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Abstract
Temporally extended goals are critical to the speci-
fication of a diversity of real-world planning prob-
lems. Here we examine the problem of plan-
ning with temporally extended goals over both fi-
nite and infinite traces where actions can be non-
deterministic, and where temporally extended goals
are specified in linear temporal logic (LTL). Un-
like existing LTL planners, we place no restrictions
on our LTL formulae beyond those necessary to
distinguish finite from infinite trace interpretations.
We realize our planner by compiling temporally ex-
tended goals, represented in LTL, into Planning Do-
main Definition Language problem instances, and
exploiting a state-of-the-art fully observable non-
deterministic planner to compute solutions. The
resulting planner is sound and complete. Our ap-
proach exploits the correspondence between LTL
and automata. We propose several different compi-
lations based on translations of LTL to (Büchi) al-
ternating or non-deterministic finite state automata,
and evaluate various properties of the competing
approaches. We address a diverse spectrum of LTL
planning problems that, to this point, had not been
solvable using AI planning techniques. We do so
while demonstrating competitive performance rela-
tive to the state of the art in LTL planning.

1 Introduction
Most real-world planning problems involve complex goals
that are temporally extended, require adherence to safety con-
straints and directives, necessitate the optimization of prefer-
ences or other quality measures, and/or require or may ben-
efit from following a prescribed high-level script that speci-
fies how the task is to be realized. In this paper we focus on
the problem of planning for temporally extended goals, con-
straints, directives or scripts that are expressed in Linear Tem-
poral Logic (LTL) for planning domains in which actions can
have non-deterministic effects, and where LTL is interpreted
over either finite or infinite traces.

⇤A version of this paper was presented at the Heuristics and
Search for Domain-Independent Planning Workshop, ICAPS 2016.

Planning with deterministic actions and LTL goals has been
well studied, commencing with the works of Bacchus and
Kabanza [2000] and Doherty and Kvarnström [2001]. Sig-
nificant attention has been given to compilation-based ap-
proaches (e.g., [Rintanen, 2000; Cresswell and Codding-
ton, 2004; Edelkamp, 2006; Baier and McIlraith, 2006;
Patrizi et al., 2011]), which take a planning problem with
an LTL goal and transform it into a classical planning prob-
lem for which state-of-the-art classical planning technology
can often be leveraged. The more challenging problem of
planning with non-deterministic actions and LTL goals has
not been studied to the same extent; Kabanza, Barbeau, and
St.-Denis [1997], and Pistore and Traverso [2001] have pro-
posed their own LTL planners, while Patrizi, Lipovetzky, and
Geffner [2013] have proposed the only compilation-based ap-
proach that exists. Unfortunately, the latter approach is lim-
ited to the proper subset of LTL for which there exists a de-
terministic Büchi automata. In addition, it is restricted to the
interpretation of LTL over infinite traces and the compilation
is worst-case exponential in the size of the goal formula. Fi-
nally, it is subject to a double-exponential blowup, since there
exists LTL formulae of size n for which the recognizing de-
terministic Büchi automata has 22

n

states [Kupferman and
Rosenberg, 2010].

In this paper, we propose a number of compilation-based
approaches for LTL planning with non-deterministic actions.
Specifically, we present two approaches for LTL planning
with non-deterministic actions over infinite traces and two
approaches for LTL planning with non-deterministic actions
over finite traces1. In each case, we exploit translations from
LTL to (Büchi) alternating or non-deterministic finite state au-
tomata. All of our compilations are sound and complete and
result in Planning Domain Definition Language (PDDL) en-
codings suitable for input to standard fully observable non-
deterministic (FOND) planners. Our compilations based on
alternating automata are linear in time and space with respect
to the size of the LTL formula, while those based on non-
deterministic finite state automata are worst-case exponential
in time and space (although optimizations in the implementa-
tion avoid this in our experimental analysis).

Our approaches build on methods for finite LTL planning

1Subtleties relating to the interpretation of LTL over finite traces
are discussed in [De Giacomo and Vardi, 2013].



with deterministic actions by Baier and McIlraith [2006] and
Torres and Baier [2015], and for the infinite non-deterministic
case, on the work of Patrizi, Lipovetzky, and Geffner [2013].
While in the finite case the adaptation of these methods
was reasonably straightforward, the infinite case required
non-trivial insights and modifications to Torres and Baier’s
approach. We evaluate the relative performance of our
compilation-based approaches using state-of-the-art FOND
planner PRP [Muise, McIlraith, and Beck, 2012], demonstrat-
ing that they are competitive with state-of-the-art LTL plan-
ning techniques.

Our work presents the first realization of a compilation-
based approach to planning with non-deterministic actions
where the LTL is interpreted over finite traces. Furthermore,
unlike previous approaches to LTL planning, our compila-
tions make it possible, for the first time, to solve the com-
plete spectrum of FOND planning with LTL goals interpreted
over infinite traces. Indeed, all of our translations capture the
full expressivity of the LTL language. Table 1 summarizes
existing compilation-based approaches and the contributions
of this work. Our compilations enable a diversity of real-
world planning problems as well as supporting a number of
applications outside planning proper ranging from business
process analysis, and web service composition to narrative
generation, automated diagnosis, and automated verification.
Finally and importantly, our compilations can be seen as a
practical step towards the efficient realization of a class of
LTL synthesis tasks using planning technology (e.g., [Pnueli
and Rosner, 1989; De Giacomo and Vardi, 2015]). We elabo-
rate further with respect to related work in Section 5.

2 Preliminaries
2.1 FOND Planning
Following Ghallab, Nau, and Traverso [2004], a Fully Ob-
servable Non-Deterministic (FOND) planning problem con-
sists of a tuple hF , I,G,Ai, where F is a set of propositions
that we call fluents, I ✓ F characterizes what holds in the
initial state; G ✓ F characterizes what must hold for the goal
to be achieved. Finally A is the set of actions. The set of liter-
als of F is Lits(F) = F [{¬f | f 2 F}. Each action a 2 A
is associated with hPre

a

,E↵

a

i, where Pre

a

✓ Lits(F) is
the precondition and E↵

a

is a set of outcomes of a. Each
outcome e 2 E↵

a

is a set of conditional effects, each of the
form (C ! `), where C ✓ Lits(F) and ` 2 Lits(F). Given
a planning state s ✓ F and a fluent f 2 F , we say that s
satisfies f , denoted s |= f iff f 2 s. In addition s |= ¬f if
f 62 s, and s |= L for a set of literals L, if s |= ` for every
` 2 L. Action a is applicable in state s if s |= Pre

a

. We
say s

0 is a result of applying a in s iff, for one outcome e in
E↵

a

, s0 is equal to s \ {p | (C ! ¬p) 2 e, s |= C} [ {p |
(C ! p) 2 e, s |= C}. The determinization of a FOND
problem hF , I,G,Ai is the planning problem hF , I,G,A0i,
where each non-deterministic action a 2 A is replaced by a
set of deterministic actions, a

i

, one action corresponding to
each of the distinct non-deterministic effects of a. Together
these deterministic actions comprise the set A0.

Solutions to a FOND planning problem P are policies. A
policy p is a partial function from states to actions such that if

p(s) = a, then a is applicable in s. The execution of a policy
p in state s is an infinite sequence s0, a0, s1, a1, . . . or a finite
sequence s0, a0, . . . , sn�1, an�1, sn, where s0 = s, and all of
its state-action-state substrings s, a, s0 are such that p(s) = a

and s

0 is a result of applying a in s. Finite executions ending
in a state s are such that p(s) is undefined. An execution
� yields the state trace ⇡ that results from removing all the
action symbols from �.

Alternatively, solutions to P can be represented by means
of finite-state controllers (FSCs). Formally, a FSC is a tu-
ple ⇧ = hC, c0,�,⇤, ⇢,⌦i, where C is the set of controller
states, c0 2 C is the initial controller state, � = S is the
input alphabet of ⇧, ⇤ = A is the output alphabet of ⇧,
⇢ : C ⇥ � ! C is the transition function, and ⌦ : C ! ⇤ is
the controller output function (cf. [Geffner and Bonet, 2013;
Patrizi, Lipovetzky, and Geffner, 2013]). In a planning
state s, ⇧ outputs action ⌦(c

i

) when the controller state is
c

i

. Then, the controller transitions to state c

i+1 = ⇢(c
i

, s

0)
if s0 is the new planning state, assumed to be fully observ-
able, that results from applying ⌦(c

i

) in s. The execution of
a FSC ⇧ in controller state c (assumed to be c = c0) and
state s is an infinite sequence s0, a0, s1, a1, . . . or a finite se-
quence s0, a0, . . . , sn�1, an�1, sn, where s0 = s, and such
that all of its state-action-state substrings s

i

, a

i

, s

i+1 are such
that ⌦(c

i

) = a

i

, s
i+1 is a result of applying a

i

in s

i

, and
c

i+1 = ⇢(c
i

, s

i

). Finite executions ending in a state s

n

are
such that ⌦(c

n

) is undefined. An execution � yields the state
trace ⇡ that results from removing all the action symbols from
�.

Following Geffner and Bonet [2013], an infinite execution
� is fair iff whenever s, a occurs infinitely often within �,
then so does s, a, s

0, for every s

0 that is a result of applying
a in s. A solution is a strong cyclic plan for hF , I,G,Ai iff
each of its executions in I is either finite and ends in a state
that satisfies G or is (infinite and) unfair.

2.2 Linear Temporal Logic
Linear Temporal Logic (LTL) was first proposed for verifi-
cation [Pnueli, 1977]. An LTL formula is interpreted over an
infinite sequence, or trace, of states. Because the execution of
a sequence of actions induces a trace of planning states, LTL
can be naturally used to specify temporally extended plan-
ning goals when the execution of the plan naturally yields an
infinite state trace, as may be the case in non-deterministic
planning.

In classical planning –i.e. planning with deterministic ac-
tions and final-state goals–, plans are finite sequences of ac-
tions which yield finite execution traces. As such, approaches
to planning with deterministic actions and LTL goals (e.g.,
[Baier and McIlraith, 2006]), including the Planning Domain
Definition Language (PDDL) version 3 [Gerevini and Long,
2005], use a finite semantics for LTL, whereby the goal for-
mula is evaluated over a finite state trace. De Giacomo and
Vardi [2013] formally described and analyzed such a version
of LTL, which they called LTLf , noting the distinction with
LTL [De Giacomo, Masellis, and Montali, 2014].

LTL and LTLf allow the use of modal operators next (⌦),
and until (U ), from which it is possible to define the well-
known operators always (�) and eventually ( ). LTLf , in



Infinite LTL Finite LTL
Deterministic Actions Non-Deterministic Actions Deterministic Actions Non-Deterministic Actions
[Albarghouthi et al., 2009] (EXP)
[Patrizi et al., 2011] (EXP)

[Patrizi et al., 2013] (limited LTL) (2EXP)
[this paper (BAA)] (LIN)
[this paper (NBA)] (EXP)

[Edelkamp, 2006] (EXP)
[Cresswell & Coddington, 2006] (EXP)
[Baier & McIlraith, 2006] (EXP)
[Torres & Baier, 2015] (LIN)

[this paper (NFA)] (EXP)
[this paper (AA)] (LIN)

Table 1: Automata-based compilation approaches for LTL planning. (2EXP) worst-case double exponential (EXP): worst-case
exponential. (LIN): linear.

addition, allows a weak next (✏) operator. An LTLf formula
over a set of propositions P is defined inductively: a propo-
sition in P is a formula, and if  and � are formulae, then
so are ¬ , ( ^ �), ( U�), ⌦ , and ✏ . LTL is defined
analogously.

The semantics of LTL and LTLf is defined as follows. For-
mally, a state trace ⇡ is a sequence of states, where each state
is an element in 2P . We assume that the first state in ⇡ is
s1, that the i-th state of ⇡ is s

i

and that |⇡| is the length of ⇡
(which is 1 if ⇡ is infinite). We say that ⇡ satisfies ' (⇡ |= ',
for short) iff ⇡, 1 |= ', where for every natural number i � 1:

• ⇡, i |= p, for a propositional variable p 2 P , iff p 2 s

i

,
• ⇡, i |= ¬ iff it is not the case that ⇡, i |=  ,
• ⇡, i |= ( ^ �) iff ⇡, i |=  and ⇡, i |= �,
• ⇡, i |= ⌦' iff i < |⇡| and ⇡, i+ 1 |= ',
• ⇡, i |= ('1 U'2) iff for some j in {i, . . . , |⇡|}, it holds

that ⇡, j |= '2 and for all k 2 {i, . . . , j�1}, ⇡, k |= '1,
• ⇡, i |= ✏' iff i = |⇡| or ⇡, i+ 1 |= '.

Observe operator✏ is equivalent to⌦ iff ⇡ is infinite. There-
fore, henceforth we allow✏ in LTL formulae, we do not use
the acronym LTLf , but we are explicit regarding which in-
terpretation we use (either finite or infinite) when not obvi-
ous from the context. As usual, ' is defined as (trueU'),
and �' as ¬ ¬'. We use the release operator, defined by
( R�)

def
= ¬(¬ U¬�).

2.3 LTL, Automata, and Planning
Regardless of whether the interpretation is over an infinite
or finite trace, given an LTL formula ' there exists an au-
tomata A

'

that accepts a trace ⇡ iff ⇡ |= '. For infi-
nite interpretations of ', a trace ⇡ is accepting when the
run of (a Büchi non-deterministic automata) A

'

on ⇡ vis-
its accepting states infinitely often. For finite interpreta-
tions, ⇡ is accepting when the final automata state is ac-
cepting. For the infinite case such automata may be ei-
ther Büchi non-deterministic or Büchi alternating [Vardi and
Wolper, 1994], whereas for the finite case such automata
may be either non deterministic [Baier and McIlraith, 2006]
or alternating [De Giacomo, Masellis, and Montali, 2014;
Torres and Baier, 2015]. Alternation allows the generation of
compact automata; specifically, A

'

is linear in the size of '
(both in the infinite and finite case), whereas the size of non-
deterministic (Büchi) automata is worst-case exponential.

These automata constructions have been exploited in deter-
ministic and non-deterministic planning with LTL via compi-
lation approaches that allow us to use existing planning tech-
nology for non-temporal goals. The different state of the art

automata-based approaches for deterministic and FOND LTL
planning are summarized in Table 1. Patrizi, Lipovetzky,
and Geffner [2013] present a Büchi automata-based compi-
lation for that subset of LTL which relies on the construction
of a Büchi deterministic automata. It is a well-known fact
that Büchi deterministic automata are not equivalent to Büchi
non-deterministic automata, and thus this last approach is ap-
plicable to a limited subset of LTL formulae.

3 FOND Planning with LTL Goals
An LTL-FOND planning problem is a tuple hF , I,',Ai,
where F , I, and A are defined as in FOND problems, and
' is an LTL formula. Solutions to an LTL-FOND problem
are FSCs, as described below.
Definition 1 (Finite LTL-FOND). An FSC ⇧ is a solution for
hF , I,',Ai under the finite semantics iff every execution of
⇧ over I is such that either (1) it is finite and yields a state
trace ⇡ such that ⇡ |= ' or (2) it is (infinite and) unfair.
Definition 2 (Infinite LTL-FOND). An FSC ⇧ is a solution
for hF , I,',Ai under the infinite semantics iff (1) every ex-
ecution of ⇧ over I is infinite and (2) every fair (infinite)
execution yields a state trace ⇡ such that ⇡ |= '.

Below we present two general approaches to solving LTL-
FOND planning problems by compiling them into standard
FOND problems. Each exploits correspondences between
LTL and either alternating or non-deterministic automata, and
each is specialized, as necessary, to deal with LTL interpreted
over either infinite (Section 3.1) or finite (Section 3.2) traces.
We show that FSC representations of strong-cyclic solutions
to the resultant FOND problem are solutions to the original
LTL-FOND problem. Our approaches are the first to address
the full spectrum of FOND planning with LTL interpreted
over finite and inifinte traces. In particular our work is the
first to solve full LTL-FOND with respect to infinite trace in-
terpretations, and represents the first realization of a compi-
lation approach for LTL-FOND with respect to finite trace
interpretations.

3.1 From Infinite LTL-FOND to FOND
We present two different approaches to infinite LTL-FOND
planning. The first approach exploits Büchi alternating au-
tomata (BAA) and is linear in time and space with respect to
the size of the LTL formula. The second approach exploits
Büchi non-deterministic automata (NBA), and is worst-case
exponential in time and space with respect to the size of the
LTL formula. Nevertheless, as we see in Section 4, the sec-
ond compilation does not exhibit this worst-case complex-
ity in practice, generating high quality solutions with reduced
compilation run times and competitive search performance.



3.1.1 A BAA-based Compilation
Our BAA-based compilation builds on ideas by Torres and
Baier [2015] for alternating automata (AA) based compila-
tion of finite LTL planning with deterministic actions (hence-
forth, TB15), and from Patrizi, Lipovetzky, and Geffner’s
compilation [2013] (henceforth, PLG13) of LTL-FOND to
FOND. Combining these two approaches is not straightfor-
ward. Among other reasons, TB15 does not yield a sound
translation for the infinite case, and thus we needed to mod-
ify it significantly. This is because the accepting condition for
BAAs is more involved than that of regular AAs.

The first step in the compilation is to build a BAA for our
LTL goal formula ' over propositions F , which we hence-
forth assume to be in negation normal form (NNF). Trans-
forming an LTL formula ' to NNF can be done in linear time
in the size of '. The BAA we use below is an adaptation of
the BAA by Vardi [1995]. Formally, it is represented by a
tuple A

'

= (Q,⌃, �, q
'

, Q

Fin

), where the set of states, Q, is
the set of subformulae of ', sub(') (including '), ⌃ contains
all sets of propositions in P , Q

Fin

= {↵R� 2 sub(')}, and
the transition function, � is given by:

�(`, s) =

⇢
> if s |= ` (`, literal)
? otherwise

�(↵ ^ �, s) = �(↵, s) ^ �(�, s)
�(⌦↵, s) = ↵

�(↵ _ �, s) = �(↵, s) _ �(�, s)
�(↵U�, s) = �(�, s) _ (�(↵, s) ^ ↵U�)

�(↵R�, s) = �(�, s) ^ (�(↵, s) _ ↵R�)

As a note for the reader unfamiliar with BAAs, the transition
function for these automata takes a state and a symbol and re-
turns a positive Boolean formula over the set of states Q. Fur-
thermore, a run of a BAA over an infinite string ⇡ = s1s2 . . .

is characterized by a tree with labeled nodes, in which (in-
formally): (1) the root node is labeled with the initial state,
(2) level i corresponds to the processing of symbol s

i

, and
(3) the children of a node labeled by q at level i are the states
appearing in a minimal model of �(q, s

i

). As such, multiple
runs for a certain infinite string are produced when selecting
different models of �(q, s

i

). A special case is when �(q, s
i

)
reduces to > or ?, where there is one child labeled by > or ?,
respectively. A run of a BAA is accepting iff all of its finite
branches end on > and in each of its infinite branches there is
an accepting state that repeats infinitely often. Figure 1 shows
a run of the BAA for � p ^� ¬p—a formula whose se-
mantics forces an infinite alternation, which is not necessarily
immediate, between states that satisfy p and states that do not
satisfy p.

In our BAA translation for LTL-FOND we follow a similar
approach to that developed in the TB15 translation: given an
input problem P , we generate an equivalent problem P 0 in
which we represent the configuration of the BAA with fluents
(one fluent q per each state q of the BAA). P 0 contains the
actions in P plus additional synchronization actions whose
objective is to update the configuration of the BAA. In P 0,
there are special fluents to alternate between so-called world
mode, in which only one action of P is allowed, and syn-

� p ^� ¬p

� p

� p

� p

 p

>

� ¬p

� ¬p

� ¬p  ¬p

 p

>

. . . . . .

Figure 1: An accepting run of a BAA for� p^� ¬p over
an infinite sequence of states in which the truth value of p

alternates. Double-line ovals are accepting states/conditions.

Sync Action Effect
tr(qS` ) {¬qS` , qT` ! ¬qT` }
tr(qS↵^�) {qS↵ , qS� ,¬qS↵^� , q

T
↵^� ! {qT↵ , qT� ,¬qT↵^�}}

tr1(q
S
↵_�) {qS↵ ,¬qS↵_� , q

T
↵_� ! {qT↵ ,¬qT↵_�}}

tr2(q
S
↵_�) {qS� ,¬qS↵_� , q

T
↵_� ! {qT� ,¬qT↵_�}}

tr(qS⌦↵) {q↵,¬qS⌦↵, q
T
⌦↵ ! {qT↵ ,¬qT⌦↵}}

tr1(q
S
↵U �) {qS� ,¬qS↵U � , q

T
↵U � ! {qT� ,¬qT↵U �}}

tr2(q
S
↵U �) {qS↵ , q↵U � ,¬qS↵U � , q

T
↵U � ! qT↵}

tr1(q
S
↵ R �) {qS� , qS↵ ,¬qS↵ R � , q

T
↵ R � ! ¬qT↵ R �}

tr2(q
S
↵ R �) {qS� , q↵ R � ,¬qS↵ R � , q

T
↵ R � ! ¬qT↵ R �}

tr1(q
S
 ↵) {qS↵ ,¬qS ↵, q

T
 ↵ ! {qT↵ ,¬qT ↵}}

tr2(q
S
 ↵) {q ↵,¬qS ↵}

tr(qS�↵) {qS↵ , q�↵,¬qS�↵, qT�↵ ! ¬qT�↵}

Table 2: Synchronization actions. The precondition of tr(qS
 

)

is {sync, qS
 

}, plus ` when  = ` is a literal.

chronization mode, in which the configuration of the BAA is
updated.

Before providing details of the translation we overview the
main differences between our translation and that of TB15.
TB15 recognizes an accepting run (i.e., a satisfied goal) by
observing that all automaton states at the last level of the
(finite) run are accepting states. In the infinite case, such a
check does not work. As can be seen in the example of Fig-
ure 1, there is no single level of the (infinite) run that only
contains final BAA states. Thus, when building a plan with
our translation, the planner is given the ability to “decide” at
any moment that an accepting run can be found and then the
objective is to “prove” this is the case by showing the exis-
tence of a loop or lasso in the plan in which any non-accepting
state may turn into an accepting state. To keep track of those
non-accepting states that we require to eventually “turn into”
accepting states we use special fluents that we call tokens.

For an LTL-FOND problem P = hF , I,',Ai, where ' is
an NNF LTL formula with BAA A

'

= (Q,⌃, �, q
'

, Q

Fin

),
the translated FOND problem is P 0 = hF 0

, I 0
,G0

,A0i, where
each component is described below.
Fluents P 0 has the same fluents as P plus fluents for the
representation of the states of the automaton F

Q

= {q
 

|  2
Q}, and flags copy, sync, world for controlling the differ-
ent modes. Finally, it includes the set FS

Q

= {qS
 

|  2 Q}
which are copies of the automata fluents, and tokens F

T

Q

=

{qT
 

|  2 Q}. We describe both sets below. Formally,
F

0 = F [ F

Q

[ F

S

Q

[ F

T

Q

[ {copy, sync,world,goal}.



The set of actions A0 is the union of the sets A
w

and A
s

plus the continue action.
World Mode A

w

contains the actions in A with precondi-
tions modified to allow execution only in world mode. Ef-
fects are modified to allow the execution of the copy action,
which initiates the synchronization phase, described below.
Formally, A

w

= {a0 | a 2 A}, and for all a0 in A
w

:

Pre

a

0 = Pre

a

[ {world},
E↵

a

0 = E↵

a

[ {copy,¬world}.

Synchronization Mode This mode has three phases. In the
first phase, the copy action is executed, adding a copy q

S for
each fluent q that is currently true, deleting q. Intuitively, qS
defines the state of the automaton prior to synchronization.
The precondition of copy is {copy}, while its effect is:

E↵

copy

= {q ! {qS ,¬q} | q 2 F

Q

} [ {sync,¬copy}

As soon as the sync fluent becomes true, the second phase
of synchronization begins. Here the only executable actions
are those that update the state of the automaton, which are de-
fined in Table 2. These actions update the state of the automa-
ton following the definition of the transition function, �. In
addition, each synchronization action for a formula  that has
an associated token q

T

 

, propagates such a token to its subfor-
mulae, unless  corresponds to either an accepting state (i.e.,
 is of the form ↵R�) or to a literal ` whose truth can be
verified with respect to the current state via action tr(qS

`

).
When no more synchronization actions are possible, we

enter the third phase of synchronization. Here only two ac-
tions are executable: world and continue . The objective of
world action is to reestablish world mode. Its precondition is
{sync} [ F

S

Q

, and its effect is {world,¬sync}.
The continue action also reestablishes world mode, but in

addition “decides” that an accepting BAA can be reached in
the future. This is reflected by the non-deterministic effect
that makes the fluent goal true. As such, it “tokenizes” all
states that are not final states in F

Q

, by adding q

T for each
BAA state q that is non-final and currently true. Formally,

Pre

continue

= {sync} [ {¬qT
'

| ' 62 Q

Fin

}
E↵

continue

= {{goal},
{q
'

! q

T

'

| ' 62 Q

Fin

} [ {world,¬sync}}

The set A
s

is defined as the one containing actions copy,
world, and all actions defined in Table 2.
Initial and Goal States The resulting problem P 0 has ini-
tial state I

0 = I [ {q
'

, copy} , and goal G0 = {goal}.
In summary, our BAA-based approach builds on TB15

while integrating ideas from PLG13. Like PLG13 our ap-
proach uses a continue action to find plans with lassos, but
unlike PLG13, our translation does not directly use the ac-
cepting configuration of the automaton. Rather, the planner
“guesses” that such a configuration can be reached. The to-
ken fluents FT

Q

, which did not exist in TB15, are created for
each non-accepting state and can only be eliminated when a
non-accepting BAA state becomes accepting.

Now we show how, given a strong cyclic policy for P 0,
we can generate an FSC for P . Observe that every state ⇠,
which is a set of fluents in F

0, can be written as the disjoint
union of sets s

w

= ⇠ \ F and s

q

= ⇠ \ (F 0 \ F ). Abusing
notation, we use s

w

2 2F to represent a state in P . For a
planning state ⇠ = s

w

[s

q

green in which p(⇠) is defined, we
define ⌦(⇠) to be the action in A whose translation is p(⇠).
Recall now that executions of a strong-cyclic policy p for P 0

in state ⇠ generate plans of the form a1↵1a2↵2 . . . where each
a

i

is a world action in A
w

and ↵
i

are sequences of actions
in A0 \ A

w

. Thus ⌦(⇠) can be generated by taking out the
fluents world and copy from the precondition and effects of
p(⇠). If state s

0
w

is a result of applying ⌦(⇠) in s

w

, we define
⇢(⇠, s0

w

) to be the state ⇠0 that results from the composition of
consecutive non-world actions ↵1 mandated by an execution
of p in s

0
w

[ s

q

. Despite non-determinism in the executions,
the state ⇠0 = ⇢(⇠, s0

w

) is well-defined.
The BAA translation for LTL-FOND is sound and com-

plete. Throughout the paper, the soundness property guaran-
tees that FSCs obtained from solutions to the compiled prob-
lem P 0 are solutions to the LTL-FOND problem P , whereas
the completeness property guarantees that a solution to P 0

exists if one exists for P .
Theorem 1. The BAA translation for Infinite LTL-FOND
planning is sound, complete, and linear in the size of the goal
formula.

A complete proof is not included but we present some of
the intuitions our proof builds on. Consider a policy p

0 for P 0.
p

0 yields three types of executions: (1) finite executions that
end in a state where goal is true, (2) infinite executions in
which the continue action is executed infinitely often and (3)
infinite, unfair executions. We do not need to consider (3) be-
cause of Definition 2. Because the precondition of continue
does not admit token fluents, if continue executes infinitely
often we can guarantee that any state that was not a BAA ac-
cepting state turns into an accepting state. This in turn means
that every branch of the run contains an infinite repetition of
final states. The plan for P , p, is obtained by removing all
synchronization actions from p

0, and the FSC that is solution
to P is obtained as described above. In the other direction, a
plan p

0 for P 0 can be built from a plan p for P by adding syn-
chronization actions. Theorem 1 follows from the argument
given above and reuses most of the argument that TB15 uses
to show their translation is correct.

3.1.2 An NBA-based Compilation
This compilation relies on the construction of a non-
determinisitic Büchi automaton (NBA) for the goal formula,
and builds on translation techniques for finite LTL planning
with deterministic actions developed by Baier and McIl-
raith [2006] (henceforth, BM06). Given a deterministic plan-
ning problem P with LTL goal ', the BM06 translation runs
in two phases: first, ' is transformed into a non-deterministic
finite-state automata (NFA), A

'

, such that it accepts a finite
sequence of states � if and only if � |= '. In the second
phase, it builds an output problem P 0 that contains the same
fluents as in P plus additional fluents of the form F

q

, for each
state q of A

'

. Problem P 0 contains the same actions as in P
but each action may contain additional effects which model



the dynamics of the F

q

fluents. The goal of P 0 is defined as
the disjunction of all fluents of the form F

f

, where f is an ac-
cepting state of A

'

. The initial state of P 0 contains F
q

iff q is
a state that A

'

would reach after processing the initial state of
P . The most important property of BM06 is the following: let
� = s0s1 . . . sn+1 be a state trace induced by some sequence
of actions a0a1 . . . an in P 0, then F

q

is satisfied by s

n+1 iff
there exists a run of A

'

over � that ends in q. This means
that a single sequence of planning states encodes all runs of
the NFA A

'

. The important consequence of this property is
that the angelic semantics of A

'

is immediately reflected in
the planning states and does not need to be handled by the
planner (unlike TB15).

For LTL-FOND problem P = hF , I,',Ai, our NBA-
based compilation constructs a FOND problem P 0 =
hF 0

, I 0
,G0

,A0i via the following three phases: (i) construct
an NBA, A

'

for the NNF LTL goal formula ', (ii) apply the
modified BM06 translation to the determinization of P (see
Section 2.1) , and (iii) construct the final FOND problem P 0

by undoing the determinization, i.e., reconstruct the original
non-deterministic actions from their determinized counter-
parts. More precisely, the translation of a non-deterministic
action a in P is a non-deterministic action a

0 in P 0 that is
constructed by first determinizing a into a set of actions, a

i

that correspond to each of the non-deterministic outcomes of
a, applying the BM06-based translation to each a

i

to pro-
duce a

0
i

, and then reassembling the a

0
i

s back into a non-
deterministic action, a0. In so doing, E↵

a

0 is the set of out-
comes in each of the deterministic actions a

0
i

, and Pre

a

0 is
similarly the precondition of any of these a

0
i

.
The modification of the BM06 translation used in the sec-

ond phase leverages ideas present in PLG13 and our BAA-
based compilations to capture infinite runs via induced non-
determinism. In particular, it includes a continue action
whose precondition is the accepting configuration of the NBA
(a disjunction of the fluents representing accepting states).
Unlike our BAA-based compilation, the tokenization is not
required because accepting runs are those that achieve accept-
ing states infinitely often, no matter which ones. As before,
one non-deterministic effect of continue is to achieve goal,
while the other is to force the planner to perform at least one
action. This is ensured by adding an extra precondition to
continue , can continue, which is true in the initial state, it
is made true by every action but continue , and is deleted by
continue .

In order to construct a solution ⇧ to P from a strong-cyclic
solution p to P 0 = hF 0

, I 0
,G0

,A0i, it is useful to represent
states ⇠ in P 0 as the disjoint union of s = ⇠ \ F and q =
⇠ \ (F 0 \ F ). Intuitively, s represents the planning state in
P , and q represents the automaton state. The controller ⇧ =
hC, c0,�,⇤, ⇢,⌦i is defined as follows. c0 = I

0 is the initial
controller state; � = 2F ; ⇤ = A; ⇢(⇠, s0) = s

0 [ q

0, where q

0

is the automaton state that results from applying action p(⇠)
in ⇠; ⌦(⇠) = p(⇠); and C ✓ 2F

0
is the domain of p. Actions

in P 0 are non-deterministic and have conditional effects, but
the automaton state q

0 that results from applying action p(⇠)
in state ⇠ = s [ q is deterministic, and thus ⇢ is well-defined.

Theorem 2. The NBA translation for Infinite LTL-FOND

planning is sound, complete, and worst-case exponential in
the size of the LTL formula.

Theorem 2 follows from soundness, completeness, and the
complexity of the BM06 translation, this time using a NBA
automaton, and an argument similar to that of Theorem 1.
This time, if continue executes infinitely often we can guar-
antee accepting NBA states are reached infinitely often.

3.2 From Finite LTL-FOND to FOND
Our approach to finite LTL-FOND extends the BM06 and
TB15 translations, originally intended for finite LTL planning
with deterministic actions, to the non-deterministic action set-
ting. Both the original BM06 and TB15 translations share
two general steps. In step one, the LTL goal formula is trans-
lated to an automaton/automata – in the case of BM06 an
NFA, in the case of TB15, an AA. In step two, a planning
problem P 0 is constructed by augmenting P with additional
fluents and action effects to account for the integration of the
automaton. In the case of BM06 these capture the state of
the automaton and how domain actions cause the state of the
automaton to be updated. In the case of the TB15 translation,
P must also be augmented with synchronization actions. Fi-
nally, in both cases the original problem goals must be modi-
fied to capture the accepting states of automata.

When BM06 and TB15 are exploited for LTL-FOND, the
non-deterministic nature of the actions must be taken into ac-
count. This is done in much the same as with the NBA- and
BAA-based compilations described in the previous section.
In particular, non-deterministic actions in the LTL-FOND
problem are determinized, the BM06 (resp. TB15) transla-
tion is applied to these determinized actions, and then the
non-deterministic actions reconstructed from their translated
determinized counterparts (as done in the NBA-based compi-
lation) to produce FOND problem, P 0. A FSC solution, ⇧, to
the LTL-FOND problem P , can be obtained from a solution
to P 0. When the NFA-based translations are used, the FSC,
⇧, is obtained from policy p following the approach described
for NBA-based translations. When the AA-based translations
are used, the FSC, ⇧, is obtained from p following the ap-
proach described for BAA-based translations.
Theorem 3. The NFA (resp. AA) translation for Finite LTL-
FOND is sound, complete, and exponential (resp. linear) in
the size of the LTL formula.

Soundness and completeness in Theorem 3 follows from
soundness and completeness of the BM06 and TB15 trans-
lations. Fair executions of ⇧ yield finite plans for P 0, and
therefore state traces (excluding intermediate synchronization
states) satisfy '. Conversely, our approach is complete as for
every plan in P , one can construct a plan in P 0. Finally, the
run-time complexity and size of the translations is that of the
original BM06 and TB15 translations – worst case exponen-
tial in time and space for the NFA-based approach and linear
in time and space for the AA approach.

4 Experiments
We evaluate our framework on a selection of benchmark
domains with LTL goals from [Baier and McIlraith, 2006;



(a) Translation run times. (b) Number of new fluents.

(c) PRP run times. (d) PRP Policy Size.

(e) Preferred world Plan Length.

Figure 2: Performance of our planning system using AA- and
NFA-based translations in different problems with determin-
istic and non-deterministic actions and finite LTL goals.

Patrizi, Lipovetzky, and Geffner, 2013; Torres and Baier,
2015], modified to include non-deterministic actions. Ex-
periments were conducted on an Intel Xeon E5-2430 CPU
@2.2GHz Linux server, using a 4GB memory and a 30-
minute time limit.

LTL-FOND Planning over Finite Traces: We evaluated the
performance of our BM06 (NFA) and TB15 (AA) translators,
with respect to a collection of problems with deterministic
and non-determinisitic actions and LTL goals, interpreted on
finite traces. We used the state-of-the-art FOND planner, PRP
[Muise, McIlraith, and Beck, 2012], to solve the translated
problems. NFA-based translation times increased when the
LTL formula had a large number of conjunctions and nested
modal operators, whereas AA-based translation times remain
negligible. However, the AA translation included a num-
ber of new fluents that were, in some cases, up to one or-
der of magnitude larger than with the NFA (Figures 2a and
2b). This seems to translate into more complex problems, as
PRP run times become almost consistently greater in prob-
lems translated with AA (Figure 2c). The size of the poli-
cies obtained from the AA compilations were considerably
greater than those obtained with NFA compilations (Figure
3d). This is expected, as AA translations introduce a number
of synchronization actions, whereas the number of actions in
NFA translations remains unchanged. To assess the quality

(a) Run-time in Waldo problems. (b) Run-time in Lift problems.

(c) Run-time in Clerk problems. (d) Policy Size (world actions).

Figure 3: Performance of our planning system using BAA-
based translations in different LTL-FOND domains. We re-
port PRP run-times (in seconds) and policy sizes, excluding
synchronization actions.

of the plans obtained from each translation, we compared the
number of world actions (i.e., excluding automaton-state syn-
chronization actions) in the shortest plans of the policies ob-
tained (Figure 2e). This is a crude estimator of the quality
of plans, since these plans are not necessarily the ones that
minimize the number of world actions, as they also contain
synchronization actions. The number of world actions that
we obtained in both compilations was very similar.

Interestingly, whereas the size of the AA translations is lin-
ear in the size of the original LTL formula and NFA trans-
lations are worst-case exponential, in practice we observed
the size of the NFA-based translated problems is smaller.
Furthermore, PRP performs better when problems are com-
piled using NFAs, generating similar quality policies in lower
search run-times.

We didn’t experience any untoward decrease in perfor-
mance in deterministic problems that were extended with
non-deterministic actions, suggesting that AA- and NFA-
based translations remain competitive in LTL-FOND.

LTL-FOND Planning over Infinite Traces: The relative
performance observed between NBA- and BAA-based trans-
lations for LTL-FOND planning, interpreted over infinite
traces, is reflective of the finite case. NBA translation run
times are greater, but result in lower planner run times and
smaller policy sizes. For reference, we compared BAA trans-
lations with the so-called sequential and parallel translations
developed by Patrizi, Lipovetzky, and Geffner [2013], subse-
quently referrd to as PLG13seq and PLG13par, respectively.
The former alternates between world and sync actions (that
update the automaton state), whereas the latter parallelizes
this process in a single action. The current implementation of
PLG13 translations forced us to perform such comparisons
only in the three domains that appear in [Patrizi, Lipovetzky,
and Geffner, 2013]. Namely, the Waldo, Lift, and Clerk do-



mains. All problems have LTL goals that can be compiled
into deterministic Büchi automata. Unfortunately, we could
not include a fair comparison with NBA translations in the
Lift and Clerk domains, due to a specific encoding that forced
transitions to synchronization phases (existing in PLG13 and
BAA translations, but not in NBA). In the Waldo problems,
however, NBA translations generated smaller solutions (by a
half) with roughly half the run time required by BAA. On the
other hand, NBA translation times timed out after the 12th in-
stance (possibly due to lack of optimization of the translator).

The Waldo problems require construction of a controller
for a robot that moves around n rooms and finds Waldo
infinitely often. Waldo may or may not appear in the n-
th and n/2-th rooms when these are visited. The dynam-
ics of the problem preclude visiting a room twice before
visiting the remaining ones, in which case the predicate
search again becomes true. The LTL goal of the problem
is � search again _Waldo. The Lift problems requires
construction of a controller for an n-floor building that serves
all requests. The dynamics of the problem require alternation
between move and push f

i

actions, i = 1, . . . , n. Fluents
at

i

and req

i

model, respectively, whether the lift is at the i-
th floor, and whether a request from the i-th floor has been
issued and not served. The lift can only move up if some
request is issued. The push f

i

actions non-deterministically
request the lift to service the i-th floor. Initially, the lift is
at floor 1, and no request is issued. The LTL goal of the
problem is ' =

V
n

i=1� (req
i

! at

i

). Finally, the Clerk
problems require construction of a controller that serves all
clients in a store. Clients can order one of n packages p

i

.
If the package is not available, the clerk has to buy it from
a supplier, pick it up, and store it in its correct location.
In order to serve the client, the clerk has to find the pack-
age, pick it up, and sell it. The LTL goal of the problem is
�(active request ! (item served _ item stored)).

The results of experiments are summarized in Figure
3. In Waldo problems, the planner run times using BAA-
based translations are situated between the run times with
PLG13seq and PLG13par. In Lift problems, the BAA trans-
lations demonstrate significantly greater scalability. The Lift
problems contain a (increasing) large number of conjunc-
tive LTL goals. We conjecture that the poor scalability with
PLG13seq (runs out of time) and PLG13par (runs out of
memory) translations is due to the bad handling of conjunc-
tive goals, that results in a exponentially large number of dif-
ferent state transitions. On the other hand, the PRP handles
conjunctive goals much better in the BAA translations thanks
to the AA progression of the LTL formula. In the Clerk prob-
lems, PRP scales slightly worse with the BAA translation
than with the PLG13seq and PLG13par translations, which
can solve 1 and 2 more problems respectively. The run times
with all translations seem to show the same exponential trend,
and differ in a small offset that corresponds to the increase in
problem complexity.

Figure 3d compares the size of the policies found by PRP
to problems compiled with BAA and PLG13par translations.
PLG13seq translations resulted in slightly larger policies, due
to separate world and sync action phases. We account only
for world actions, excluding synchronization actions from the

count. Policy sizes with BAA-based translations are similar,
but consistently smaller than those from PLG13par transla-
tions, except in the Lift problems where the former results in
considerably smaller policies. Finally, we evaluated the valid-
ity of our system with LTL goals that could not be handled by
PLG13. In particular, we solved Waldo problems with goals
of the form �↵.

Overall, our system proves very competitive with (as good
as or better than) the previous state-of-the-art LTL-FOND
planning methods, while supporting a much broader spectrum
(the full spectrum) of LTL formulae.

5 Summary and Discussion
We have proposed four compilation-based approaches to fully
observable non-deterministic planning with LTL goals that
are interpreted over either finite or infinite traces. These com-
pilations support the full expressivity of LTL, in contrast to
much existing work. In doing so, we address a number of
open problems in planning with LTL with non-deterministic
actions, as noted in Table 1. Our LTL planning techniques are
directly applicable to a number of real-world planning prob-
lems as well as capturing a diversity of applications beyond
standard planning, including but not limited to genomic re-
arrangement [Uras and Erdem, 2010], program test genera-
tion [Razavi, Farzan, and McIlraith, 2014], story generation
[Haslum, 2012], automated diagnosis [Grastien et al., 2007;
Sohrabi, Baier, and McIlraith, 2010], business process man-
agement [De Giacomo et al., 2014], verification [Albargh-
outhi, Baier, and McIlraith, 2009; Patrizi et al., 2011], and
robot motion planning [Plaku, 2012].

Our work has focused on the specification of temporally
extended goals as rich LTL path constraints, which is in
keeping with the planning community’s integration of a sub-
set of LTL into the Planning Domain Definition Language
(PDDL). Nevertheless, some goals are best described pro-
cedurally, using regular expressions. The EAGLE goal lan-
guage [Lago, Pistore, and Traverso, 2002] and variants of
the Golog language (e.g., [Baier, Fritz, and McIlraith, 2007;
Fritz, Baier, and McIlraith, 2008]) are prominent among sev-
eral attempts to support planning with action-centric proce-
dural control/goals using regular expressions. Shaparau, Pi-
store, and Traverso (2008) extend EAGLE to combine both
declarative and procedural goals in a non-deterministic plan-
ning setting, while more recently Triantafillou, Baier, and
McIlraith (2015) combine LTL with regular expression to
plan with goals specified in linear dynamic logic (LDL).

We evaluated the effectiveness of our FOND compilations
using the state-of-the-art FOND planner, PRP. An interest-
ing observation is that our worst-case exponential NFA-based
translations run faster and return smaller policies than the
AA-based linear translations. This seems to be due to the
larger number of fluents (and actions) required in the AA-
based translations. Compared to the existing approach of [Pa-
trizi, Lipovetzky, and Geffner, 2013], experiments indicate
that our approaches scale up better.

Finally, we observe that LTL-FOND is related to the prob-
lem of LTL synthesis [Pnueli and Rosner, 1989]. Infor-
mally, it is the problem of computing a policy that satisfies



an LTL formula, assuming that an adversary (which we can
associate to the non-deterministic environment) may change
some fluents after the execution of each action. Recently
De Giacomo and Vardi [2015] showed how to map a finite
LTL-FOND problem into a synthesis problem. Sardiña and
D’Ippolito [2015] go further, showing how FOND plans can
be synthesized using LTL synthesis algorithms. An open
question is whether any existing planning technology can be
used for LTL synthesis as well. LTL synthesis is not an in-
stance of strong cyclic FOND planning since synthesis adver-
saries are not fair.
Acknowledgements: We gratefully acknowledge funding
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