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Abstract

In many decision-making settings, reward is acquired in response to some complex behaviour that an agent realizes over
time. An autonomous taxi may receive reward for picking up a passenger and subsequently delivering them to their
destination. An assistive robot may receive reward for ensuring a person in their care takes their medication once daily
soon after eating. Such reward is acquired by an agent in response to following a path – a sequence of states that col-
lectively capture the reward-worthy behaviour. Reward of this sort is referred to as non-Markovian reward because it is
predicated on state history rather than current state. Our concern in this paper is with both the specification and effective
exploitation of non-Markovian reward in the context of Markov Decision Processes (MDPs). State-of-the-art UCT-based
planners struggle with non-Markovian rewards because of their weak guidance and relatively myopic lookahead. Here
we specify non-Markovian reward-worthy behaviour in Linear Temporal Logic. We translate these behaviours to cor-
responding deterministic finite state automata whose accepting conditions signify satisfaction of the reward-worthy
behaviour. These automata accepting conditions form the basis of Markovian rewards that can be solved by off-the-shelf
MDP planners, while crucially preserving policy optimality guarantees. We then explore the use of reward shaping to
automatically transform these automata-based rewards into reshaped rewards that better guide search. We augmented
benchmark MDP domains with non-Markovian rewards and evaluated our technique using PROST, a state-of-the-art
heuristic and UCT-based MDP planner. Our experiments demonstrate significantly improved performance achieved by
the exploitation of our techniques. The work presented here reflects the use of Linear Temporal Logic to specify non-
Markovian reward, but our approach will work for any formal language for which there is a corresponding automata
representation.
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1 Introduction

In Markov Decision Processes agents typically receive positive or negative reward in response to their current state.
Nevertheless, agents may also realize reward in response to more complex behaviour that is reflected over a sequence of
states. An autonomous taxi may receive reward for picking up a passenger and subsequently delivering them to their
destination. Similarly, a personal robot getting ice cubes from the freezer is rewarded for opening the freezer, removing
the ice cubes, and closing the freezer soon after. Such reward is commonly referred to as non-Markovian reward because
it is predicated on the state history rather than solely on the current state. Our concern in this paper is with both the
specification and effective exploitation of non-Markovian reward in Markov Decision Processes (MDPs). Here we use
Linear Temporal Logic to specify non-Markovian rewards. Notwithstanding, our approach is applicable to other formal
languages for which there exist corresponding automata representations.

Current state-of-the-art MDP planners are based on heuristic search and variants of UCT techniques [11]. UCT policies
tend to make greedy and myopic decisions. As such, these planners struggle with non-Markovian rewards since there is
little guidance for their relatively myopic lookahead. The impact of this myopic guidance can be seen in state-of-the-art
MDP planner PROST [10], a UCT-based planner that generates high-quality solutions for moderately sized MDPs, but
whose performance suffers in large problems that require significant lookahead.

In this paper we explore transformation of the reward function through reward shaping [12] as a means of mitigating for
the myopic lookahead of UCT-based methods. To this end, we propose an approach to solving non-Markovian Reward
Decision Problems (NMRDPs) by transforming our reward-worthy non-Markovian behaviour into corresponding deter-
ministic finite state automata. The accepting conditions of these automata signify satisfaction of the reward-inducing
behaviour in a manner that is solvable with off-the-shelf MDP planners, crucially preserving optimality guarantees.
Moreover, we use reward shaping with these automata-based reward encodings in order to induce non-sparse, myopic-
friendly rewards. This helps guide the accrual of non-Markovian reward. We evaluate our approach to solving NMRDPs
via experimentation with off-the-shelf state-of-the-art heuristic and UCT-based MDP planners. Experiments with a set
of International Probabilistic Planning Competition (IPPC) domains augmented with non-Markovian rewards show sig-
nificantly improved performance using our automata representation together with reward shaping.

2 Background

2.1 Model-based Decision Making

Markov Decision Processes: Markov Decision Processes (MDPs) [14] are popular models for decision-theoretic planning
problems [5]. An MDP is a tuple M = 〈S,A, P,R, T, γ, s0〉, where: S is a finite set of states; A is a finite set of actions;
Pa(s, s′) is the probability of reaching the state s′ ∈ S after applying action a in state s ∈ S; R : S × A × S → R is
the reward function (sometimes R : S × A → R); T ∈ N is the horizon; γ ∈ (0, 1] is the discount factor; and s0 ∈ S
is the initial state of the MDP. Solutions to an MDP are a sequence of step-dependent policies Π = (π0, . . . , πT−1) that
map states s ∈ S at step k (0 ≤ k < T ) to actions πk(s) ∈ A. The value of a policy Π in state s at step k, VΠ,k(s), is the
expected discounted cumulative reward over the horizon T − k following Π. Formally, VΠ,k(s) = EΠ{ΣT−1

i=k γ
iRi}, where

Rt denotes the immediate reward obtained at step i if the agent follows policy Π from s. An optimal policy sequence Π∗

for an MDP over horizon T with initial state s0 satisfies Π∗ = argmaxΠ VΠ,0(s0).

MDPs are commonly described using factored representations of the states and dynamics. In particular, RDDL [15] is
a modelling language that allows for a lifted, compact representation of factored MDPs. The current state-of-the-art
solution method for MDPs specified in RDDL is PROST [10], a Monte Carlo sampling algorithm based on UCT and
heuristic search. Whereas PROST generates good-quality solutions for moderate-sized MDPs, its performance suffers in
large problems that require significant look-ahead. In such cases, the Monte-Carlo roll-outs cannot capture the structures
inherent in the problem, leading to myopic search behavior.

Non-Markovian Reward Decision Processes: NMRDPs (e.g., [1, 2, 16]) generalize the MDP model by allowing reward
functions to range over the history of visited states. In contrast to MDPs, the domain of the reward function R ranges
over the set of finite state sequences drawn from S, denoted S?. As in conventional MDPs, optimal solutions maximize
the expected discounted cumulative reward.

2.2 Finite Linear Temporal Logic and Deterministic Finite-State Automata

Linear Temporal Logic (LTL) is a compelling language for expressing temporal properties over (infinite) sequences of states,
balancing expressiveness with ease of use. LTL was initially developed to express safety and liveness properties for pro-
gram verification [13] and has been used for a myriad of applications including the specification of temporally extended
goals and preferences in planning (e.g., [4]). Here we specify non-Markovian rewards using LTLf , a variant of LTL in-
terpreted over finite traces. Our specification language is similar to $FLTL, a finitely interpreted future LTL used by
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Figure 1: DFA corresponding to LTLf formula (ingested(medication)) ∧ (¬ingested(medication) U ingested(lunch)).

Thiébaux et al. (2006) to specify non-Markovian rewards. Bacchus et al. (1996, 1997) employed a finitely interpreted Past
LTL (PLTL) to specify non-Markovian rewards.

The syntax of LTLf includes the logical connectives (∧, ∨, ¬), unary modal operators next (), weak next ( ), and binary
modal operator until ( U ). Other operators, such as always () and eventually (), can be defined in terms of these basic
operators. The truth of an LTLf formula ϕ is evaluated over finite sequences of states which – in the context of this paper
– are the propositional states of an NMRDP or MDP (see [8] for details). We write π |= ϕ when a sequence of states
π = s0, . . . , sn satisfies ϕ.

By way of illustration, an assistive robot might accumulate reward by ensuring that its ward takes their medication daily
and that they do so after eating lunch. Such behaviour might be expressed by LTLf formula (ingested(medication)) ∧
(¬ingested(medication) U ingested(lunch)).

2.2.1 LTLf and Deterministic Finite-State Automata

Given LTLf formula ϕ, one can construct a corresponding Deterministic Finite-State Automaton (DFA) Aϕ that accepts a
word π iff it satisfies ϕ (e.g. [9]). A DFA is a tuple 〈Q,Σ, δ, q0, QFin〉, where Q is a finite set of states, Σ is the alphabet of
the automaton, δ : Q×Σ→ Q is a transition function, q0 ∈ Q is the initial state, and QFin ⊆ Q is a set of accepting states.
The transition dynamics of an automaton is defined over finite words, or sequences w = s0, s1, . . . , sn of elements in Σ. In
the scope of this paper, Σ are the states of an MDP. At every stage i, the automaton makes a deterministic transition from
state qi to state qi+1 = δ(qi, si). We say that M accepts w if qn+1 ∈ QFin.

Fig. 1 shows a DFA corresponding to LTLf formula (ingested(medication))∧ (¬ingested(medication) U ingested(lunch)).
Automaton states are represented by nodes, and transitions are represented by arcs. Transition labels describe
the conditions that need to hold in a state to allow a particular transition. These are called guards. Finally,
accepting states are depicted by double-ringed nodes. The word π = {¬ingested(lunch),¬ingested(medication);
ingested(lunch),¬ingested(medication); ingested(lunch), ingested(medication)} induces one and only one run in the au-
tomaton, {q0, q0, q1, q2}. As this run finishes in an accepting state, it follows that π satisfies the LTLf formula.

3 Problem: Solving NMRDPs with LTLf rewards

As noted in Section 1, state-of-the-art MDP planners based on heuristic search and UCT struggle with non-Markovian
rewards. In the rest of this paper we propose a novel method to effectively address this shortcoming. Following Bacchus
et al. (1996), we specify rewards in an NMRDP as a temporally extended reward function (TERF). This TERF is realized by
a set of reward behaviours, ϕi, specified in here in LTLf , together with a set of mappings to rewards ri, denoted ϕi : ri.
Reward ri is realized upon satisfaction of ϕi.

Returning to our previous example, we can define a TERF that gives a positive reward of 100 to agent behavior ϕ,
satisfying (ingested(medication)) ∧ (¬ingested(medication) U ingested(lunch)), written ϕ : 100. To only reward the
first occurrence of the behaviour within a sequence of states, one could modify the above LTLf formula as follows:
(¬ingested(medication) U (ingested(medication) ∧ ¬>)) ∧ (¬ingested(medication) U ingested(lunch)).

4 Approach: From LTLf to automata-based reward shaping

To solve an NMRDP, M , we compile M with TERF R into an MDP M ′ with a Markovian reward R′ that can be solved
with a conventional off-the-shelf MDP planner. Our approach is realized in three steps: (i) for each ϕ : r in the TERF, the
LTLf formula ϕ is transformed into a corresponding DFAAϕ; (ii) an MDPM ′ is constructed fromM by augmenting state
variables and transitions to reflect the state and progress of each Aϕ towards its accepting condition. The Markovian
reward function R′ is associated with being in the accepting conditions of each Aϕ, denoting satisfaction of reward-
worthy behaviour ϕ; and (iii) M ′ is solved using an off-the-shelf MDP planner, thus obtaining a solution that can be
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converted, in a straightforward manner, into a solution to M . For the purposes of this paper, we limit our explication to
finite-horizon NMRDPs. Notwithstanding, our approach can be extended to infinite-horizon NMRDPs.

Elaborating on step (ii), M ′ augments M with extra fluents and actions that integrate the dynamics of the DFAs within
the MDP. The dynamics of M ′ expand each time step into three modes: world, sync, and reward. In world mode, an
action from the NMRDP is applied. In sync mode, the automata states are synchronized according to the observed
state. Intuitively, the automata states simulate the runs of the automata given the observed world state trajectories. The
assignment of reward is delayed to reward mode and is performed upon satisfaction of each of the LTLf reward formulae
in the TERF . This is detected when an automaton reaches an accepting state. Solutions to the original NMRDP– that is,
mappings from state trajectories into actions – can be obtained from solutions to the compiled MDP M ′ by simulating
the state trajectories in M ′. Our compilation preserves optimal solutions, as there is a bijection between state trajectories
in M and M ′ that preserves the accumulated reward. The interested reader can find the technical details in [6, 7].
Theorem 1. The automata-based compilation from NMRDPs into MDPs preserves optimal solutions.

Returning to our assistive robot example with TERF defined by ϕ : 100, suppose the agent performs actions
ingest(lunch) followed by ingest(medication), which induce the state trajectory (only relevant subset of state shown): π =
{¬ingested(lunch),¬ingested(medication); ingested(lunch),¬ingested(medication); ingested(lunch), ingested(medication)}.
The dynamics in the compiled MDP start by processing the initial state, and self-transitioning from the automaton state
q0 to itself. In reward mode, no reward is given. Then, in world mode the action ingest(lunch) is performed, leading to a
state s1 in which {¬ingested(medication), ingested(lunch)} holds. The following sync mode synchronizes the automaton
state to q1, and so on until reaching world state s2, where {ingested(medication), ingested(lunch)} holds. At this point,
the automaton synchronizes to state q3, that is accepting. In reward mode, a reward of 100 is given.

4.1 Improving Performance via Reward Shaping

The above approach to solving NMRDPs preserves optimality (cf. Theorem 1). Here we augment our approach with
reward shaping in an effort to mitigate for the sparse reward inherent in our non-Markovian rewards, that aggravates
the weak guidance and lookahead of state-of-the-art UCT-based MDP planners.

Reward shaping is a common technique in MDPs which aims to improve search by transforming the reward function.
Such reward transformations have the form R′(s, a, s′) = R(s, a, s′) + F (s, a, s′), where R is the original reward function
and F is a shaping reward function. The intuition behind reward shaping is that by increasing (resp. decreasing) the
reward in states that lead to other high-value states or trajectories (resp. low-value states or trajectories), we can increase
the effectiveness of search and the quality of solutions, while reducing search memory and run times. Unfortunately,
reward shaping with an arbitrary F (s, a, s′) may lead to an optimal policy that is suboptimal w.r.t. the original unshaped
reward. However, as noted by [12], if F (s, a, s′) is chosen from a restricted class of potential-based shaping functions
defined as F (s, a, s′) = γφ(s′)− φ(s) (for some real-valued function φ), then this guarantees preservation of optimal and
near-optimal policies with respect to the original unshaped MDP. Preservation of near-optimality is desirable since it
provides guarantees for suboptimal solutions obtained by approximate methods.

Here we introduce a reward shaping technique that is, by construction, potential-based, and thus preserves optimal
and near-optimal solutions. Given a particular automaton configuration in s, the idea is to decompose the potential
φ(s) into sums of potentials for each of the automaton state variables, fq , that together describe the current automaton
configuration. Since many off-the-shelf MDP planners employ reward functions of the form R(s, a), rather than the
more general R(s, a, s′), we record the previous automaton configuration in corresponding state variables f cq , and delay
attribution of reward to reward mode. Our corresponding shaping reward function isF (s) = γ

∑
fq
φ(fq)−

∑
fc
q
φ(f cq ), for

all fq and f cq that hold in s. To preserve optimality in finite-horizon NMRDPs, partial rewards given to state trajectories
that do not finish in accepting states of the TERF must be subtracted; full details are in [7].
Theorem 2. Automata-based reward shaping preserves optimal, and near-optimal solutions.

In the assistive robot example, we may want to provide some guidance by assigning potentials φ(q0) = 0, φ(q1) = 50,
and φ(q2) = 100. Intuitively, these potentials assign positive reward for transitioning from q0 to q1, with the rationale
that state trajectories that yield such transitions make progress towards achievement of an accepting state.

5 Empirical Evaluation

We performed preliminary experiments to assess the benefits of our automata-based reward transformations at guiding
search for high-quality solutions. For this task, we selected two different benchmarks from the previous IPPC: academic-
advising, and wildfire. We replaced the original rewards with non-Markovian rewards, and compiled the resulting NM-
RDPs into MDPs as described above. All problems were described in RDDL [15], and we used PROST [10] as the MDP
planner. In academic-advising problems, p m n , the agent is rewarded for passing m ·n courses, each one having m course
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MDP Planner Compilation p
3 3

p
4 2

p
4 3

p
4 4

PROST UCT?(IDS) MDP 30 30 0 0
PROST UCT?(DFS) MDP 30 30 0 0
PROST IPPC-2014 MDP 2 30 0 0
PROST IPPC-2011 MDP 27 30 2 0
UCT MDP 0 0 0 0

PROST UCT?(IDS) MDP + RS 30 30 30 30
PROST UCT?(DFS) MDP + RS 30 30 30 30
PROST IPPC-2014 MDP + RS 30 30 30 30
PROST IPPC-2011 MDP + RS 30 30 30 30
UCT (3 steps look ahead) MDP + RS 29 30 29 30

Table 1: Number of runs (over 30 trials) that achieved the
non-Markovian reward in the academic-advising problems.
Compilations tested with and without reward shaping (RS).

MDP Planner No RS RS

PROST UCT?(IDS) MLE 617
PROST UCT?(DFS) MLE 627
PROST IPPC-2014 MLE 620
PROST IPPC-2011 MLE 637
UCT (3 steps look ahead) 423 527
no actions taken 263 263

Table 2: Average reward achieved (over 30 tri-
als) in the MDP compilations of the wildfire prob-
lem, with and without reward shaping (RS).
MLE indicates that PROST exceeded the mem-
ory limit of 512 MB.

prerequisites. In the wildfire problems, the agent is given reward to extinguish fire in a 3 × 3 grid, if performed no later
than two time steps from its origination. The potentials used for reward shaping are naive, and distributed uniformly in
the automaton states according to the distance to an accepting state. We observed that reward shaping can be an effec-
tive technique to provide guidance. In some of our tests, the quality of solutions improved drastically from zero average
reward, to optimal policies even with simple UCT search (see Table 1). The wildfire problems are more probabilistically
complex, and PROST easily ran out of memory (512 MB) in problems without reward shaping (see Table 2). On the other
side, the guidance provided by reward shaping reduced the amount of memory needed by PROST, which found policies
of increased quality than those obtained without reward shaping – even when we limited the memory usage of PROST.

6 Summary and Discussion

NMRDPs provide a powerful framework for modelling decision-making problems with behaviour-based rewards. In
this paper we use LTLf to specify rich non-Markovian rewards and present a technique for solving NMRDPs through a
compilation to MDPs that can be solved with off-the-shelf MDP planners. Our approach integrates automata representa-
tions of the LTLf formulae into the compiled MDP. We leverage reward shaping to help guide search, mitigating for the
sparseness of non-Markovian rewards and the poor lookahead of some state-of-the-art UCT-based methods. Our exper-
iments demonstrate that automata-based reward shaping is an effective method to enhance search and obtain solutions
of superior quality. While non-Markovian rewards were specified here in LTLf , the proposed approach will work for
rewards specified in any formal language for which there is a corresponding automata representation (e.g., [3]).
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[16] S. Thiébaux, C. Gretton, J. K. Slaney, D. Price, F. Kabanza, et al. Decision-theoretic planning with non-markovian rewards. JAIR, 25:17–74, 2006.

4


