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Abstract

We propose an approach to solving Markov Decision Pro-
cesses with non-Markovian rewards specified in Linear Tem-
poral Logic interpreted over finite traces (LTLf ). Our ap-
proach integrates automata representations of LTLf formulae
into compiled MDPs that can be solved by off-the-shelf MDP
planners, exploiting reward shaping to help guide search.
Experiments with state-of-the-art UCT-based MDP planner
PROST show automata-based reward shaping to be an effec-
tive method to guide search, producing solutions of superior
quality, while maintaining policy optimality guarantees.

Introduction

In many decision-making settings, agents receive reward for
complex behaviours that are often realized over a period
of time. For example, a robot getting ice cubes from the
freezer is rewarded for opening the freezer, removing the
ice cubes, and closing the freezer soon after. Reward of this
sort is referred to as non-Markovian because it relies on the
state history rather than solely on the current state. Here we
examine both the specification and effective exploitation of
non-Markovian reward in Non-Markovian Reward Decision
Processes (NMRDPs) (e.g., (Bacchus, Boutilier, and Grove
1996; Thiébaux et al. 2006)).

Following MDP notation (Puterman 1994), an NMRDP is
described as a tuple M = 〈S,A, P,R, T, γ, s0〉, where: S is
a finite set of states; A is a finite set of actions; Pa(s, s

′) is
the probability of reaching the state s′ ∈ S after applying
action a in state s ∈ S; R is a reward function; T ∈ N is the
horizon; γ ∈ (0, 1] is the discount factor; and s0 ∈ S is the
initial state. In an MDP, the reward function is Markovian,
predicated on the current state, whereas in an NMRDP it is
non-Markovian, a function of the state history or a trajectory
of states. Solutions to NMRDPs (resp. MDPs) are policies
that map state trajectory histories (resp. states) into actions,
and whose optimality criterion is to maximize the expected
accumulated discounted reward.

In this paper, we define non-Markovian rewards using
LTLf , a variant of Linear Temporal Logic (LTL) (Pnueli
1977) interpreted over finite traces. The syntax of LTLf
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comprises the logical connectives (∧, ∨, ¬), unary modal
operators next ( �), weak next ( �), and binary modal op-
erator until (U ). Further operators such as always (�)
and eventually (♦) can be defined in terms of these ba-
sic operators. In LTLf , we can express formulae such as
�(open(door) → ♦closed(door)) (“whenever the door is
open, it should eventually be closed”). LTLf formulae are
evaluated over finite sequences of states (De Giacomo and
Vardi 2013).

Solving NMRDPs via Compilation to MDPs

To solve an NMRDP, M , we compile M with LTLf based
reward R into an MDP M ′ with a Markovian reward R′
that can be solved with a conventional off-the-shelf MDP
planner. Our compilation leverages the established corre-
spondence between LTL formulae and automata. Our ap-
proach is realized in three steps: (i) each reward-inducing
LTLf formula ϕ is transformed into a corresponding DFA
Aϕ; (ii) an MDP M ′ is constructed from M by augment-
ing state variables and transitions to reflect the state and
progress of each Aϕ towards its accepting condition. The
Markovian reward function R′ is associated with being in
the accepting conditions of each Aϕ, denoting satisfaction
of reward-worthy behaviour ϕ; and (iii) M ′ is solved us-
ing an off-the-shelf MDP planner, thus obtaining a solution
that can be converted straightforwardly into a solution to
M . For the purposes of this paper, we limit our explica-
tion to finite-horizon NMRDPs. See (Camacho et al. 2017b;
2017a) for further details and an example. Notwithstanding,
our approach can be extended to infinite-horizon NMRDPs.

Previous approaches to solving NMRDPs similarly mon-
itor satisfaction of reward formulae using additional state
variables. However, they monitor LTL subformula satisfac-
tion rather than automata progression. In particular, Bac-
chus, Boutilier, and Grove (1996; 1997)’s approaches apply
regression to reward formulae specified in Past LTL (PLTL),
whereas Thiébaux et al. (2006)’s approach applies progres-
sion to $FLTL, a finite LTL with future formulae.

Enhancing Search via Reward Shaping

At this point we have compiled NMRDPs into MDPs and we
could simply apply off-the-shelf MDP planners. However,
our empirical evaluation demonstrates that state-of-the-art
MDP planners such as PROST (Keller and Eyerich 2012)
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based on Monte Carlo tree search heuristics are myopic and
fare poorly with sparse temporally extended rewards occur-
ring in NMRDPs. Hence, we leverage our automata-based
representation of non-Markovian reward along with the idea
of reward shaping (Ng, Harada, and Russell 1999) to provide
guidance for search-based planners like PROST.

Reward shaping is a well-known technique for MDPs
that transforms the reward function into R′(s, a, s′) =
R(s, a, s′) + F (s, a, s′), where F is a shaping reward func-
tion. Carefully designed reward transformations can im-
prove the search performance and the quality of the solutions
found. Ng, Harada, and Russell (1999) showed that, when
the F is potential-based (i.e., F (s, a, s′) = γ φ(s′) − φ(s)
for some function φ : S → R), then optimal and near-
optimal MDP solutions are preserved.

The reward shaping technique that we use in our MDP
compilations leverages the automata representation of the
reward formulae and is, by construction, potential-based.
Given an assignment of potential values φ(f) to automaton
state fluents f , we define the potential in a state s, φ(s), as
the sum of φ(f) over all automaton state fluents f that hold
in s. The basis potential functions, φ(f), can be defined ac-
cording to a variety of criteria. For example, potential func-
tions tested in our experiments decrease linearly with the
minimum distance from the current state of the automata to
an accepting state.

Theorem 1. Automata-based reward shaping preserves op-
timal, and near-optimal solutions to our compilation.

Evaluation and Discussion

We conducted preliminary experiments to evaluate the po-
tential benefits of reward shaping (RS) in our MDP compi-
lation of NMRDPs. We conducted our experiments in a se-
lection of MDP problems from previous International Prob-
abilistic Planning Competitions (IPPCs), where we replaced
the Markovian rewards by LTLf rewards. Problems were de-
scribed in RDDL (Sanner 2010) and solved using different
PROST configurations.

Results are shown in Table 1 and Table 2. We make the
following key observations: (1) Reward shaping is able to
guide search in academic advising problems p m n – where
the agent has to pass n·m courses, each one having m course
prerequisites – leading to significant increases in solution
quality across a variety of PROST configurations (cf. Ta-
ble 1). (2) In more probabilistically complex problems like
wildfire – where fire propagates and must be extinguished –
guidance obtained by reward shaping reduces the amount of
memory needed during search (cf. Table 2).
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PROST UCT�(IDS) MDP 30 30 0 0
PROST UCT�(DFS) MDP 30 30 0 0
PROST IPPC-2014 MDP 2 30 0 0
PROST IPPC-2011 MDP 27 30 2 0
UCT MDP 0 0 0 0

PROST UCT�(IDS) MDP + RS 30 30 30 30
PROST UCT�(DFS) MDP + RS 30 30 30 30
PROST IPPC-2014 MDP + RS 30 30 30 30
PROST IPPC-2011 MDP + RS 30 30 30 30
UCT (3 steps look ahead) MDP + RS 29 30 29 30

Table 1: Number of runs (over 30 trials) that achieved the
non-Markovian reward in the academic-advising problems.

MDP Planner No RS RS

PROST UCT�(IDS) MLE 617
PROST UCT�(DFS) MLE 627
PROST IPPC-2014 MLE 620
PROST IPPC-2011 MLE 637
UCT (3 steps look ahead) 423 527
no actions taken 263 263

Table 2: Average reward achieved (over 30 trials) in the
MDP compilations of the wildfire problem. MLE indicates
memory limit exceeded (512 MB).
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