular points in the
execution (e.g., at the end of the program). As we’ve seen
above, in our case proving any of these properties is done
as with any property of the situation calculus. Also of note,
Liu (2002) introduced a Hoare-style proof system for prov-
ing properties of Golog programs (without concurrency).
The motivation for this approach was similar to ours: to
minimize second-order reasoning. As a consequence, prov-
ing properties is facilitated in this formalism too. Recently,
Claßen & Lakemeyer (2008) proposed an interesting algo-
rithm for proving properties of non-terminating Golog pro-
grams expressed in a logic that resembles CTL∗. To prove
such properties, they construct acharacteristic graph, which
resembles our Petri nets. With our compiled domains and by
using known translations of LTL into planning goals (e.g.
(Baier & McIlraith 2006)) we could prove similar proper-
ties, but restricted to only finite executions.

Acknowledgments
We would like to thank Steven Shapiro for an insightful dis-
cussion regarding the objectives and merits of this paper in
general, and all aspects regarding the use of PVS for con-
ducting semi-automatic proofs of program properties in par-
ticular. Our thanks also goes to Yves Lespérance for his use-
ful comments on an early version of this paper. Finally, we
thank the anonymous reviewers for their comments and sug-
gestions, and gratefully acknowledge funding from the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC) and the Ontario Ministry of Research and Innova-
tion Early Researcher Award.

References
Baier, J. A., and McIlraith, S. A. 2006. Planning with first-
order temporally extended goals using heuristic search. In
Proceedings of the 21st National Conference on Artificial
Intelligence (AAAI), 788–795.

Baier, J. A.; Fritz, C.; and McIlraith, S. A. 2007. Exploit-
ing procedural domain control knowledge in state-of-the-
art planners. InProceedings of the 17th International Con-
ference on Automated Planning and Scheduling (ICAPS),
26–33.

Burgard, W.; Cremers, A. B.; Fox, D.; Ḧahnel, D.; Lake-
meyer, G.; Schulz, D.; Steiner, W.; and Thrun, S. 1999.
Experiences with an interactive museum tour-guide robot.
Artificial Intelligence114(1-2):3–55.

Claßen, J., and Lakemeyer, G. 2008. A logic for non-
terminating Golog programs. InProceedings of the 11th In-
ternational Conference on Knowledge Representation and
Reasoning (KR).

De Giacomo, G.; Lesṕerance, Y.; and Levesque, H. 2000.
ConGolog, a concurrent programming language based on
the situation calculus.Artificial Intelligence121(1–2):109–
169.

Erol, K.; Hendler, J. A.; and Nau, D. S. 1994. HTN plan-
ning: Complexity and expressivity. InProceedings of the
12th National Conference on Artificial Intelligence (AAAI),
1123–1128.

Ferrein, A.; Fritz, C.; and Lakemeyer, G. 2004. On-
line decision-theoretic Golog for unpredictable domains.
In Proceedings of the 4th International Cognitive Robotics
Workshop, at ECAI-2004.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains.Journal
of Artificial Intelligence Research20:61–124.

Fritz, C., and McIlraith, S. A. 2007. Monitoring plan opti-
mality during execution. InProceedings of the 17th Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS), 144–151.

Fritz, C.; Baier, J. A.; and McIlraith, S. A. 2008. Con-
Golog, Sin Trans: compiling ConGolog into basic action
theories for planning and beyond (extended version). Tech-
nical Report CSRG-576, University of Toronto.

Funge, J. 1998.Making Them Behave: Cognitive Models
for Computer Animation. Ph.D. Dissertation, University of
Toronto, Toronto, Canada.

Gabaldon, A. 2002. Programming hierarchical task net-
works in the situation calculus. InAIPS’02 Workshop on
On-line Planning and Scheduling.

Ghallab, M.; Nau, D.; and Traverso, P. 2004.Automated
Planning: Theory and Practice. Morgan Kaufmann.

Kuter, U.; Sirin, E.; Nau, D. S.; Parsia, B.; and Hendler,
J. A. 2004. Information gathering during planning for web
service composition. InProceedings of the 3rd Interna-
tional Semantic Web Conferece (ISWC), 335–349.

Lekav́y, M., and Ńavrat, P. 2007. Expressivity of STRIPS-
like and HTN-like planning. InProceedings of Agent and

Multi-Agent Systems: Technologies and Applications, First
KES International Symposium (KES-AMSTA), 121–130.
Liu, Y. 2002. A hoare-style proof system for robot pro-
grams. InProceedings of the 18th National Conference on
Artificial Intelligence (AAAI), 74–79.
McDermott, D. V. 1998. PDDL — The Planning Domain
Definition Language. Technical Report TR-98-003/DCS
TR-1165, Yale Center for Computational Vision and Con-
trol.
McIlraith, S., and Son, T. 2002. Adapting golog for com-
position of semantic web services. InProceedings of the
8th International Conference on Knowledge Representa-
tion and Reasoning (KR), 482–493.
Nau, D. S.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
J. W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN plan-
ning system. Journal of Artificial Intelligence Research
20:379–404.
Owre, S.; Rushby, J. M.; and Shankar, N. 1992. PVS:
A prototype verification system. InProceedings of the
11th International Conference on Automated Deduction
(CADE), 748–752.
Reiter, R. 1993. Proving properties of states in the situation
calculus.Artificial Intelligence64(2):337–351.
Reiter, R. 2001.Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
Cambridge, MA: MIT Press.
Shapiro, S.; Lesṕerance, Y.; and Levesque, H. J. 2002. The
cognitive agents specification language and verification en-
vironment for multiagent systems. InProceedings of the
1st International Joint Conference on Autonomous Agents
& Multiagent Systems (AAMAS), 19–26.

A Definition of COMP

We here provide the pseudo-code for theCOMP function of
Step 1 of our compilation. It takes four inputs: a programδ ,
an integeri used as a program counter, a sete of program
variables (introduces using theπ-construct, see below), and
the name of the procedure this program belongs to,c. It
outputs a set of first-order sentences and a new integer. We
will further process the sentences in the subsequent steps
of the compilation, eventually producing the axioms of the
new theory. The integer represents the value of the program
counter at the end of the program. Note that we here present
the details only for the simplified case of the so-called non-
synchronized versions of while–loops and if–then–else. The
synchronized versions require rather complex additional ma-
chinery, including some form of backtracking.

function COMP(δ ,i,e,c)

Output: a tuple(ax,i′) with ax a set of sentences,i′ an integer
1: Switch δ :
2: nil: return (∅,i)
3: A(t1, . . . , tn) (whereA is not a procedure):
4: ax = {Poss(A(th,x1, . . . ,xn),s)←
5: Thread(th,s)∧state(th,s) = (i,c)∧
6: BOUND(e, [t1, . . . , tn], [x1, . . . ,xn]),
7: state(th,do(A(th,~x),s)) = (i+1,c)←
8: state(th) = (i,c)}

9: ∪ BIND(e,~t,~x,do(A(th,~t),s))
10: return (ax,i+1)
11: (φ?): return (TEST(φ ,i,i+1,e,c),i+1)
12: (δ1;δ2):
13: (ax1,i1) = COMP(δ1,i,e,c)
14: (ax2,i2) = COMP(δ2,i1,e,c)
15: return (ax1∪ax2,i2)
16: (δ1|δ2):
17: (ax1,i1) = COMP(δ1,i+1,e,c)
18: (ax2,i2) = COMP(δ2,i1+1,e,c)
19: ax = { NOOP(i,i+1,c), NOOP(i,i1+1,c),
20: NOOP(i1,i2+1,c), NOOP(i2,i2+1,c)}
21: return (ax∪ax1∪ax2,i2+1)
22: (if φ then δ1 elseδ2):
23: (ax1,i1) = COMP(δ1,i+1,e,c)
24: (ax2,i2) = COMP(δ2,i1+1,e,c)
25: ax = {TEST(φ ,i,i+1,e,c),
26: TEST(¬φ ,i,i1+1,e,c),
27: NOOP(i1,i2,c)}
28: return (ax1∪ax2∪ax,i2)
29: (while φ do δ ′):
30: (ax,i1) = COMP(δ ′,i+1,e,c)
31: return ({TEST(φ ,i,i+1,e,c), TEST(¬φ ,i,i1,e,c),
32: NOOP(i1,i,c)}∪ax,i1)
33: (δ ′∗):
34: (ax,i1) = COMP(δ ′,i,e,c)
35: return (ax∪{NOOP(i,i1+1,c), NOOP(i1,i,c)},i1+1)
36: (π(v,δ)):
37: (ax1,i1) = COMP(δ ,i+1,e∪{v},c)
38: ax = {Poss(pi(th,v,c,i+1),s)←
39: Thread(th,s)∧state(th,s) = (i,c),
40: Poss(free(th,v,c,i1,s)←
41: Thread(th,s)∧state(th,s) = (i1–1,c)}
42: return (ax∪ax1,i1)
43: P(t1, . . . , tn) (whereP(x1, . . . ,xn) is a procedure):
44: s

′ = do(call(th,P,i+1,c),s)
45: ax = {Poss(call(th,P,i+1,c),s)←
46: Thread(th,s)∧state(th,s) = (i,c)}
47: ∪ BIND PROC(e, [t1, . . . , tn], [x1, . . . ,xn],s

′)
48: return (ax,i+1)
49: (δ1 ‖ δ2):
50: (ax1,i1) = COMP(δ1,i+1,e,c)
51: (ax2,i2) = COMP(δ2,i1+1,e,c)
52: ax = {Poss(spawn(th,c,i+1,i1+1),s)←
53: Thread(th,s)∧state(th,s) = (i,c),
54: Poss(join(th,c,i2+1),s)←
55: Thread(th,s)∧state(th,s) = (i1,c)∧
56: state([childp(th,s)–1|th],s) = (i2,c)}∪
57: {pipo(th′,0,v,do(spawn(th,c,i+1,i1+1),s)) = y←
58: th′ = [childp(th,s)|th]∧y = pipo(th,sp(th,s),v)}v∈e
59: return (ax1∪ax2∪ax,i2+1)
60: (δ‖): return COMP(nil ‖ iconc(δ),i,e,c)
61: (iconc(δ)):
62: (ax1,i1) = COMP(δ ,i+1,e,c)
63: ax = {NOOP(i,i1+1,c),
64: Poss(spawn(th,c,i,i+1),s)←
65: Thread(th,s)∧state(th,s) = (i,c),
66: Poss(join(th,c,i1+2),s)←
67: Thread(th,s)∧state(th,s) = (i1+1,c)∧
68: (childp(th,s) = 0∨
69: state([childp(th,s)–1|th],s) = (i1,c))}∪
70: {pipo(th′,0,v,do(spawn(th,c,i+1,i1+1),s)) = y←
71: th′ = [childp(th,s)|th]∧y = pipo(th,sp(th,s),v)}v∈e
72: return (ax1∪ax,i1+2)

73: (δ1〉〉δ2):
74: (ax1,i1) = COMP(δ1,i+1,e,c)
75: (ax2,i2) = COMP(δ2,i1+1,e,c)
76: ax = {Poss(spawn(th,c,i+1,i1+1),s)←
77: Thread(th,s)∧state(th,s) = (i,c),
78: Poss(join(th,c,i2+1),s)←
79: Thread(th,s)∧state(th,s) = (i1,c)∧
80: state([childp(th,s)–1|th],s) = (i2,c),
81: Prio(th, th′,do(spawn(th,c,i+1,i1+1),s))←
82: th′ = [childp(th,s)|th],
83: ¬Prio(th, th′,do(join(th,c,i2+1),s))←
84: th′ = [childp(th,s)–1|th]}∪
85: {pipo(th′,0,v,do(spawn(th,c,i+1,i1+1),s)) = y←
86: th′ = [childp(th,s)|th]∧y = pipo(th,sp(th,s),v)}v∈e
87: return (ax1∪ax2∪ax,i2+1)
88: EndSwitch

In the algorithm we use the auxiliary functions defined
in Algorithm 1 to create additional transitions in the gen-
erated Petri net, which may be conditional (test) or uncon-
ditional (noop). In Algorithm 1, φ(s)|V denotes the for-

Algorithm 1 ConGolog2BAT: Auxiliaries
function TEST(φ ,i1,i2,e,c)

V = {(v,xv) | v∈ e∧φ mentionsv} // xv a new var.
s
′ = do(test(th,i1,i2,c,~x),s)

return {state(th,s′) = (i2,c)← True,
Poss(test(th,i1,i2,c,~x),s)← state(th,s) = (i1,c)∧

Thread(th,s)∧∧
(v,xv)∈V[Bound(pipo(th,sp(th,s),v,s),s)→

map(pipo(th,sp(th,s),v,s),s) = xv]∧φ(s)|V}
∪ {Bound(p,s′)← p = pipo(th,sp(th,s),v,s),

map(p,s′) = xv← p = pipo(th,sp(th,s),v,s)}(v,xv)∈V

end function

function NOOP(i1,i2,c)
return {Poss(noop(th,i1,i2,c),s)←

Thread(th,s)∧state(th,s) = (i1,c),
state(th,do(noop(th,i1,i2,c),s)) = (i2,c)← True}

end function

mula resulting from substituting each occurence ofv by
xv for every pair(v,xv) ∈ V. The following conditions are
required for handling program variables in the positions
of an actual argument of an action, or appearing in tests.
BOUND(e, [t1, . . . ,tn], [x1, . . . ,xn])

def
=

∧
tj, s.t.tj 6∈e xj = tj∧

∧
j, s.t.tj∈e[Bound(pipo(th,sp(th,s),tj,s),s)→

map(pipo(th,sp(th,s),tj,s),s) = xi]

BIND(e, [t1, . . . ,tn], [x1, . . . ,xn],s
′)

def
=

{Bound(p,s′)← p = pipo(th,sp(th,s),tj,s),
map(p,s′) = xi← p = pipo(th,sp(th,s),tj,s)}j s.t.tj∈e

BIND PROC(e, [t1, . . . ,tn], [x1, . . . ,xn],s
′)

def
=

{pipo(th,y,xj,s
′) = p←

y = sp(th,s)+1∧ p = pipo(th,sp(th,s),tj,s)}j s.t.tj∈e

∪ {Bound(p,s′)← p = (th,sp(th,s)+1,xj),
map(p,s′) = z← p = (th,sp(th,s)+1,xj)∧z= tj(s),
pipo(th,y,xj,s) = (th,y,xj)← y = sp(th,s)+1}j s.t.tj 6∈e

Note that inBIND PROC the variablesti serve as actual pa-
rameters andxi as formal parameters, and that we apply
call-by-valueby evaluating all actual parameters which are
not program variables before passing them to the procedure.

B Program-Independent Axioms
The default dynamics of the involved bookkeeping actions,
which are program independent, are described by the fol-
lowing axioms (cf. Step 2 of the compilation described in
Section 3). axcommon= {
sp(th,do(call(th,x1,x2,x3),s)) = y← y = sp(th,s)+1,
state(th,do(call(th,P,x1,x2),s)) = y← y = (0,P),
stack(th,v,do(call(th,x1, i,c),s))=y← y=(i,c)∧v= sp(th,s)+1,
state(th,do(return(th),s) = y← y = stack(th,sp(th,s),s),
sp(th,do(return(th),s)) = y← y = sp(th,s)–1,
Thread(th′,do(spawn(th,x1,x2,x3),s))← th′ = [childp(th,s)|th],
sp(th′,do(spawn(th,x1,x2,x3),s)) = y←

y = 0∧ th′ = [childp(th,s)|th],
childp(th,do(spawn(th,x1,x2,x3),s))=y←y=childp(th,s)+1,
childp(th′,do(spawn(th,x1,x2,x3),s)) = y←

y = 0∧ th′ = [childp(th,s)|th],
Forced(th′,do(spawn(th,x1,x2,x3),s))←

Forced(th)∧ th′ = [childp(th,s)|th],
state(th′,do(spawn(th,c,x1, i),s)) = y←

y = (i,c)∧ th′ = [childp(th,s)|th],
state(th,do(spawn(th,c, i,x1),s)) = y← y = (i,c),
Prio(th′,x,do(spawn(th,x1,x2,x3),s))←

th′ = [childp(th,s)|th]∧Prio(th,x),
Prio(x, th′,do(spawn(th,x1,x2,x3),s))←

th′ = [childp(th,s)|th]∧Prio(x, th),
¬Thread(th′,do(join(th,x1,x2),s))←

childp(th,s) > 0∧ th′ = [childp(th,s)–1|th],
childp(th,do(join(th,x1,x2),s)) = y←

childp(th,s) > 0∧y = childp(th,s)–1,
Forced(th,do(join(th,x1,x2),s))← Forced([childp(th,s)|th],
pipo(th′,v,z,do(pi(th,z,x1,x2),s)) = y←

y = (th,v,z)∧ th′ = th∧v = sp(th,s),
state(th,do(pi(th,x1,c, i),s)) = y← y = (i,c),
¬Bound((th,v,z),do(free(th,z,x2,x3),s))← v = sp(th,s),
state(th,do(free(th,x1,c, i),s)) = y← y = (i,c),
Thread([0],S0)← True,
state([0],S0) = (0, ’main’)← True,
sp([0],S0) = 0← True,
stack([0],0,S0) = ’final’ ← True,
childp([0],S0) = 0← True}

