
From FOND to Probabilistic Planning: Guiding search for quality policies

Alberto Camacho†, Christian Muise∗, Akshay Ganeshen†, Sheila A. McIlraith†
†Department of Computer Science, University of Toronto

∗Department of Computing and Information Systems, University of Melbourne
†{acamacho,akshay,sheila}@cs.toronto.edu, ∗{christian.muise}@unimelb.edu.au

Abstract
We address the class of probabilistic planning problems
where the objective is to maximize the probability of reach-
ing a prescribed goal (MAXPROB). State-of-the-art proba-
bilistic planners, and in particular MAXPROB planners, of-
fer few guarantees with respect to the quality or optimality of
the solutions that they find. The complexity of MAXPROB
problems makes it difficult to compute high quality solu-
tions for big problems, and existing algorithms either do not
scale well, or provide poor quality solutions. We exploit core
similarities between probabilistic and fully observable non-
deterministic (FOND) planning models to extend the state-
of-the-art FOND planner, PRP, to be a sound and sometimes
complete MAXPROB solver that is guaranteed to sidestep
avoidable dead ends. We evaluate our planner, Prob-PRP, on
a selection of benchmarks used in past probabilistic planning
competitions. The results show that Prob-PRP outperforms
previous state-of-the-art algorithms for solving MAXPROB,
and computes substantially more robust policies, at times do-
ing so orders of magnitude faster.

1 Introduction
Planning involves finding action strategies, also called plans,
that lead an agent to a desired goal condition. In scenarios
with exogenous events, or where the effects of an agent’s
actions cannot be accurately modeled, the execution of a
plan may not be fully predictable. In the planning com-
munity, uncertainty in the outcome of actions is modeled as
a variant of the classical planning formalism that incorpo-
rates non-deterministic actions. Two similar models can be
distinguished: fully observable non-deterministic (FOND)
planning, and probabilistic planning. The former assumes
fair non-determinism on the potential effects of the actions,
while the latter breaks this assumption and assigns a prob-
ability distribution over the action outcomes. We address
the subclass of probabilistic problems called MAXPROB,
whose objective is to find policies that maximize the proba-
bility of reaching a prescribed goal (Kolobov et al. 2011).

We reflect on what makes for a good quality policy.
Whereas optimal solutions to MAXPROB problems maxi-
mize the probability of reaching a goal, solutions often have
other properties that are also desirable. Further, in contrast
to online solutions, computing offline solutions makes it pos-
sible to offer guarantees with respect to the quality of solu-
tions.

The state of the art in MAXPROB planning is the on-
line planner Robust-FF (RFF) (Teichteil-Königsbuch, Kuter,
and Infantes 2010). RFF is sound and complete in the all-
outcomes determinization of problems with no dead ends,
but it offers no guarantees with respect to the quality and
optimality of the solutions in the presence of dead ends.

We exploit the core similarities between probabilistic and
FOND planning models to extend the state-of-the-art FOND
planner, PRP, to be a sound offline MAXPROB solver, which
we call Prob-PRP. Prob-PRP prunes the search space by
identifying state-action pairs that lead to undesired states,
making it possible to handle large and probabilistically com-
plex MAXPROB problems. The dead end detection mecha-
nism in Prob-PRP guarantees finding optimal solutions in
domains where all of the dead ends are avoidable.

We compare Prob-PRP with RFF across a variety of
benchmarks from the International Probabilistic Planning
Competition (IPPC). The results show that the quality of
the policies is better for Prob-PRP across the majority of
problems; particularly in domains with avoidable dead ends.
Further, the computation time required is at times orders of
magnitude faster, despite being offline.

Illustrative Example: The River Problem Consider the
River problem introduced in (Little and Thiébaux 2007). In
this problem, the agent has two options to cross a river: (i)
traverse a path of slippery rocks with a 25% chance of suc-
cess, a 25% chance of slipping and falling into the river, and
a 50% chance of reaching a small island. In the latter case,
she can swim towards the other side of the river with an 80%
chance of success and a 20% chance of drowning; (ii) swim
from one side of the river to the other, with a 50% chance of
success, and a 50% chance of falling in.

The optimal solution is for the agent to attempt to traverse
the rocks, and if she falls and survives, to swim from the is-
land. This policy causes the agent to reach the other side
of the river with a 65% probability of success, whereas the
greedy action of swimming has only a 50% chance of suc-
cess. Online replanners (e.g., (Yoon, Fern, and Givan 2007))
may be attracted by the shortest path to the goal (i.e. swim-
ming directly across): once a wrong choice is made, online
replanning approaches have no recourse to undo the bad ac-
tion. This motivates the need for effective offline planning
for MAXPROB problems with dead ends.

2 Preliminaries
We adopt the notation of Mattmüller et al. (2010) and Muise,
McIlraith, and Beck (2012) for non-deterministic SAS+

planning problems, extending it to probabilistic planning
with conditional effects.

A SAS+ probabilistic planning problem is a tuple
〈V, s0, s?,A〉, where V is a finite set of variables v, each
with domain DV . We denote D+

V to be the extended domain
that includes the undefined status,⊥, of v. A partial state (or
simply, a state) is an assignment to variables s : V → D+

V .
If s(v) 6= ⊥, we say that v is defined for s. When every vari-
able is defined for s we say that s is a complete state. The
initial state s0 is a complete state, and the goal state s? is
a partial state. A state s entails a state s′, denoted s |= s′,
when s(v) = s′(v) for all v defined for s′. The state obtained
from applying s′ to s is the updated state s⊕ s′ that assigns
s′(v) when v is defined for s′, and s(v) otherwise.

The actions a ∈ A have the form a = 〈Prea,Eff a〉,
where Prea is a state describing the condition that a state
s needs to entail in order for a to be applicable in s.
Eff a = 〈(p1; Eff 1

a), . . . , (pn; Eff n
a)〉 is a finite set of tu-

ples (pi; Eff i
a) where Σipi = 1. Each effect Eff i

a is a set of
the form {〈cond1, v1, d1〉, . . . , 〈condk, vk, dk〉}, where for
each j the condition condj is a partial state, and vj ∈ V ,
dj ∈ DVi . The result of applying the action a in the par-
tial state s |= Prea with effect Eff i

a is the partial state
Result(s,Eff i

a) = {v = d | 〈cond, v, d〉 ∈ Eff i
a and s |=

cond}. Finally, the progression of s w.r.t. action a and ef-
fect Eff i

a is the updated state Prog(s, a,Eff i
a) = s ⊕

Result(s,Eff i
a).

An action a is applicable in a partial state s when s |=
Prea. With a probability pi, the outcome of a is one
of the effects Eff i

a that leads to the updated state s′ =

Prog(s, a,Eff i
a). The term (s, a, s′) is called a transition,

and has associated transition probability T (s, a, s′) = pi.
A solution to a probabilistic planning problem is a policy

that maps (partial) states into actions with the objective of
reaching a state that entails s?. Given a policy π, we denote
Sπ the set of states in which π is defined. We say that π is
well defined when π(s) is applicable in s for all s ∈ Sπ . A
policy is closed when it is defined in all states, and otherwise
it is said to be a partial policy. A well-defined policy defines
sequences of state-action trajectories s0, a0, s1, a1 . . . where
π(sk) = ak, and sk+1 = Prog(sk, ak,Eff) for some Eff ∈
Eff ak

. A sequence P = a0, a1, . . . of such actions is called
a plan. We associate P (si) with the action ai.

We address the class of probabilistic planning problems
where the objective is to maximize the probability of reach-
ing a state that entails s? (MAXPROB). We refer to this as
the probability of success. The probability of success ignores
action costs, and focuses on goal-achievement. A policy is
optimal when its probability of success is maximal.

2.1 Related Planning Problems
A SAS+ Fully Observable Non-Deterministic (FOND)
planning problem is likewise described as a tuple
〈V, s0, s?,A〉. Nevertheless, in contrast to a probabilistic

planning problem, the FOND model assumes fair non-
determinism with respect to the effects of the actions. As
such, action effects are assumed to be equally likely, so there
are no probabilities, pi associated with the effects of actions
(Muise, McIlraith, and Beck 2012). A solution to a FOND
problem is a policy, usually distinguished according to the
criteria introduced in (Cimatti et al. 2003). Weak solutions
are plans that reach the goal under some sequence of non-
deterministic action outcomes, and strong solutions are poli-
cies that are guaranteed to reach the goal in a bounded num-
ber of transitions. Finally, strong cyclic solutions are poli-
cies that are guaranteed to eventually reach the goal, under
an assumption of fairness – effectively that in the limit, each
action will yield each of its non-deterministic outcomes in-
finitely often.

Markov Decision Processes (MDPs) are another proba-
bilistic planning model. The traditional MDP model intro-
duced in Puterman (1994) associates rewards to state tran-
sitions. MAXREWARD MDPs have either a finite horizon
or apply a discount factor γ < 1, and the solutions attempt
to maximize the expected reward. Stochastic Shortest Path
(SSP) MDPs (Bertsekas and Tsitsiklis 1991) is a class of
goal-oriented probabilistic planning problems. Their solu-
tions attempt to minimize the expected plan length under the
assumption that the goal state is reachable from any state. A
MAXPROB problem can be translated into a goal-oriented
MDP with infinite horizon and discount factor γ = 1 by fix-
ing the rewards to 1 in the goal states, and zero elsewhere
(cf. (Kolobov, Mausam, and Weld 2012))

2.2 State of the Art in MAXPROB Planning
The International Probabilistic Planning Competition
(IPPC) tests the performance of probabilistic planners
periodically. It is notable that none of the winners of past
IPPCs was an offline planner. As Little and Thiébaux
(2007) point out, one of the reasons why online planners
have outperformed offline planners is that the latter simply
cannot handle large instances of complex problems.

The first IPPCs (IPPC-04 and IPPC-06) were dedicated
to solving MAXPROB problems. The benchmark domains
used in these competitions were probabilistically simple
(Little and Thiébaux 2007), and a planner without proba-
bilistic reasoning entitled FF-Replan (Yoon, Fern, and Gi-
van 2007) won the IPPC-04 edition, and outperformed the
participants of the IPPC-06 with only minor changes.

The IPPC-08 adopted more complex benchmark domains
and focused on solving MAXREWARD probabilistic prob-
lems. The winner of the IPPC-08 was, with minor modifica-
tions, the MAXPROB planner Robust-FF (RFF) (Teichteil-
Königsbuch, Kuter, and Infantes 2010). The IPPC-2011
and IPPC-2014 focused on solving MAXREWARD MDPs
rather than goal-oriented probabilistic planning problems.
The winner of these competitions, PROST (Keller and Ey-
erich 2012), works well for reward-based problems, but its
performance suffers somewhat in goal-oriented settings such
as MAXPROB. To the best of our knowledge, RFF is the
state of the art for solving MAXPROB problems.

RFF computes plans in the determinization of the problem
that are used to extend an envelope gradually until the esti-

mated probability of failure during execution is lower than
a threshold parameter ρ. A failure during execution is un-
derstood as either falling into a deadend state, or falling into
a state s that is unhandled by the envelope (in which case,
RFF replans from s). The first envelope computed by RFF is
a deterministic plan returned by a call to FF (Hoffmann and
Nebel 2001); for each reachable state s not considered in the
current envelope, RFF computes a deterministic plan for s
and keeps iterating until the estimated probability of failure
for the policy in the envelope is lower than ρ.

RFF offers optional modes of operation that have the po-
tential to improve its performance. The best-goals strategy
computes the set of states handled by the envelope that are
the most likely to be reached during execution. Then FF is
used to search for plans that lead to the goal, or to states in
the best-goals set. Another mode performs policy optimiza-
tion during the search process. Using dynamic program-
ming, the policy is updated in each state to minimize the
expected cost, assuming the following: for each transition
(s, a, s′), the cost of a is 0 when s′ is a goal state; a fixed
penalty 1/(1 − γ) when s′ is a terminal state; and 1 other-
wise. Alternatively, RFF has a mode for solving MAXRE-
WARD problems that performs policy optimization and uses
the actual transition costs given in the specification of the
problem1.

The policy optimization mechanism is an effort to avoid
falling into terminal states, but it prioritizes the search for
plans that reach a goal state in the lowest number of state
transitions possible (i.e. stochastic shortest paths (Bertsekas
and Tsitsiklis 1991)) that are not necessarily the best qual-
ity MAXPROB solutions. As an example, suppose that RFF
explores two different plans from state s: (i) the first plan π1
has a short path to the goal, but may also fall into a dead end;
(ii) the second plan π2 has no dead ends, but all paths to the
goal are very long. Then, for sufficiently long paths in π2,
the policy optimization process in s selects π1 over π2 even
though the latter policy is of higher quality.

RFF is sound and complete in the all-outcomes deter-
minization of problems with no dead ends, but it offers no
guarantees with respect to the optimality of the solutions
found in the most probable determinization – even in prob-
lems without dead ends.

3 Quality of Solutions
The quality of the solutions to MAXPROB planning prob-
lems has been traditionally measured according to the prob-
ability of success, i.e., the probability of reaching the goal
eventually. In this section we discuss the importance of other
properties that account for good solutions – namely, the size
of the policies and the expected length of the plans. To this
point, there is no uniform theory of utility elicitation for so-
lutions to MAXPROB problems. This paper does not intend
to build that theory, but rather present an algorithm that finds
MAXPROB solutions that maintain a good balance between
the policy size and the expected plan length.

1Personal correspondence with Florent Teichteil-Königsbuch.

3.1 Policy Size
The FOND community has pursued policies that are small in
the number of state-action pairs, and compact in so far as the
policies can exploit partial state representations to capture a
family of states. An obvious advantage of small, compact
policies is that they are easily integrated into simple sys-
tems. While the FOND model often assumes the existence
of either strong or strong cyclic solutions, core methods for
obtaining small compact FOND policies can be applied to
find solutions to probabilistic planning problems.

3.2 Expected Plan Length
Policy search should take into account the state transition
probabilities, so that the expected length of the resulting
plans do not become unnecessarily large.

Relevant work has been done to find stochastic shortest
path solutions to SSP MDPs (e.g. (Bonet and Geffner 2003;
Trevizan and Veloso 2012)). Teichteil-Königsbuch (2012)
proposed the class of Stochastic Safest and Shortest Path
(S3P) problems, that generalizes SSP MDPs and allows for
unavoidable dead ends. Solutions to S3P MDPs attempt to
minimize the expected length of the plans and maximize the
probability of success. Unfortunately, this model is not com-
pletely solved yet. Kolobov, Mausam, and Weld (2012) dis-
tinguishes the class of SSP MDPs with unavoidable dead
ends, and presents a new family of heuristic search al-
gorithms, FRET (Find, Revise, Eliminate Traps). Work in
(Teichteil-Königsbuch, Vidal, and Infantes 2011) extends
the classical planning heuristics hadd and hmax (Bonet and
Geffner 2001) into heuristics for SSP MDPs with dead
ends that, when plugged into graph-based MDP search al-
gorithms, achieve competitive results compared to RFF. Un-
fortunately, none of these algorithms offer guarantees of op-
timality in problems with unavoidable dead ends.

3.3 Example
As an illustrative example, consider the controllers C1 and
C2 in Figure 1, representing the state transitions of two
policies, π1 and π2 respectively, that solve a MAXPROB
problem P . The nodes represent states and the arrows de-
scribe the state transitions, that may be non-deterministic
(e.g., the action π1(s0) = π2(s0) maps s0 into s1 or sg
with a certain probability distribution). Both solutions are
strong cyclic and map s0 into the goal sg eventually, but only
π1 is strong and reaches the goal in a bounded number of
state transitions. The expected length of the plans increases
with the transition probability T (s0, π2(s0), s1). For a suf-
ficiently high value, π1 may be preferred to π2 despite the
fact that it has a greater size. Furthermore, π1 may always
be preferred because the length of its plans are bounded.

4 Approach
Our contribution is to bring state-of-the-art FOND planning
technology to probabilistic planning. We extend the FOND
planner, PRP (Muise, McIlraith, and Beck 2012), to solve
goal-oriented probabilistic planning problems, and we aim
to maximize the probability of success (i.e. computing a so-
lution to the MAXPROB problem).

s0

sg s1

s2

Controller C1

s0

sg s1

Controller C2

Figure 1: Both solutions map the initial state s0 into the goal
state sg eventually, but the size of the policies and the ex-
pected length of the plans is different.

4.1 Background
To the best of our knowledge, PRP is the state of the art
in FOND planning. PRP searches for strong cyclic plans in
a FOND problem, and produces a policy that maps partial
states to actions. Key components of PRP include a mech-
anism to evade avoidable dead ends, and a compact repre-
sentation of the policy in the form of state-action pairs (p, a)
that tell the agent to perform the action a in a state s when s
entails the condition p.

PRP runs a series of calls to Algorithm 1 until a strong
cyclic solution is found, or the algorithm converges. In all
cases, PRP returns the best quality policy found. The Seen
and Open lists manage the states that belong to the incum-
bent policy. More precisely, the Seen list contains the states
that have been processed already, whereas the Open list, ini-
tialized to the initial state s0, contains the states that need to
be processed. In each iteration, a state s from the Open list is
processed. The procedure GENPLANPAIRS processes a non-
goal state s for which a policy is undefined. This involves (i)
computing a plan P for the all-outcomes determinization of
〈V, s, s?,A〉, such that P reaches the goal or a state han-
dled by the policy , and (ii) augmenting the policy with the
state-action pairs from the regression of P. The action P (s)
is added as a rule to the corresponding state-action pair in
s. Processing a non-goal state s that is not in the Seen list
involves adding all potential successors of s by P (s) into
the Open list, so that every reachable state of the policy is
eventually processed.

Algorithm 1 is guaranteed to find a strong cyclic plan
when the problem has no dead ends. When the problem has
dead ends, GENPLANPAIRS may not find a plan for a cer-
tain state s. In that case, PROCESSDEADENDS computes a
minimal partial state p such that s |= p and every s′ |= p is a
dead end. A set of forbidden state-action pairs is computed
by regressing the dead ends through the computed plans. In
the next calls to Algorithm 1, PRP resets the policy and the
forbidden state-action pairs are excluded from search. The
forbidden state-action pairs mechanism ensures complete-
ness of the planner when the dead ends are avoidable.

Theorem 1 ((Muise, McIlraith, and Beck 2012)). PRP re-
turns a strong cyclic policy in problems with avoidable or
no dead ends.

Input: FOND planning task P = 〈V, s0, s?,A〉
Output: Partial policy π

1 InitPolicy();
2 while π changes do
3 Open← {s0} ;
4 Seen← {} ;
5 while Open 6= ∅ do
6 s =Open.pop();
7 if s 6|= s? ∧ s 6∈ Seen then
8 Seen.add(s);
9 if π(s) is undefined then

10 GenPlanPairs(〈V, s, s?,A〉, π);
11 if P (s) is defined then
12 〈p, a〉 = π(s);
13 for e ∈ Effa do
14 Open.add(Prog(s, a, e));

15 ProcessDeadends();
16 return π;

Algorithm 1: Generate Strong Cyclic Plan

The state-action avoidance, and the succinct states rep-
resentations in PRP demonstrate an improved performance
over existing state-of-the-art FOND planners (Muise, McIl-
raith, and Beck 2012). More recently, PRP was extended
for use in FOND problems with conditional action effects
(Muise, McIlraith, and Belle 2014) thus extending the class
of domains that PRP can solve.

Similarly to RFF, Prob-PRP constructs a robust policy
gradually by exploring weak plans. However, PRP does not
store a complete representation of the states, but the portion
of the states relevant to the policy computed via regression.
The partial state representation enhances the possibilities of
GENPLANPAIRS to generate a plan for a (partial) state al-
ready handled by the policy, providing substantial savings
over approaches that use the complete state. Forbidden-state
pairs are an effective mechanism to avoid dead ends. Such
a mechanism is non-existent in RFF, leading to few alterna-
tives to avoid dead ends already added to the envelope.

4.2 From FOND to MAXPROB
Given a MAXPROB problem P , consider the FOND prob-
lem FOND(P) that results from ignoring the transition prob-
abilities in P . The strong cyclic solutions π in FOND(P)
are certainly well-defined policies in P because the condi-
tions s |= Preπ(s) hold equally in P and in FOND(P). Fur-
thermore, all (fair) executions of π in FOND(P) eventually
reach the goal. Therefore, all executions of π in P reach
the goal with probability 1, independently of the probability
distribution on the action effects, and π is also optimal in P .
Conversely, if π is an optimal policy in P that reaches the
goal with probability 1, then every reachable state s has a
weak plan that leads to the goal also in FOND(P), because
π is well defined in the FOND problem. Therefore, π is a
strong cyclic solution in FOND(P).

Lemma 1. LetP be a probabilistic planning problem. If π is
a well-defined policy in FOND(P), then π is a well-defined
policy in P .

Lemma 2. Let P be a MAXPROB planning problem. If π is
a strong cyclic solution for FOND(P), then π is an optimal
solution for P that reaches the goal with probability 1.

Lemma 3. A MAXPROB planning problem P has an op-
timal solution that reaches the goal with probability 1 iff
FOND(P) has a strong cyclic solution.

All strong cyclic solutions in FOND(P) are equally opti-
mal to the MAXPROB problem P . The similarities between
the FOND and MAXPROB formalisms, as well as the equiv-
alence of their solutions under certain conditions, suggest
that existing approaches in FOND planning can be adapted
to solve MAXPROB problems.

4.3 From PRP to Prob-PRP
The compact representation of states in PRP makes it possi-
ble to find small policies for FOND problems. We take ad-
vantage of the core similarities between FOND and MAX-
PROB formalisms, and define Prob-PRP as an extension of
PRP that finds MAXPROB solutions to probabilistic plan-
ning problems and provides limited optimality guarantees.

Definition 1 (Plain Prob-PRP). The plain Prob-PRP algo-
rithm on a MAXPROB problem P is a call to PRP on the
mapped problem FOND(P).

The soundness of PRP (Muise, McIlraith, and Beck
2012), and the result of Lemma 1 guarantee that the solu-
tions found by PRP in FOND(P) are in fact well defined so-
lutions for P (Lemma 4). PRP is guaranteed to find a strong
cyclic solution to FOND(P) whenever one exists (Theorem
1), and FOND(P) has a strong cyclic solution whenever a
proper plan exists for P (Theorem 3). Therefore, PRP is
guaranteed to find a a strong cyclic solution to FOND(P)
iff a plan with probability of success 1 exists for P . The last
condition occurs in domains with avoidable or no dead ends.

Lemma 4. The plain Prob-PRP algorithm is sound.

Theorem 2. The plain Prob-PRP algorithm is guaranteed
to find an optimal solution to MAXPROB problems with
avoidable or no dead ends.

Corollary 1. Given a MAXPROB problem P , if the plain
Prob-PRP algorithm returns a solution where the probabil-
ity of reaching a goal state is less than 1, then P has un-
avoidable dead ends.

The MAXPROB solutions found by Prob-PRP are com-
puted offline, with the advantage that no further computa-
tion is needed during execution. Computing offline solutions
makes it possible to estimate the quality prior to execution
– e.g. using Monte Carlo simulations as done in Prob-PRP–
or even to compute it analytically. A consequence of The-
orem 2 is that, if Prob-PRP returns a solution to P whose
probability of success is lower than 1, then the problem P
necessarily has unavoidable dead ends (Corollary 1).

4.4 Towards Better Quality Solutions
We propose two mechanisms that extend the plain version
of Prob-PRP and potentially improve the quality of the solu-
tions while maintaining the soundness of the solutions and
the validity of Theorem 2.

Full Exploration in Last Iteration The forbidden state-
action pairs mechanism in PRP may reduce the size of the
search space dramatically, and improve the efficiency of the
algorithm in searching for strong cyclic plans (Muise, McIl-
raith, and Beck 2012). This mechanism is also useful in
solving MAXPROB problems with avoidable dead ends, but
the search remains incomplete in domains with unavoidable
dead ends. More precisely, when a state-action pair leads
recognizably to a dead end, it is forbidden from successive
searches. That direction in the search, however, may still
lead to a goal state with non-zero probability.

Based on the previous observation, Prob-PRP performs a
final iteration, where the best incumbent policy is used to
initialize the policy on line 1 of Algorithm 1, and the prob-
lem is solved with forbidden state-action pairs and dead end
detection disabled. The returned policy handles a superset of
the states that it was able to previously, thus improving the
quality of the solution. This final pass optimistically closes
every Open state in a best effort manner.

Exploring Most Likely Plans Non-deterministic plan-
ning algorithms, like RFF or PRP, extend the policy under
construction with plans that map unhandled states to any
state that has been previously handled by the policy. This
mechanism benefits creation of smaller policies, but the sub-
sequent plans to the goal may be unnecessarily large, as
the previous example illustrates. In order to reduce this ef-
fect, Prob-PRP skews the search towards short plans that
have high likelihood. Previously, this method has been used
to search plans in the determinization relaxation that min-
imise the risk of failing (c.f. (Jimenez, Coles, and Smith
2006)). Formally, the likelihood of a state-action plan P =
s0, a0, s1, a1, . . . , an−1, sn is defined as the product:

LP = Πn−1
i=0 T (si, ai, si+1)

The likelihoodLP measures how probable it is that the se-
quence of states s0, s1, . . . , sn are reached when the stochas-
tic plan a0, a2, . . . , an−1 is executed. In certain domains,
like triangle-tireworld or climber, the most probable out-
come of the actions correspond to the desired effects that
lead to the goal situation (Little and Thiébaux 2007). A pri-
ori, in these kinds of domains it seems reasonable to give
preference to exploring the deterministic plans that maxi-
mize the likelihood. Loopy or unnecessarily large plans that
belong to the policy have necessarily lower likelihood than
alternative shorter plans. Subsequently, the expected length
of the plans is potentially low.

Prob-PRP modifies the search process in GENPLAN-
PAIRS performed by PRP, so that the plans that maximize
the likelihood function are given preference to be explored.
Since maximizing LP is equivalent to maximizing the log-
likelihood lP := log(LP) = Σn−1i=0 log(T (si, ai, si+1)), and
the latter expression offers a clear computational advantage,
Prob-PRP maximizes the log-likelihood of the plans instead.

5 Evaluation
We compared the performance of Prob-PRP with RFF in a
selection of benchmark problems from past IPPC competi-
tions. The problems are described using standard PPDDL
files with probabilistic outcomes and occasionally with con-
ditional action effects (Fox and Long 2003). When required,
the goal was modified to request MAXPROB solutions. We
used the client-server architecture MDPSim – used in past
editions of the IPPC – to simulate the execution of the solu-
tions produced by each planner. All experiments were con-
ducted on a Linux PC with an Intel Xeon W3550 CPU
@3.07GHz, limiting the memory usage of each process to
2GB and the run time to 30 minutes.

The probabilistic planner Prob-PRP is implemented as an
extension of the FOND planner PRP, and inherits the ca-
pability to handle problems with universally quantified for-
mulas and conditional effects. We used the configuration
of RFF that reported best results in (Teichteil-Königsbuch,
Kuter, and Infantes 2010), namely, the most probable out-
come determinization (so that the planner can scale to handle
larger instances), and the best goals goal-selection strategy
with policy optimization enabled. We fixed the probability
of failure threshold ρ to 0.2, a number that results in good
policy success rates without compromising the run times.

The results of the tests are shown in Table 1. The so-
lution to each problem was run 100 times. For each plan-
ner, we report the percentage of successful runs, the average
length of the successful plans, the average size of the poli-
cies, and the run times – that include only the computation
time spent on generating the policy, and exclude the domain
pre-processing time (usually negligible). For RFF, the av-
erage number of replans during successful runs needed by
RFF is also reported, where the computation of the initial
policy is counted as a replan.

5.1 General Analysis
Both Prob-PRP and RFF algorithms perform Monte Carlo
simulations to estimate the probability of success of the poli-
cies found. We set the number of Monte Carlo samples to
1000, a number that does not compromise the execution
time significantly and should be, in principle, high enough to
provide sufficiently accurate estimations. We found that the
cutoff mechanism in RFF is insufficient to compute reliable
policies with sufficient guarantees. Indeed, the actual failure
rate of the initial policy obtained by RFF in boxworld-p02
and boxworld-p12 is nearly 50% – clearly higher than ρ –
suggesting that the probability of failure estimated by RFF
is not accurate even with 1000 Monte Carlo samples.

The average number of RFF replans with ρ = 0.2 is lower
than 2 in most of the problems. In practice, decreasing ρ re-
sults in a lower number of replans, but the run times increase
significantly while the success rate of the solutions don’t.
The run times of Prob-PRP are comparable or lower than
those of RFF with ρ = 0.2. More precisely, in many prob-
lems the run time needed by Prob-PRP to compute an offline
solution is lower than the time needed by RFF to compute
even the initial policy.

The size of the solutions found by Prob-PRP are com-
parable to those found by RFF, but it seems that Prob-PRP

RFF Prob-PRP

Problem % L S T R % L S T

blocksworld-p01 100 23,2 18,0 0,02 1,00 100 20,9 17 0,00
blocksworld-p02 100 22,1 18,0 0,02 1,00 100 20,8 17 0,02
blocksworld-p03 100 22,6 18,0 0,02 1,00 100 20,8 17 0,00
blocksworld-p04 100 22,4 18,0 0,02 1,00 100 20,9 17 0,02
blocksworld-p05 100 64,9 60,6 0,72 1,01 100 50,0 43 0,16
blocksworld-p06 100 64,3 59,9 0,69 1,00 100 50,6 43 0,16
blocksworld-p07 100 64,3 60,6 0,69 1,01 100 49,5 43 0,16
blocksworld-p08 100 64,5 60,0 0,69 1,00 100 50,0 43 0,16
blocksworld-p09 100 40,5 38,0 0,67 1,00 100 68,4 61 0,46
blocksworld-p10 100 41,2 39,1 0,68 1,03 100 68,8 61 0,46
blocksworld-p11 100 42,4 38,7 0,66 1,02 100 68,6 61 0,46
blocksworld-p12 100 41,7 38,4 0,68 1,01 100 68,4 61 0,46
blocksworld-p13 0 ∞ 117 16,5 1,00 100 125 107 1,38
blocksworld-p14 0 ∞ 117 16,6 1,00 100 125 107 1,40
blocksworld-p15 0 ∞ 117 16,6 1,00 100 125 107 1,38

boxworld-p01 100 29,4 49,3 0,43 1,27 100 31,3 57 0,06
boxworld-p02 100 29,3 49,2 0,43 1,26 100 31,4 57 0,06
boxworld-p03 100 29,0 47,9 0,38 1,24 100 31,4 57 0,06
boxworld-p04 100 39,4 75,7 1,73 1,31 100 38,6 105 0,24
boxworld-p05 100 39,3 80,9 1,77 1,38 100 38,5 105 0,24
boxworld-p06 100 64,9 166 13,0 1,35 100 68,1 266 2,34
boxworld-p07 100 64,5 160 13,0 1,29 100 68,1 266 2,32
boxworld-p08 100 64,6 125 7,5 1,30 100 62,4 207 1,82
boxworld-p09 100 64,7 132 7,56 1,38 100 62,5 207 1,84
boxworld-p10 100 74,3 199 22,9 1,37 100 102 415 17,2
boxworld-p11 100 73,3 183 22,3 1,27 100 102 415 17,9
boxworld-p12 100 74,1 199 23,3 1,36 100 102 415 18,0
boxworld-p13 0 ∞ 344 35,6 1,94 100 178 906 130
boxworld-p14 0 ∞ 325 34,9 1,83 100 177 906 157
boxworld-p15 0 ∞ 347 35,2 1,96 100 177 906 160

ex-blocksworld-p01 60 8,0 20,8 0,05 1,06 100 8,0 9 0,00
ex-blocksworld-p02 28 12,0 36,8 0,11 1,16 54 14,0 15 0,02
ex-blocksworld-p03 38 10,0 31,8 0,10 1,14 60 10,0 12 0,12
ex-blocksworld-p04 52 14,0 49,5 0,09 1,13 59 32,9 18 0,06
ex-blocksworld-p05 100 6,0 11,6 0,01 1,09 100 6,0 11 0,02
ex-blocksworld-p06 90 12,6 62,2 0,10 1,35 96 20,7 28 0,34
ex-blocksworld-p07 60 12,0 36,2 0,20 1,12 100 12,0 21 0,04
ex-blocksworld-p08 7 24,0 68,9 0,64 1,20 36 30,0 32 0,38
ex-blocksworld-p09 13 25,2 95,7 1,07 1,23 – – – t
ex-blocksworld-p10 2 36,0 76,8 0,97 1,24 3 116 105 14,3
ex-blocksworld-p11 13 32,0 92,7 1,59 1,31 13 93,4 82 7,42
ex-blocksworld-p12 1 38,0 96,6 2,15 1,21 2 91,5 78 6,28
ex-blocksworld-p13 10 59,2 451 5,76 1,45 – – – t
ex-blocksworld-p14 0 0 130 116 1,24 – – – t
ex-blocksworld-p15 9 43,6 172 8,91 1,28 – – – t

schedule-p02 100 59,2 5,00 0,01 1,00 100 51,0 7 0,04
schedule-p03 100 100 5,00 0,01 1,00 100 95,0 7 0,12
schedule-p04 96 57,8 14,3 0,02 1,12 100 46,9 21 0,14
schedule-p05 89 116 14,5 0,03 1,15 100 92,0 16 0,18
schedule-p06 45 364 141 1,42 3,01 – – m –
schedule-p07 36 390 146 1,34 3,11 – – m –
schedule-p08 34 354 146 3,94 3,17 – – m –
schedule-p09 4 402 317 3,17 4,31 – – m –

triangle-tireworld-p01 100 5,5 22,7 0,02 1,07 100 5,5 10 0,00
triangle-tireworld-p02 100 13,2 80,7 0,17 1,32 100 12,0 23 0,00
triangle-tireworld-p03 100 21,8 135 0,66 1,13 100 18,5 38 0,02
triangle-tireworld-p04 100 29,6 248 1,76 1,20 100 25,1 55 0,06
triangle-tireworld-p05 100 37,6 348 3,76 1,12 100 31,5 74 0,10
triangle-tireworld-p06 100 45,6 490 7,98 1,14 100 37,9 95 0,22
triangle-tireworld-p07 100 53,4 714 17,4 1,21 100 44,5 118 0,42
triangle-tireworld-p08 100 61,5 958 36,5 1,19 100 50,9 143 0,72
triangle-tireworld-p09 100 69,5 1222 64,1 1,20 100 57,5 170 1,40
triangle-tireworld-p10 100 77,6 1595 111 1,21 100 64,0 199 2,38

Table 1: Performance of RFF and Prob-PRP. % indicates the
percentage of successful executions; S indicates the size of
the policy; T indicates run-time, in seconds and R indicates
the number of replans in RFF. Dash (–) indicates that the
experiments ran out of time (t) or memory (m).

scales better in some domains. The compact state represen-
tation, and the forbidden-state action mechanisms in Prob-
PRP prove efficient in the triangle-tireworld domain, lead-
ing to solutions that are orders of magnitude smaller, and
computed orders of magnitude faster compared to RFF.

5.2 Analysis of the Probability of Success
We split the analysis of the probability of success between
problems without dead ends, problems with avoidable dead
ends, and problems with non-avoidable dead ends.

Problems without Dead Ends Prob-PRP solves all the
problems without dead ends in lower run times than RFF.
The probabilistic reasoning overhead performed by Prob-
PRP in the blocksworld, a simple domain without dead ends,
does not translate into bigger run times than those in RFF.

We identified a looping behaviour in the solutions
found by RFF to blocksworld-p13, blocksworld-p14, and
blocksworld-p15, most likely originating in the policy op-
timization mechanism. The problem-goals strategy does not
make use of the policy optimization mechanism, but fails
to scale up to handle big problem instances (Teichteil-
Königsbuch, Kuter, and Infantes 2010). We also found that
the cutoff mechanism in RFF is insufficient to compute re-
liable policies with sufficient guarantees. Indeed, the actual
success rate obtained in boxworld-p04 and boxworld-p12 is
significantly lower than the threshold 1− ρ, suggesting that
the probability of failure estimated by RFF is not accurate.

Problems with Avoidable Dead Ends The triangle-
tireworld, introduced in (Little and Thiébaux 2007), requires
a car to drive to a goal location via a number of intermediate
locations. During each move, there is a possibility of get-
ting a flat tire, and only some locations have spare tires. It
is a challenging domain because both the size of the state
space and the number of deadend states increase exponen-
tially with the number of variables in the problem. We used
the variant in which the car cannot carry a tire. The forbid-
den state-action mechanism makes it possible to identify the
causes that lead to dead end states, and reduce the size of
the state space significantly. Prob-PRP is able to optimally
solve big instances of the triangle-tireworld domain orders
of magnitude faster than RFF.

Problems with Unavoidable Dead Ends Neither RFF nor
Prob-PRP offers guarantees on the optimality of the solu-
tions in problems with unavoidable dead ends. As discussed
earlier, RFF has a poor mechanism for backtracking once a
bad plan that leads to a dead end has been explored. The for-
bidden state-action pairs mechanism and the full exploration
in the last iteration performed by Prob-PRP makes it possi-
ble to improve the quality of the solutions relative to RFF in
the exploding-blocksworld and schedule domains.

We again detected a looping behavior in some of the solu-
tions given by RFF to the exploding-blocksworld problems.
Prob-PRP exceeds the time limit (t) of 30 minutes in four in-
stances. In ex-blocksworld-p09, this is not to the run-time it-
self, but to the time needed to decode and process the policy
in a manageable format to be used by MDPSim, thus main-
taining dead end avoidance. In the other instances, Prob-PRP
does not converge within the time limits. Similarly, Prob-
PRP exceeded the memory limits (m) in large instances of
the schedule domain before convergence of the algorithm.
These issues will be fixed by enabling an anytime mode in
Prob-PRP, making it possible to output the best incumbent
policy before the time or memory limits are reached.

5.3 Analysis of the Expected Length of the Plans
The policy optimization mechanism used by RFF prioritizes
the search for plans that reach a goal state in the lowest
number of state transitions possible. The results reported
in Table 1 reflect that, on average, the plan length of the
successful runs of the solutions computed by Prob-PRP are
in the same order of magnitude than those of the solutions
computed by RFF. In this section we evaluate the impact of
the log-likelihood plan maximization strategy used by Prob-
PRP towards the construction of policies with smaller ex-
pected plan length.

We compared the solutions obtained by Prob-PRP with a
version that omits probabilities in the search of deterministic
plans, and considers uniform action costs instead. We refer
to this variation as Prob-PRPuc. Note that this is not the same
as assuming uniformly distributed outcome probabilities: a
plan π has cost equal to its length regardless of the branch-
ing factor of the non-deterministic actions in π, whereas the
branching factor influences the derived log-likelihood cost.

Table 2 shows the quality, run time, size, and expected
plan length of the MAXPROB solutions to the different
probabilistic planning problems obtained by Prob-PRP and
Prob-PRPuc. The overhead in Prob-PRP due to the prob-
abilistic reasoning does not penalize the overall run time
significantly, that remains in the same order of magnitude.
Both algorithms find essentially the same solutions to the
triangle-tireworld problems – where the optimal solutions
w.r.t. success rate extend to stochastic shortest plan solu-
tions quite straightforwardly. In the blocksworld domain,
Prob-PRP obtains smaller policies with, in general, smaller
expected plan length. In the boxworld domain, both algo-
rithms find policies that are similar in size, but the expected
plan length of the solutions found by Prob-PRP is con-
siderably smaller in big problem instances. The exploding-
blocksworld is a domain with many dead end states. In gen-
eral, the size of the policies and the expected length of the
plans found by each algorithm differ. In this domain, the
most likely paths are not necessarily the more robust and
the quality of the solutions do not seem to rely directly on
a likelihood maximization criterion, nor on the election of a
good heuristic to find deterministic plans. Rather, the quality
of the solution appears to depend on a serendipitous election
of the right sequence of actions during the search process.

The inconsistent quality of the plans obtained for the
exploding-blocksworld domain suggests that the heuristic
used by Prob-PRP in the search of deterministic weak
plans is not informative in this domain. We obtained the
best global results using a best-first search with the hFF

heuristic, although the combination of an A? or breadth-
first search with other heuristics is also competitive in cer-
tain problems. In particular, a best-first search with the ad-
ditive heuristic hadd , which is usually informative, leads
to similar results in most of the problems. Remarkably, in
the blocksworld domain, the hadd heuristic performed bet-
ter than the hFF heuristic, generating smaller policies with
smaller expected length. In the last three instances, this con-
figuration finds solutions with 58 states and an expected plan
length of 64 transitions, thus reducing the size and expected
plan length to one half of the results reported in Table 2.

Prob-PRPuc Prob-PRP

problem % T S L % T S L

blocksworld-p01 100 0,02 21 24 100 0,00 17 19
blocksworld-p02 100 0,00 21 24 100 0,02 17 19
blocksworld-p03 100 0,00 21 24 100 0,02 17 19
blocksworld-p04 100 0,00 21 24 100 0,02 17 19
blocksworld-p05 100 0,14 35 39 100 0,18 43 47
blocksworld-p06 100 0,14 35 39 100 0,16 43 47
blocksworld-p07 100 0,14 35 39 100 0,16 43 47
blocksworld-p08 100 0,14 35 39 100 0,16 43 47
blocksworld-p09 100 0,46 71 75 100 0,48 61 65
blocksworld-p10 100 0,44 71 75 100 0,46 61 65
blocksworld-p11 100 0,44 71 75 100 0,46 61 65
blocksworld-p12 100 0,46 71 75 100 0,46 61 65
blocksworld-p13 100 1,38 110 119 100 1,40 107 115
blocksworld-p14 100 1,38 110 119 100 1,44 107 115
blocksworld-p15 100 1,38 110 119 100 1,40 107 115

boxworld-p01 100 0,14 57 156 100 0,06 57 32
boxworld-p02 100 0,16 57 156 100 0,06 57 32
boxworld-p03 100 0,14 57 156 100 0,06 57 32
boxworld-p04 100 0,36 101 86 100 0,26 105 39
boxworld-p05 100 0,34 101 86 100 0,28 105 39
boxworld-p06 100 6,56 269 363 100 2,44 266 69
boxworld-p07 100 6,60 269 363 100 2,44 266 69
boxworld-p08 100 1,44 166 170 100 1,92 207 63
boxworld-p09 100 1,46 166 170 100 1,92 207 63
boxworld-p10 100 9,74 301 328 100 18,2 415 102
boxworld-p11 100 9,84 301 328 100 18,2 415 102
boxworld-p12 100 9,86 301 328 100 18,0 415 102
boxworld-p13 100 576 949 1000+ 100 161 906 178
boxworld-p14 100 507 949 1000+ 100 160 906 178
boxworld-p15 100 586 949 1000+ 100 159 906 178

ex-blocksworld-p01 100 0,00 9 9 100 0,00 9 9
ex-blocksworld-p02 53,9 0,04 15 10 53,9 0,02 15 10
ex-blocksworld-p03 59,3 0,16 11 9 59,7 0,14 12 8
ex-blocksworld-p04 60,1 0,06 16 21 61 0,06 18 21
ex-blocksworld-p05 100 0,02 8 23 100 0,02 11 7
ex-blocksworld-p06 96,3 0,68 25 22 96,8 0,32 28 22
ex-blocksworld-p07 100 1,76 14 31 100 0,04 21 13
ex-blocksworld-p08 39,2 1,00 32 23 36,6 0,38 32 18
ex-blocksworld-p09 22,8 10,3 45 31 10,2 58,7 77 28
ex-blocksworld-p10 10,2 4,08 52 28 4,6 14,0 105 26
ex-blocksworld-p11 9,6 33,8 89 29 19,2 7,20 82 27
ex-blocksworld-p12 – – m – 2,4 5,90 78 17

schedule-p02 100 0,04 7 48 100 0,04 7 48
schedule-p03 100 0,12 7 87 100 0,12 7 87
schedule-p04 100 0,08 16 43 100 0,14 21 46
schedule-p05 100 0,18 16 96 100 0,20 16 95

triangle-tireworld-p01 100 0,00 10 6 100 0,00 10 6
triangle-tireworld-p02 100 0,00 23 12 100 0,00 23 12
triangle-tireworld-p03 100 0,02 38 19 100 0,02 38 19
triangle-tireworld-p04 100 0,06 55 25 100 0,06 55 25
triangle-tireworld-p05 100 0,12 74 32 100 0,12 74 32
triangle-tireworld-p06 100 0,20 95 39 100 0,20 95 39
triangle-tireworld-p07 100 0,32 118 45 100 0,36 118 45
triangle-tireworld-p08 100 0,54 143 52 100 0,62 143 52
triangle-tireworld-p09 100 0,94 170 58 100 1,14 170 58
triangle-tireworld-p10 100 1,56 199 65 100 1,84 199 65

Table 2: Solutions obtained by Prob-PRP using uniform ac-
tion costs and log-prob action costs. % indicates the percent-
age of successful executions; T indicates run time, in sec-
onds; S indicates the size of the policy; and L indicates the
average length of the plans.

6 Extended Evaluation
In this section we introduce the benefits of a planner to be
robust to small probability perturbations and different order-
ings used in the declaration of the actions.

6.1 Robustness to Probability Perturbations
The probabilistic planning model specifies the probability
distribution of the outcomes of the actions, and is assumed
to be known by the planner. In many real problems, however,
these probabilities are unknown, or not known with com-
plete accuracy. Ideally, the probability of success of a good

solution is robust to small fluctuations in these probabilities.
In practice, the search space explored by probabilistic algo-
rithms exhibit phase transitions that change the structure of
the solutions found. These phase transitions are most evident
when the most probable outcome of the action changes.

In this section we evaluate the robustness of the solutions
in the face of small deviations in the transition probabilities
declared in the triangle-tireworld model. In this domain, the
probability of a flat tire after moving the car is 0.5. We in-
formed the planners with a slightly inaccurate probability,
0.45, breaking the uniform non-determinism of the action
move-car. Strong solutions to the problem need to consider
the faulty effect, that is no longer the most probable out-
come. For that reason, we configured RFF to use the all-
outcomes determinization.

RFF Prob-PRP

problem % sol % sim % sol % sim

triangle-tireworld-p01 56.7 53.4 100 100
triangle-tireworld-p02 16.8 12.9 100 100
triangle-tireworld-p03 4.9 3.2 100 100
triangle-tireworld-p04 1.8 0.9 100 100
triangle-tireworld-p05 0.5 0.2 100 100
triangle-tireworld-p06 0.0 0.0 100 100
triangle-tireworld-p07 0.0 0.0 100 100
triangle-tireworld-p08 0.1 0.0 100 100
triangle-tireworld-p09 0.0 0.1 100 100
triangle-tireworld-p10 0.0 0.0 100 100

Table 3: Quality of the solutions in the triangle-tireworld
domain when the probability of having a flat tire is perturbed
from 0.5 to 0.45.

Table 3 shows the probability of success for solutions
computed by RFF and Prob-PRP. The columns % sol and %
sim in Table 3 indicate the probability of success when the
environment model corresponds, respectively, to the model
given to the planner, or to the original model.

The solutions found by RFF are not optimal anymore.
Even when using the all-outcomes determinization, FF
skews the search towards the shortest, but also optimistic
plans that go through unsafe locations not equipped with a
spare. Therefore, the envelope constructed by RFF does not
converge to an optimal policy.

The success rate of the solutions found by RFF drops dra-
matically from the 100% achieved in the original domain de-
scription, and the performance in the simulation has an even
lower percentage of success. On the other hand, since the
triangle-tireworld domain has avoidable dead ends, Prob-
PRP is guaranteed to find a strong cyclic independent of the
transition probabilities of the model.

6.2 Robustness to Action Orderings
For evaluation purposes, we swapped the order in the decla-
ration of the (equally probable) effects of the action move-
car. In the new model, the first effect is optimistic and con-
siders that the car’s tire will not become flat, whereas the
second effect is pessimistic and considers that the car’s tire
will become flat. With this ordering, the deterministic plans
computed by FF in the most probable determinization of the
problem are optimistic and not robust. As a consequence,
RFF consistently fails to find robust policies, and the quality

of the solutions drops dramatically reaching a failure rate of
100% in the fourth instance. On the other hand, Prob-PRP is
guaranteed to find optimal solutions to problems with avoid-
able dead ends regardless of the order used in the declaration
of the actions and probability fluctuations.

7 Summary and Discussion
We introduced Prob-PRP, an algorithm that extends the
state-of-the-art FOND planner PRP to compute solutions to
MAXPROB problems. Prob-PRP is sound and complete for
problems with avoidable dead ends. Probabilistic planning
in the presence of avoidable and/or unavoidable dead ends
is a challenging and important task (Kolobov, Mausam, and
Weld 2012). We detailed a number of related approaches.
Perhaps most similar to Prob-PRP’s use of partial state poli-
cies and forbidden state-action pairs are the “basis func-
tions” and “nogoods” computed by the GOTH planner and
SixthSense algorithm (Kolobov and Weld 2010). Key dis-
tinctions include how Prob-PRP uses and updates the policy
during the search for a plan, and how our dead ends are com-
puted and used as forbidden state-action pairs.

MAXPROB solutions found by Prob-PRP are often opti-
mal, and outperform the solutions found by RFF. We exam-
ined different properties that make for a good quality pol-
icy. Prob-PRP’s solutions nicely balance their compactness
and the expected length of the plans. Moreover, Prob-PRP
demonstrates better scalability than RFF, and produces of-
fline solutions. Computing offline solutions makes it possi-
ble to estimate the probability of success prior to execution,
thus offering a better guarantee of the policy’s quality than
the solutions computed by online planners. Moreover, the
guarantees on the optimality of the solutions in Prob-PRP
makes it robust to small variations in the transition probabil-
ities such as those found from an imprecise planning model.

We found that different search techniques for the deter-
ministic subsolver – namely, a combination of breadth-first
search, best-first search, A?, different heuristics, and uni-
form or probabilistic costs – offer similar results that are
sometimes not of high quality. Whether the selection of an
effective heuristic or search algorithm will significantly im-
prove the results in these types of domains remains an open
question. In future work we will explore these and other re-
lated issues associated with finding high-quality policies for
such non-deterministic domains.

Establishing the correspondence of the computational
core that is shared by FOND and probabilistic planning en-
ables advances in either discipline to be exploited by the
other. In this paper we demonstrated this by exploiting com-
pact policy representations, relevance reasoning, and dead
end avoidance developed within the FOND community and
used these to advance the state of the art in probabilistic
planning. Moving forward, we aim to inspire new methods
for solving FOND problems using some of the insights from
probabilistic planning, such as sample-based search.
Acknowledgements: The authors gratefully acknowledge
funding from the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and from Australian
Research Council (ARC) discovery grant DP130102825.

References
Bertsekas, D. P., and Tsitsiklis, J. N. 1991. An Analysis of Stochas-
tic Shortest Path Problems. Mathematics of Operations Research
16(3):580–595.
Bonet, B., and Geffner, H. 2001. Planning as heuristic search.
Artificial Intelligence 129(1-2):5–33.
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improving the
Convergence of Real-Time Dynamic Programming. In ICAPS, 12–
21.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003. Weak,
strong, and strong cyclic planning via symbolic model checking.
Artificial Intelligence 147:35–84.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to PDDL
for expressing temporal planning domains. Journal of Artificial
Intelligence Research 20:61–124.
Hoffmann, J., and Nebel, B. 2001. The FF planning system: Fast
plan generation through heuristic search. Journal of Artificial In-
telligence Research 14:263–312.
Jimenez, S.; Coles, A.; and Smith, A. 2006. Planning in proba-
bilistic domains using a deterministic numeric planner. PlanSIG.
Keller, T., and Eyerich, P. 2012. PROST: Probabilistic Planning
Based on UCT. ICAPS.
Kolobov, A., and Weld, D. S. 2010. SixthSense: Fast and reliable
recognition of dead ends in MDPs. Twenty-Fourth AAAI Confer-
ence on Artificial Intelligence.
Kolobov, A.; Mausam; Weld, D. S.; and Geffner, H. 2011. Heuris-
tic search for generalized stochastic shortest path MDPs. ICAPS
130–137.
Kolobov, A.; Mausam; and Weld, D. S. 2012. A theory of goal-
oriented MDPs with dead ends. In Proceedings of the 28th Confer-
ence on Uncertainty in Artificial Intelligence, 438–447.
Little, I., and Thiébaux, S. 2007. Probabilistic planning vs. replan-
ning. ICAPS Workshop on IPC: Past, Present and Future.
Mattmüller, R.; Ortlieb, M.; Helmert, M.; and Bercher, P. 2010.
Pattern database heuristics for fully observable nondeterministic
planning. In ICAPS, 105–112.
Muise, C.; McIlraith, S. A.; and Beck, J. C. 2012. Improved Non-
deterministic Planning by Exploiting State Relevance. In ICAPS,
172–180.
Muise, C.; McIlraith, S. A.; and Belle, V. 2014. Non-deterministic
planning with conditional effects. In ICAPS, 370–374.
Puterman, M. 1994. Markov Decision Processes: Discrete Dy-
namic Programming. New York: Wiley.
Teichteil-Königsbuch, F.; Kuter, U.; and Infantes, G. 2010. In-
cremental plan aggregation for generating policies in MDPs. In
Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: volume 1, number 1, 1231–1238.
Teichteil-Königsbuch, F.; Vidal, V.; and Infantes, G. 2011. Extend-
ing Classical Planning Heuristics to Probabilistic Planning with
Dead-Ends. AAAI 1017–1022.
Teichteil-Königsbuch, F. 2012. Stochastic Safest and Shortest Path
Problems. AAAI 1825–1831.
Trevizan, F., and Veloso, M. 2012. Short-Sighted Stochastic Short-
est Path Problems. ICAPS.
Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan: A baseline for
probabilistic planning. In ICAPS, 352–359.

