
Bridging the Gap Between LTL Synthesis and Automated Planning

Alberto Camacho†, Jorge A. Baier‡, Christian Muise?, Sheila A. McIlraith†
†Department of Computer Science, University of Toronto

‡Pontificia Universidad Católica de Chile, and Chilean Center for Semantic Web Research
?CSAIL, Massachusetts Institute of Technology

†{acamacho,sheila}@cs.toronto.edu, ‡jabaier@ing.puc.cl, ?cjmuise@mit.edu

Abstract

Linear Temporal Logic (LTL) synthesis can be understood
as the problem of building a controller that defines a win-
ning strategy, for a two-player game against the environment,
where the objective is to satisfy a given LTL formula. It is
an important problem with applications in software synthe-
sis, including controller synthesis. Recent work has explored
the close connection between automated planning and LTL
synthesis but has not provided a full mapping between the
two problems nor have its practical implications been ex-
plored. In this paper we establish the correspondence be-
tween LTL synthesis and fully observable non-deterministic
(FOND) planning. We study LTL interpreted over both finite
and infinite traces. We also provide the first explicit compi-
lation that translates an LTL synthesis problem to a FOND
problem. Experiments with state-of-the-art LTL FOND and
synthesis solvers show automated planning to be a viable and
effective tool for highly structured LTL synthesis problems.

1 Introduction
The problem of synthesizing software, including controllers,
from logical specification is a fundamental problem in AI
and computer science more generally. Church’s synthe-
sis problem was first posed by Church in 1957 in the con-
text of synthesizing digital circuits from a logical specifi-
cation (Church 1957) and is considered one of the most
challenging problems in reactive systems (Piterman et al.
2006). Two common approaches to solving the problem
have emerged: reducing the problem to the emptiness prob-
lem of tree automata, and characterizing the problem as a
two-player game.

In 1989, Pnueli and Rosner examined the problem of re-
active synthesis using Linear Temporal Logic (LTL) (Pnueli
1977) as the specification language (what we refer to here as
“LTL synthesis”) viewing the problem as a two-player game,
and showing that this problem was 2EXPTIME-complete
(Pnueli and Rosner 1989). Over the years, this discouraging
result has been mitigated by the identification of several re-
stricted classes of LTL for which the complexity of the syn-
thesis problem need not be so high (e.g., (Asarin et al. 1998;
Alur and La Torre 2004)). More recently Piterman, Pnueli,
and Sa’ar examined the synthesis of reactive designs when
the LTL specification was restricted to the class of so-called
Generalized Reactivity(1) (GR1) formulae, presenting an

N3-time algorithm which checks whether the formula is re-
alizable, and in the case where it is, constructs an automa-
ton representing one of the possible implementing circuits
(Piterman et al. 2006). Today, a number of synthesis tools
exist with varying effectiveness (e.g., Acacia+ (Bohy et al.
2012), Lily (Jobstmann and Bloem 2006)).

Recent work has explored various connections between
automated planning and synthesis (e.g., (De Giacomo et al.
2010; Patrizi et al. 2013; Sardiña and D’Ippolito 2015;
De Giacomo and Vardi 2015)) but has not provided a full
mapping between the two problems, nor have the practi-
cal implications of such a mapping been explored from an
automated planning perspective. In this paper we inves-
tigate the relationship between (LTL) synthesis and auto-
mated planning, and in particular (LTL) Fully Observable
Non-Deterministic (FOND) planning. We do so by leverag-
ing a correspondence between FOND and 2-player games.
This work is inspired by significant recent advances in the
computational efficiency of FOND planning that have pro-
duced FOND planners that scale well in many domains (e.g.,
NDP (Alford et al. 2014), FIP (Fu et al. 2011), myND
(Mattmüller et al. 2010) and PRP (Muise et al. 2012)).
Our insights are that just as SAT can be (and has been) used
as a black-box solver for a myriad of problems that can be
reduced to SAT, so too can FOND be used as a black-box
solver for suitable problems. Establishing the connection
between FOND and 2-player games not only provides a con-
nection to LTL synthesis – the primary subject of this ex-
ploration – it also provides the key to leveraging FOND for
other problems.

In Section 3 we establish the correspondence between
LTL synthesis and strong solutions to FOND planning. This
is followed in Section 4 by the first approach to automati-
cally translate a realizability problem, given by an LTL spec-
ification, into a planning problem, described in the Planning
Domain Definition Language (PDDL), the de facto standard
input language for automated planners. Experiments with
state-of-the-art LTL synthesis and FOND solvers illustrate
that the choice of formalism and solver technology for a
problem can have a dramatic impact. We elucidate some of
the properties that would indicate why one technique should
be used over the other. As a general rule-of-thumb, if the
problem is highly structured and the uncertainty largely re-
stricted, planning-based approaches will excel. Such highly

structured problems are evident in synthesis problems for
physical devices.

2 Preliminaries
2.1 FOND
A FOND planning problem is a tuple 〈F , I,G,A〉, where
F is a set of fluents; I ⊆ F characterizes what holds ini-
tially; G ⊆ F characterizes what must hold for the goal to
be achieved; and A is the set of actions. The set of literals
of F is Lits(F) = F ∪ {¬f | f ∈ F}.

Each action a ∈ A is associated with 〈Prea,Eff a〉,
where Prea ⊆ Lits(F) is the precondition and Eff a is a
set of outcomes of a. We sometimes write oneof(Eff a)
to emphasize that Eff a is non-deterministic. Each outcome
e ∈ Eff a is a set of conditional effects of the form (C → `),
where C ⊆ Lits(F) and ` ∈ Lits(F). Given a planning
state s ⊆ F and a fluent f ∈ F , we say that s satisfies f ,
denoted s |= f , iff f ∈ s. In addition s |= ¬f if f 6∈ s, and
s |= L for a set of literals L, if s |= ` for every ` ∈ L.

Action a is applicable in state s if s |= Prea. We say
s′ is a result of applying a in s iff, for one outcome e in
Eff a, s′ is equal to s \ {f | (C → ¬f) ∈ e, s |= C} ∪ {f |
(C → f) ∈ e, s |= C}. A policy p, is a partial function from
states to actions such that if p(s) = a, then a is applicable
in s. An execution π of a policy p in state s is a sequence
s0, a0, s1, a1, . . . (finite or infinite), where s0 = s, and such
that every state-action-state substring s, a, s′ are such that
p(s) = a and s′ is a result of applying a in s. Finite execu-
tions ending in a state s are such that p(s) is undefined.

A finite execution π achieves a set of literals L if its end-
ing state s is such that s |= L. An infinite execution π
achieves a set of literals L if there exists a state s that ap-
pears infinitely often in π and that is such that s |= G. An
infinite execution σ is fair iff whenever s, a occurs infinitely
often within σ, then so does s, a, s′, for every s′ that is a re-
sult of applying a in s (Geffner and Bonet 2013). Note this
implies that finite executions are fair. A policy p is a strong-
cyclic plan for a FOND problem P = 〈F , I,G,A〉, iff every
fair execution of p over I satisfies the goal. A policy p is a
strong plan for P iff every execution of p over I satisfies G.

2.2 Linear Temporal Logic and Automata
Linear Temporal Logic (LTL) is a propositional logic ex-
tended with temporal modal operators next (d) and until (U).
The set of LTL formulae over a set of propositions P is de-
fined inductively as follows. p is a formula if p ∈ P or the
constant>. If ϕ1 and ϕ2 are LTL formulas, then so are ¬ϕ1,
ϕ1 ∧ϕ2, dϕ1 and ϕ1 Uϕ2. Let σ = s0, s1, . . . be an infinite
sequence of subsets of P , and ϕ be an LTL formula. Then σ
satisfies ϕ, denoted as σ |= ϕ iff σ, 0 |= ϕ, where:
• σ, i |= p, for each p ∈ P ∪ {>} iff si |= p.
• σ, i |= ¬ϕ iff σ, i |= ϕ does not hold.
• σ, i |= ϕ1 ∧ ϕ2 iff σ, i |= ϕ1 and σ, i |= ϕ2.
• σ, i |= dϕ iff σ, (i+ 1) |= ϕ.
• σ, i |= ϕ1 Uϕ2 iff there exists a j ≥ i such that σ, j |= ϕ2,

and σ, k |= ϕ1, for each k ∈ {i, i+ 1, . . . , j − 1}.
Intuitively, the next operator tells what needs to hold in the

next time step, and the until operator tells what needs to hold

until something else holds. The modal operators eventually
(♦) and always (�) are defined by ♦ϕ ≡ >Uϕ, �ϕ ≡
¬♦¬ϕ. Additional constants and operators are defined by
following conventional rules as follows⊥ ≡ ¬>, ϕ1∨ϕ2 ≡
¬(¬ϕ1 ∧¬ϕ2), ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2, ϕ1 ↔ ϕ2 ≡ (ϕ1 →
ϕ2) ∧ (ϕ2 → ϕ1).

LTL over finite traces: Variants of LTL interpreted over
finite traces have been studied in the verification, model
checking and planning communities. Within the planning
community, LTL interpreted over finite traces has been used
to specify temporally extended goals (e.g. (Bacchus and
Kabanza 1998; 2000; Baier and McIlraith 2006b; 2006a;
Edelkamp 2006; Camacho et al. 2017)), and temporally ex-
tended preferences (e.g., (Baier et al. 2009; Bienvenu et al.
2011; Coles and Coles 2011)), and a number of planners ex-
ist. LTLf is one of the most recent and popular examples (De
Giacomo and Vardi 2013). Whereas LTLf and LTL share the
same syntax, its interpretations can be rather different. For
example, the LTLf formula ♦¬ d> is true in a finite trace,
whereas the same formula in LTL evaluates false on an infi-
nite traces. Similarly, weak next must often replace next to
avoid unintended interpretations of LTL over finite traces.

Automata: There is a well-established correspondence
between LTL and automata. A Non-deterministic Büchi Au-
tomaton (NBA) is a tuple M = (Q,Σ, δ, q0, QFin), where
Q is the set of automaton states, Σ is the alphabet, δ ⊆
Q × Σ × Q is the transition relation, q0 is the initial state
of the automaton, and QFin ⊆ Q is the set of accepting
states. The automaton is deterministic (DBA) when for each
q ∈ Q, and s ∈ Σ, there exists a unique q′ ∈ Q such that
(q, s, q′) ∈ δ. A run ofM on an infinite word σ = s0, s1, . . .
of elements in Σ is a sequence of automaton states, starting
in q0, such that (qi, si, qi+1) ∈ δ for all i ≥ 0. A run is
accepting if it visits an infinite number of accepting states.
Finally, we say that M accepts σ if there is an accepting run
ofM on σ. Non-deterministic Finite-state Automata (NFAs)
differ from NBAs in that the acceptance condition is defined
on finite words: a word σ = s0, s1, . . . , sm is accepting if
qm+1 ∈ QFin. Finally, Deterministic Finite-state Automata
are NFAs where the transition relation is deterministic.

Given an LTL formula ϕ, it is possible to construct an
NBA Aϕ that accepts σ iff σ |= ϕ. The construction is
worst-case exponential in the size of ϕ (Vardi and Wolper
1994). It is not always possible to construct a DBA, and the
construction is double exponential. Similar results hold for
LTLf : it is always possible to construct an NFA (resp. DFA)
that accepts σ iff σ |= ϕ, and the construction is worst-case
exponential (resp. double exponential) (Baier and McIlraith
2006b). Figure 1 depicts an NBA corresponding to LTL for-
mula ♦�(x↔ y), which does not have a DFA representa-
tion. Automaton states are represented by circles (double-
ringed in accepting states), and transitions are represented
with arrows.

2.3 LTL FOND
Recently Camacho et al. (2017) extended FOND with LTL
goals. An LTL FOND problem is a tuple 〈F , I,G,A〉,

q0start q1

(x ∧ y) ∨
(¬x ∧ ¬y)

>
(x ∧ y) ∨
(¬x ∧ ¬y)

Figure 1: An NBA corresponding to ♦�(x↔ y). q1 is an
accepting state, and q0 has non-deterministic transitions.

where G is an LTL or LTLf formula over F , and F , I,A are
defined as in FOND planning. In short, LTL FOND execu-
tions are defined just like in FOND, and a policy is a strong-
cyclic (resp. strong) plan for problem P if each fair (resp.
unrestricted) execution π results in a sequence of states σ
such that σ |= G.

2.4 LTL Synthesis
The LTL synthesis problem (Pnueli and Rosner 1989) in-
tuitively describes a two-player game between a controller
and the environment. The game consists of an infinite se-
quence of turns. In each turn the environment chooses an
action, and the controller then chooses another. Each action
actually corresponds to setting the values of some variables.
The controller has a winning strategy if, no matter how the
environment plays, the sequences of states generated satisfy
a given LTL formula ϕ. Formally, a synthesis problem is a
tuple 〈X ,Y, ϕ〉, where X = {x1, . . . , xn}, the environment
variables, and Y = {y1, . . . , ym}, the controller variables,
are disjoint sets. An LTL formula over X ∪ Y is realizable
if there exists a function f : (2X)∗ → 2Y such that for ev-
ery infinite sequence of subsets ofX ,X1X2 . . ., it holds that
π = (X1∪f(X1)), (X2∪f(X1X2)) . . . is such that π |= ϕ.
Intuitively, no matter what the choice of the environment is,
which is given by the sequence X1X2 . . ., the controller has
a strategy, given by f , that ensures formula ϕ is satisfied
in the resulting game. The synthesis problem corresponds
to actually computing function f . Some authors have stud-
ied the synthesis problem as a game over finite sequences of
turns, using LTLf to describe specifications (e.g. (De Gia-
como and Vardi 2015)). In the rest of the paper, we write
LTL synthesis to also refer to LTLf synthesis, and make the
distinction explicit only when necessary.

3 Relationship Between FOND and Synthesis
Both LTL synthesis and FOND are related to two-player
games: in both problems an agent (or controller) seeks a so-
lution that achieves a condition no matter what choices are
taken by the environment. There are however two impor-
tant differences. First, in LTL synthesis the controller reacts
to the environment; in other words, the environment “plays
first”, while the controller “plays second”. Rather, in FOND,
the play sequence is inverted since the environment decides
the outcome of an action, which is in turn defined by the
agent (controller). Second, state-of-the-art FOND solvers
find strong-cyclic solutions, and indeed those types of solu-
tions are considered standard. This assumes fairness in the
environment, which is not an assumption inherent to LTL

synthesis. Thus a correct mapping between FOND and Syn-
thesis should handle fairness correctly.

Previous work has explored the relation between FOND
and synthesis. Sardiña and D’Ippolito (2015) show how to
translate FOND as a reactive synthesis problem by express-
ing fairness constraints as temporal logic formulae. De Gi-
acomo and Vardi (2013) sketches a mapping from FOND
to LTL synthesis, in which the effects of actions are spec-
ified using LTL. This approach, however, does not dive
into the details of the inverted turns. Neither do the works
by De Giacomo et al.; Kissmann and Edelkamp (2010;
2009), which show a correspondence between two-player
game structures and FOND planning.

In the rest of the section we provide an explicit mapping
between LTL FOND and LTL synthesis. We aim at a correct
mapping between both problems. Efficiency is the focus of
the next section.

To establish a correspondence between LTL synthesis and
LTL FOND, we address the inverted turns by considering the
negation of realizability. Observe that an instance 〈X ,Y, ϕ〉
is not realizable iff there exists a sequence X1X2X3 . . . of
subsets of X such that. for every function f : (2X)∗ → 2Y :
X1 ∪ f(X1), X2 ∪ f(X1X2), X3 ∪ f(X1X2X3) . . . |= ¬ϕ
Note that what comes after the “iff” maps directly into
an instance of LTL FOND: we define the problem Pϕ =
〈F , I,G,A〉 such that fluents are the union of all variables
(i.e., F = X ∪ Y), and the set of actions is the set of sub-
sets of X (i.e., A = {ax | x ⊆ X}). Intuitively action
ax is always executable (has empty preconditions) and de-
terministically sets to true the variables in x and to false
the variables in X \ x. In addition, it non-deterministically
sets the values of variables in Y to every possible combi-
nation. Formally, Eff ax = {ex,y | y ⊆ Y}, where each
ex,y = {f | f ∈ x ∪ y} ∪ {¬f | f ∈ (X ∪ Y) \ (x ∪ y)}.
Finally, we set I = {} and G = d¬ϕ.

A more involved argument follows for LTLf synthesis. In
this case, an instance 〈X ,Y, ϕ〉 is not realizable iff for every
finite m there exists a sequence X1X2 . . . Xm of subsets of
X such that, for every function f : (2X)∗ → 2Y :
X1 ∪ f(X1), . . . , (X1 . . . Xm) ∪ f(X1 . . . Xm) |= ¬ϕ

What follows after the “iff” cannot be directly mapped into
an instance of LTL FOND, because the formula above has
to hold for all m. We can mitigate for this by adding a
new variable to Pϕ, yok, that acts like any other variable
in Y . The goal of Pϕ is the LTLf formula G = d(¬ϕ ∧
♦(yok ∧ ¬ d>)) ∨ ♦(¬yok ∧ ¬ d>).
Theorem 1. An LTL synthesis problem 〈X ,Y, ϕ〉 is realiz-
able iff Pϕ has no strong plan.

In the other direction, let P = 〈F , I,G,A〉 be an LTL
FOND problem. We now construct a synthesis problem
〈XP ,YP , ϕP 〉 following well-known encodings of planning
into SAT (Rintanen et al. 2006); we no longer play inverted
turns, and we use LTL to establish a connection between
a state and its successors, instead of different variables, and
that we consider explicitly that actions have a number of out-
comes. The specification ϕP is defined by:

ϕP := ϕinit → (ϕenv → (ϕagt ∧ ϕg))

Intuitively, ϕinit models the initial state I, ϕenv and ϕagt
model the dynamics in P , and ϕg is the LTL goal formula G.

For each action in a ∈ A, we create a variable a ∈ XP .
Each fluent f ∈ F is also a variable in XP . Variables in YP
are used to choose one of the non-deterministic outcomes
of each action; this way if the action with the largest num-
ber of outcomes has n outcomes, we create dlog ne vari-
ables, whose objective is to “choose” the outcome for an
action. To model the preconditions of the action, we conjoin
in ϕenv , for each action a the formula �(a →

∧
`∈Prea `).

We express the fact that only one action can execute at
a time by conjoining to ϕenv the formulae �

∨
a∈Aa, and

�(a → ¬a′), for each a′ ∈ A different from a. To model
the fact that the environment selects the outcome being per-
formed, for each action outcome e we create a variable ae
in XP . For each action a ∈ A and outcome e ∈ Eff a, ϕagt
has formulae of the form �(a∧χa,e → ae), where χa,e is a
formula over YP , which intuitively “selects” outcome e for
action a. For space, we do not go into the details of how to
encode χa,e. However, these formulae have the following
property: for any action a, given an assignment for YP vari-
ables there is exactly one e ∈ Eff a for which χa,e becomes
true. This models the fact that the YP variables are used to
select the outcomes.

Finally, we now conjoin to ϕenv formulae to express the
dynamics of the domain. Specifically we add successor-
state-axiom-like expressions (Reiter 2001) of the form:

�(df ≡ (φ+f ∨ (f ∧ ¬φ−f)), for each f ∈ F

where φ+f is a formula that encodes the conditions under
which f becomes true after an outcome has occurred, and
where φ−f encodes the conditions under which f becomes
false in the next state. Both of these formulae can be com-
puted from Eff a (Reiter 2001), and have fluents ae for
e ∈ Eff a. Finally, ϕinit is the conjunction of the fluents
in the initial state I, and ϕg is the goal formula, G. When
the goal of P is an LTLf formula, the construction conjoinsd> to the successor state axioms in ϕenv .

Now, it is not hard to see that there exists a strong solution
to the LTL problem P iff there exists a (finite for LTLf goals,
infinite for LTL) sequence of settings of the XP variables,
such that for every sequence of settings of the Y variables
(i.e., for every function f : (2X)∗ → 2Y), it holds that:

(X1 ∪ Y1), (X2 ∪ Y2), (X3 ∪ Y3), . . . |= ϕP

Theorem 2. An LTL FOND problem P = 〈F , I,G,A〉 has
a strong plan iff 〈XP ,YP ,¬ϕP 〉 is not realizable.

4 Approach
In Section 3 we established the correspondence between ex-
istence of solutions to LTL synthesis, and existence of strong
solutions to LTL FOND planning. In this section we in-
troduce the first translation from LTL synthesis into FOND
planning (and by inclusion, into LTL FOND), and a transla-
tion for LTLf specifications.

4.1 Compiling LTL Synthesis to FOND
Our approach to solve an LTL synthesis problem
P =〈X ,Y, ϕ〉 as FOND consists of three stages. First, we

pre-process P . Second, we compile it into a standard FOND
problem P ′. Finally, we solve P ′ with a strong-cyclic plan-
ner. Extracting a strategy for P from a solution to P ′ is
straightforward, and we omit the details for lack of space.

Automaton Transformation: In a pre-processing stage,
we first simplify the specification, if possible, by remov-
ing from X and Y those variables that do not appear in
ϕ (cf. Section 4.2). Then, we transform ϕ into an au-
tomaton, Aϕ = (Q,Σ, δ, q0, QFin), that can be an DBA
when the LTL formula is interpreted over infinite traces,
or an NFA (or DFA, by inclusion) when the specification
is an LTLf formula. In addition to DBAs, our algorithm
can seamlessly handle NBAs at the cost of losing its com-
pleteness guarantee. NBAs are a good alternative to DBAs
as they are usually more compact, and only a subset of
LTL formulae can be transformed into DBAs. The transi-
tion relation δ in Aϕ implicitly defines the conditions un-
der which the automaton in state q is allowed to transition
to state q′. These conditions are known as guards. For-
mally, guard(q, q′) =

∨
(q,s,q′)∈δ s. In our case, elements

of the alphabet Σ are conjunctions of boolean variables,
that allow for guard formulae to be described in a compact
symbolic form. In what follows, we assume guard formu-
lae guard(q, q′) =

∨
m cm are given in DNF, where each

clause cm is a conjunction of boolean state variables. We
denote as δ? the set of tuples Tm = (q, cm, q

′) for each pair
(q, q′) with guard(q, q′) 6= ⊥, and for each clause cm in
guard(q, q′). For convenience, we write guard(Tm) = cm,
and refer to elements of δ? as transitions. Wherever conve-
nient, we drop the subindex of transitions and simply write
T . In the NBA of Figure 1, guards are the labels of edges
connecting two automaton states, and δ? contains, among
others, the transitions (q0, x ∧ y, q1) and (q0,¬x ∧ ¬y, q1).

In the second stage, we compile P = 〈X ,Y, ϕ〉
with automaton Aϕ into a parametrized FOND problem
P ′(X ,Y, Aϕ, H) = 〈F , I,G,A〉 that integrates the dynam-
ics of Aϕ with a two-player game between the environment
and the agent. Before introducing the technical details of the
compilation, we first describe its dynamics in a high level.
The compilation simulates automaton states by means of flu-
ents q, one for each automaton state with the same name.
Planning states s have the following property: an automaton
fluent q is true in s iff for some σ, a run σ ofAϕ finishes in q.
Notably, the input word σ can be obtained directly from the
state-action plan that leads the initial state to s in the search
tree. When the input of the algorithm is a non-deterministic
automaton (NBA or NFA), planning states can simultane-
ously capture multiple runs of the automaton in parallel by
simultaneously having multiple q fluents set to true.

The acceptance condition behaves differently for Büchi
and non-Büchi automata, and this is also reflected in our
compilation. For Büchi automata, the planning process ex-
pands a graph that simulates the environment and agent
moves, and the search for solutions becomes a search for
strong cyclic components that hit an accepting state in-
finitely often. The latter property is checked by means of
tokenized fluents qt, one for each q. Intuitively, the truth of
q ∧ qt in state s indicates a commitment to progress runs

finishing in q into runs that reach an accepting state. Con-
versely, s |= q ∧¬qt represents that such a commitment has
been accomplished. The role of the parameter H is twofold:
it indirectly bounds the horizon in the search for cycles, and
it allows the use of strong-cyclic solvers to find solutions to
a problem whose non-determinism has unrestricted fairness.

The dynamics of the compilation run in two modes that al-
ternate sequentially and simulate each two-player turn. The
environment mode simulates the environment moves, which
are non-deterministic and uncontrollable to the agent. In au-
tomaton mode, the agent moves are simulated and the au-
tomaton state fluents are synchronized according to valid
transitions in δ?. Auxiliary fluents qs and qs,t are used to
store the value of automaton state fluents q and qt prior to
synchronization, so that more than one transition can be sim-
ulated in the case of non-deterministic automata compila-
tions.1 When an accepting state q is recognized, the agent
can set the token fluents qt to commit to progress the runs
that finish in q into a run that hits another accepting state.

The dynamics of the compilation are similar for non-
Büchi automata. The exception is that accepting runs are
recognized whenever an accepting automaton state fluent is
reached, and there is no need to commit to reaching another
accepting state. Consequently, tokenized fluents qt and qs,t
are not needed. For generality, we include those fluents in
the algorithm presented below, but we apprise the reader that
any occurrence of these fluents can be safely removed from
the compilation without affecting the soundness and com-
pleteness of the approach for LTLf synthesis.

The sets of fluents, F , and actions, A, of the problem
are listed below. In what follows, we describe the technical
details of the compilation.

F =
{
q, qs, qt, qs,t | q ∈ Q

}
∪ {goal}∪

{env mode, aut mode, can switch, can accept}∪
{at horizon(h)}0≤h≤H ∪ {next(h+1, h)}0≤h<H
{turnk}1≤x≤|X| ∪ {vx, v¬x}x∈X ∪ {vy, v¬y}y∈Y

A = {move k}1≤k≤|X| ∪ {transT }T∈δ? ∪
{switch2aut, switch2env, accept}

Environment Mode In the environment mode, the dynam-
ics of the problem simulates the move of the environment.
As this move is uncontrollable by the agent, it can be sim-
ulated with a non-deterministic action that has 2|X | effects,
each one simulating an assignment to variables in X . Flu-
ents vl simulate the truth value of variables in X ∪ Y . More
precisely, vx (resp. v¬x) indicates that x ∈ X is made true
(resp. false), and similarly for y ∈ Y . In order to reduce the
explosion in non-deterministic action effects, we simulate
the environment’s move with a cascade of non-deterministic
actions movek, each one setting (vxk) or unsetting (v¬xk)

1When the automaton is deterministic, the compilation can be
slightly modified so that fluents qs and qs,t are no longer needed.

the value of a variable xk in X .

Premove k = {env mode, turnk}
Eff move k = oneof({vxk,¬v¬xk} , {¬vxk, v¬xk}) ∪Ψk

Ψk =

{
{turnk+1,¬turnk} , if k < |X |
{can switch,¬turnk} , if k = |X |

After the environment’s move has been simulated, the
switch2aut action switches the dynamics to automaton
mode, and the automaton configuration (represented by flu-
ents of the form q and qt) is frozen into copies qs and qs,t.
Special predicates at horizon(h) capture the number of
turns from the last recognized accepting state in the plan.
If h < H , the horizon value is incremented by one.

Preswitch2aut(h, h
′) = {env mode, can switch}∪
{at horizon(h), next(h′, h)}

Eff switch2aut(h, h
′) = {at horizon(h′),¬at horizon(h)}

∪ {aut mode,¬env mode,¬can switch}∪{
q → {qs,¬q} , qt →

{
qs,t,¬qt

}
| q ∈ Q

}
Automaton Mode The automaton mode simulates the as-
signment to variables in Y and the automaton state transi-
tions. Whereas the update in the automaton configuration
is usually understood as a response to the observation to
variables in X ∪ Y , the dynamics of the encoding take a
different perspective: the agent can decide which automa-
ton transitions to perform, and then set the variables in Y
so that the transition guards are satisfied. Such transitions
are simulated by means of transT actions, one for each
T = (qi, guard(T), qj) ∈ δ?.

PretransT = {aut mode, qsi ,¬qj} ∪ {¬v¬l}l∈guard(T)

Eff transT = {qj} ∪ {vl}l∈guard(T) ∪ΨtransT

ΨtransT =

{{
qs,ti → qtj

}
, if qj 6∈ QFin

{can accept} , if qj ∈ QFin
A transition T = (qi, guard(T), qj) can be simulated

when there exists a run of the automaton finishing in qi (as
such, qi had to be frozen into qsi by means of switch2aut).
Preconditions include the set {¬v¬l | l ∈ guard(T)}, that
checks that the transition guard is not violated by the cur-
rent assignment to variables. Here, we abuse notation and
write l ∈ guard(T) if the literal l appears in guard(T).
As usual, we use the equivalence ¬(¬l) = l. The effects
{vl | l ∈ guard(T)} set the variables in Y so that the guard
is satisfied and T can be fired. In parallel, the automaton
state fluent qj is set, as to reflect the transition T . According
to the semantics of the tokenized fluents, when qs,ti holds in
the current state the token is progressed into qtj to denote a
commitment to reach an accepting state. If qj is indeed an
accepting state, then the tokenized fluent is not propagated
and instead the fluent can accept is set. Notably, the condi-
tional effects qs,ti → qtj do not delete the copies qsi and qs,ti .
This allows the agent to simulate more than one transition
when the automaton is an non-deterministic, thereby captur-
ing multiple runs of the automaton in the planning state (al-
though it is not obliged to simulate all transitions). When the

automaton is deterministic, the effects of transT allow for
at most one transition can be simulated. Finally, the fluent
qj appears negated in the preconditions of transT merely
for efficiency purposes, as executing transT when qj is true
has no value to the plan (and transT can be safely pruned).

The agent has two action mechanisms to switch back to
environment mode: switch2env and accept. The agent can,
at any time in the automaton mode, execute switch2env caus-
ing all frozen copies qs and qs,t to be deleted.2 The purpose
of Regularize, which is optional, is to improve the search
performance as described in Section 4.2.

Preswitch2env = {aut mode}
Eff switch2env = {env mode,¬aut mode} ∪ {turn1}∪{

¬qs,¬qs,t | q ∈ Q
}
∪

∪Regularize
Regularize = {¬vz,¬v¬z | z ∈ X ∪ Y}

The accept action is useful to compilations based on
Büchi automata, and recognizes runs that have satisfied a
commitment to hit an accepting state. At least one of these
runs exist if fluent can accept (which is part of the precon-
ditions) holds true. By executing accept, the agent forgets
those runs that did not satisfy the commitment to hit an ac-
cepting state, and commits to progress the rest of the runs
into runs that hit another accepting state. The agent can post-
pone action accept as much as necessary in order to progress
all relevant runs into runs that hit an accepting state. Action
accept has a non-deterministic effect goal, introduced artifi-
cially as a method to find infinite plans that visit accepting
states infinitely often. The interested reader can find full de-
tails in Camacho et al. (2017).

Preaccept(h) = {aut mode, can accept, at horizon(h)}
Eff accept(h) = oneof({goal} ,

{turn1, at horizon(0),¬at horizon(h)}∪
{env mode,¬aut mode,¬can accept}∪{
qs → ¬qs, qs,t → ¬qs,t | q ∈ Q

}
∪{

q ∧ qt →
{
¬q,¬qt

}
| q ∈ (Q \QFin)

}
∪{

q ∧ ¬qt → qt | q ∈ Q
}
∪Regularize)

Initial and Goal States The initial state of the prob-
lem is I = {q0, env mode, turn1, at horizon(0)} ∪
{next(h+ 1, h) | h ∈ 0 . . . H}. When the input of the al-
gorithm is a Büchi automaton, the goal is G = {goal}. For
NFAs and DFAs, the goal is G = {can accept}.

To summarize, we define our compilation method from
LTL synthesis into FOND, that we call Syn2FOND.

2Switching to environment mode without having applied any
transT action inevitably leads to a deadend state. The compilation
presented here can be slightly modified to require the application
of at least one transT action in agent mode. However, doing this
did not affect the planner’s performance.

Definition 1 (Syn2FOND compilation). For an LTL syn-
thesis problem P = 〈X ,Y, ϕ〉, (NBA, DBA, NFA, or DFA)
automaton Aϕ, and parameter H , the Syn2FOND compi-
lation constructs the FOND problem P ′(X ,Y, Aϕ, H) =
〈F , I,G,A〉 as described above.

Solutions to the compiled problem P ′ yield solutions to
P (cf. Theorem 3). The iterated search of solutions to
Syn2FOND compilations (with H = 1, 2 . . . , 2|Q|) is guar-
anteed to succeed, if P is realizable, when the input au-
tomaton is a DBA, NFA, or DFA (cf. Theorem 4). This
follows, intuitively, from the fact that if a solution exists,
then a strong cyclic policy can be unfolded and simulated
in a Syn2FOND compilation search graph. If the agent’s
strategy cannot always guarantee hitting an accepting state
within H ≤ 2|Q| turns, then the environment can force a
non-accepting cycle – i.e., the environment has a winning
strategy that prevents the agent from satisfying the specifica-
tion. With deterministic automata, the bound can be lowered
toH ≤ |Q|. We illustrate below with a counter-example that
completeness is not guaranteed for NBAs.

Theorem 3 (soundness). Strong-cyclic plans to the
Syn2FOND compilation P ′ correspond to solutions for P .

Theorem 4 (completeness). For a realizable LTL synthe-
sis problem P = 〈X ,Y, ϕ〉, and NFA automaton Aϕ, the
Syn2FOND compilation P ′ is solvable for some H ≤ 2|Q|.
When Aϕ is a DBA or DFA, the bound can be lowered to
H ≤ |Q|.

Illustrative Example Let P = 〈X ,Y, ϕ〉 be an LTL syn-
thesis problem, with X = {x}, Y = {y}, and ϕ =
♦�(x↔ y), and let Aϕ be the NBA in Figure 1. The dy-
namics of the compilation are as follows. The initial state
starts in environment mode and automaton state q0. The
non-deterministic environment moves generate two differ-
ent states, in which vx and v¬x hold, after which the agent
switches to automaton mode and freezes the automaton state
q0 into a copy qc0. When one of these states is processed
(say, s1 |= {qc0, vx, aut mode}) the agent can choose to ap-
ply action transT1

, with T1 = (q0, x ∧ y, q1) to transition
to state q1. Additionally, the agent can also choose to ap-
ply transT2 , with T2 = (q0,>, q0) to self-transition to q0.
If the former action is performed, the fluent can accept is
held true because q1 is accepting. Once at this point, the
agent transitions to environment mode, and can choose to
recognizably accept the runs that do not have token associ-
ated with the automaton fluents. Subsequently, the automa-
ton states are tokenized – i.e. q0 and q1 become qt0 and qt1,
respectively. In this particular example, maintaining multi-
ple runs in a single planning state (in this case, q0 and q1) re-
flects the non-determinism of the NBA, and allows the agent
to defer the satisfaction of the sub-formula x ↔ y a finite,
but unbounded number of time steps. The latter property
cannot be captured with deterministic automata.

Incompleteness of the NBA-based compilation The
NBA-based compilation is not guaranteed to preserve
solutions. Let ϕ = d(�x ∨ ♦¬x), and consider

the NBA Aϕ with states Q = {q0, q1, q2, q3}, δ? =
{(q0,>, q1), (q0,>, q2), (q1, x, q1), (q2, x, q2), (q3,>, q3)},
and QFin = {q1, q3}. The environment can consistently
play x a finite, but unbounded number of times before
playing ¬x – at which point the runs of the automaton
that finish in q2 must not have been forgotten. There is no
bounded parameter H that can satisfy such requirement.

4.2 Exploiting Relevance
The exploitation of relevance has been extensively studied
within automated planning as a means of improving the ef-
ficiency of plan generation and execution monitoring (e.g.,
(Haslum et al. 2013)). Here, we present a suite of ideas
in a similar vein that leverages state relevance in service of
efficient synthesis via FOND planning.

Global Irrelevance We say that a set of variables Z ⊆
X ∪ Y is globally irrelevant wrt ϕ if, for every sequence
π = {Zn}n of assignments to variables in X ∪ Y , for every
k, and for every subset Z ′ ⊆ Z , it holds that π |= ϕ iff π′ |=
ϕ, where π′ = {Z ′n}n is such that Z ′n = Zn if n 6= k, and
Z ′k = (Zk \ Z) ∪ Z ′. In other words, the truth of variables
in Z in a sequence π does not influence whether π satisfies
ϕ.

Theorem 5. Let P = 〈X ,Y, ϕ〉 be an LTL synthesis prob-
lem, and let vars(ϕ) ⊆ X ∪ Y be the set of variables that
appear in ϕ. Then, Z = (X ∪ Y) \ vars(ϕ) is a globally
irrelevant set of variables with respect to ϕ.

Corollary 1. The pre-process stage in Syn2FOND prunes a
set of globally irrelevant variables in X ∪ Y wrt ϕ.

An immediate consequence of Theorem 5 – which fol-
lows trivially from the observation that variables in Z do
not appear in the specification ϕ – is that the pruning of (the
globally irrelevant set of) variables Z = (X ∪Y) \ vars(ϕ)
performed by the Syn2FOND compilation does not affect
the correctness of the approach.

As we illustrate in the experimental section, reducing the
number of irrelevant sets of variables in the problem makes
it, in general, more tractable, and not doing so may induce
problems of scalability. Commonly used techniques in auto-
mated planning reason about goal reachability by exploiting
the compact description of world change based on the pre-
conditions and effects of the actions. They prune variables
(and also actions) that are not relevant to the achievement of
the goal (cf. (Helmert 2006; Palacios and Geffner 2007)).
By solving a synthesis problem as planning, we can bene-
fit from variable pruning techniques existing in automated
planning tools.

Local Irrelevance The dynamics of the Syn2FOND compi-
lation, presented in Section 4, make it possible to prune what
we can intuitively consider to be locally irrelevant variables
at planning time. In particular, when the agent decides to
apply a trans(T) action, only variables in guard(T) are
implicitly considered to be relevant. This has two benefits.
First, by computing plans that only consider a subset of the
uncontrollable variables in X , the planner reduces the expo-
nential blowup (in |X |) in the search caused by all possible

environment’s moves. Second, by assigning values to a re-
duced subset of the controllable variables in Y (only those
that are necessary to transition in the NBA accordingly), the
planner is able to compute more compact policies that are
conditioned on only what is relevant.

State Regularization The state regularization performed
by the switch2env and accept actions leverage the fact
that, at the next planning step, the value of the variables
vx, v¬x, vy, v¬y (that simulate the variables in X and Y) is
not relevant. By abstracting all planning states, the search
space is notably reduced. Besides savings in search space,
this also reduces the planning run time, because it is more
likely for a strong-cyclic planner to find a loop in the ab-
stract space than in the concrete space.

5 Evaluation
Our main objective for the evaluation is to give a sense of
when to choose one formalism over another. Although the
same problems can be represented as either LTL synthesis
or FOND planning, the choice of formalism can have a dra-
matic impact on the time required to find a solution. We
would expect the FOND setting to be better suited for prob-
lems with more “structure”, and our results serve to illustrate
this hypothesis.

We consider four natural sources of problem encodings:
(1) problems encoded directly as LTL synthesis using the
TLSF format (Jacobs et al. 2016); (2) problems encoded di-
rectly as FOND planning using the PDDL format; (3) prob-
lems from (2) that have been converted to the LTL synthesis
setting following the proposal in (De Giacomo and Vardi
2013) modified to better capture the FOND setting; and (4)
problems from (1) that have been converted automatically
using the method described in Section 4. In our experiments,
we used state-of-the-art synthesis and FOND tools Acacia+
(Bohy et al. 2012) and PRP (Muise et al. 2012). Acacia+
can be configured to return either all solutions or a single
one, and for our experiments we use the more efficient latter
option. In our Syn2FOND tool, we use spot (Duret-Lutz
et al. 2016) to transform the specification ϕ into an NBA
and PRP as FOND planner.

First, we consider some representative problems from
both synthesis and FOND perspectives. The first group of
problems – lily and loadcomp (load, for short) – come from
the synthesis community. The lily problems are a variety of
demo benchmarks from the testing set of the synthesis tool
Lily (Jobstmann and Bloem 2006). The load problems, from
the testing set of the LTL synthesis tool Unbeast (Ehlers
2011), implement a load balancer that receives jobs and dis-
tributes them to a (parametrized) number of servers.

The second group of problems – ttw and ctw – come from
the FOND benchmark tireworld. The tireworld domain re-
quires a car to drive along a predefined map forming a tri-
angle (ttw) or a chain (ctw). The car can only move if the
tire is working. Driving non-deterministically breaks a tire
(i.e., the environment’s play), and certain key locations have
a spare tire that can be used to repair the car. We engineered
a compact LTL specification that models this group of prob-
lems. For instance, the dynamics of ttw-p3 are captured in

Acacia+ Syn2FOND(PRP) PRP

Problem Aut (N×|Q|) Syn H Aut (|Q|) Search Search

lilly-p4 0.11 (3×30) 0.02 3 0.02 (20) 0.6 N/A
lilly-p5 0.14 (3×26) 0.01 3 0.02 (17) 0.38 N/A
lilly-p6 0.16 (3×34) 0.01 3 0.02 (22) 0.62 N/A
lilly-p7 0.15 (3×24) 0.00 3 0.02 (13) 0.14 N/A

load-p2 0.39 (8×35) 0.01 3 0.02 (9) 0.14 N/A
load-p3 0.15 (12×37) 0.30 3 0.05 (10) 0.18 N/A
load-p4 0.39 (18×37) 7.83 3 0.02 (11) 0.26 N/A

ctw-p3 81.0 (1×82) 1.79 3 1.08 (15) 0.12 0.01
ctw-p4 TLE – 4 25.8 (19) 0.22 0.01
ctw-p5 TLE – – MLE – 0.01

ttw-p3 TLE – – MLE – 0.01

build-2 0.05 (2×70) 0.04 1 0.02 (6) 1.82
build-3 0.42 (2×415) 3.45 1 0.13 (7) 13.3 0.08
build-4 56.2 (2×2682) 1.65 1 2.01 (8) 160 1.06

build-irr-4-2 60.2 (2×3202) 5.18 – 9.05 (8) MLE 0.32
build-irr-4-3 113 (2×3202) 14.4 – 20.2 (8) MLE 1.24
build-irr-4-4 212 (2×3202) 50.9 – 44.9 (8) MLE 3.52

Table 1: Performance of LTL synthesis and FOND plan-
ning tools. (Aut) Time (in seconds) to compile the specifica-
tion into automata. (N) size of automata and (|Q|) average
size of each automaton. (Syn) Time (in seconds) for syn-
thesis. (Search) Total time taken during search for a solu-
tion in PRP (including bookkeeping and policy maintenance
time). MLE - Memory Limit Exceeded; TLE - Time Limit
Exceeded.

about 30 lines – where each line contains a cube describing
ϕinit, ϕenv , ϕagt, and ϕg . This description scales linearly
with the size of the problem, whereas the domain description
in PDDL is more compact and remains constant.

The final set of problems is a newly introduced domain,
build, encoded directly (and as compactly as possible) in
both LTL and FOND. The build domain addresses the prob-
lem of building maintenance, and requires the agent to main-
tain which rooms have their lights on or off depending on the
time of day and whether or not people are in the room. The
environment controls the transition between day and night,
as well as when people enter or leave a room. The agent
must control the lights in response. Problems build-p# have
rooms, and problems build-irr-p#-n introduce n rooms
that may non-deterministically be vacuumed at night (con-
trolled by the environment). Note that this is irrelevant to the
task of turning lights on or off (the vacuuming can be done
in any lighting condition).

Table 1 summarizes the results of our experiments with
Acacia+ and our synthesis tool Syn2FOND equipped with
PRP as strong cyclic planner. Additionally, we tested PRP in
some problems directly encoded as FOND. The first thing to
note is the drastic performance hit that can occur converting
from one formalism to another. Going from LTL synthesis to
FOND is workable in some instances, but the opposite direc-
tion proved impossible for even the simplest ttw problems
that can be solved very efficiently in its native FOND for-

Acacia+ Syn2FOND(PRP) PRP

Problem Aut (N × |Q|) Syn H Aut (|Q|) Search Search

p4-0 212 (6× 131) 0.01 3 0.16 (13) 3.1 0
p4-1 11.1 (6× 195) 0.03 3 0.17 (13) 2.56 0.32
p4-2 1.55 (6× 181) 0.02 3 0.16 (13) 1.26 0.66
p4-3 0.58 (6× 46) 0.02 3 0.1 (12) 1.04 0.22

p5-0 TLE —– 3 1.33 (15) 1.02 0
p5-1 TLE —– 3 1.59 (15) 0.88 3.3
p5-2 16991 (7× 548) 0.02 3 1.25 (15) 0.94 2.14
p5-3 533 (7× 452) 0.08 3 1.34 (15) 15.8 3.82
p5-4 111 (7× 236) 0.06 3 0.59 (14) 10.22 4.66

p6-0 TLE —– 3 9.11 (17) 1.9 0
p6-1 TLE —– 3 11.8 (17) 1.8 4.9
p6-2 TLE —– 3 11.4 (17) 1.78 5.54
p6-3 TLE —– 3 10.7 (17) 1.52 15.66
p6-4 TLE —– 3 10.4 (17) 3.66 25.44
p6-5 TLE —– 3 6.15 (16) 3.32 26.18

Table 2: Performance of LTL synthesis and FOND planning
tools for the switches problems.

mulation. Automata transformations become a bottleneck in
the synthesis tools, causing time (TLE, 30 min) and memory
(MLE, 512MB) limit exceptions. This is because the spec-
ification requires complex constraints to properly maintain
the reachable state-space. It is this “structure” that we con-
jecture the synthesis tools struggle with, and test separately
below.

For the build-irr domain, we can see that the synthe-
sis tools scale far worse as the number of rooms increases
(both in generating automata and performing the synthesis).
Further, as the number of rooms that need to be vacuumed
(which is irrelevant to computing a controller), the relevance
reasoning present in the FOND planner is able to cope by
largely ignoring the irrelevant aspects of the environment.
Conversely, the synthesis component of Acacia+ struggles a
great deal. This highlights the strength of the FOND tools
for leveraging state relevance to solve problems efficiently.

Finally, we created a synthetic domain that lets us tune
the level of “structure” in a problem: more structure leads
to fewer possibilities for the environment to act without vi-
olating a constraint or assumption. In the switches domain,
a total of n switches, s1 . . . sn, initially switched on, need to
be all switched off eventually. The environment affects the
state of the switches non-deterministically. However, the dy-
namics of the environment is such that immediately after the
agent switches off sk, the environmental non-determinism
can only affect the state of a certain number of switches sk′ ,
with k′ > k. A trivial strategy for the agent is to switch off
s1 to sn in that order.

We encoded a series of switches problems, natively as
LTL specifications in TLSF format and also as FOND. Ta-
ble 2 shows how Acacia+, Syn2FOND, and PRP coped with
the range of problems. They are in three distinct sets (each
of increasing number of switches), and within each group
the problems range from most structured to least (by vary-
ing k). The problems in the first two groups are solved quite

readily by PRP, and so the trend is less clear, but for the
larger problems we find that PRP struggles when there is less
structure and the environment can flip many switches with-
out violating an assumption. This trend also manifests in the
Syn2FOND compilations. On the other side, we find that the
most structured problems are the most difficult for Acacia+,
and the compilation into automata becomes the bottleneck
again. On the other hand, the synthesis becomes easier when
there is less structure (i.e., more switches can be flipped).

The structure we tune in the switches domain is one prop-
erty of a problem that may favour FOND technology over
the synthesis tools. Another is the presence of irrelevance
we discuss in Section 4.2 and surfaced in the variation of the
building maintenance benchmark. Other notions, such as
causal structure in the problem, may also play an important
role in features that separate the effectiveness of the two for-
malisms. We plan to investigate these possibilities in future
work.

6 Concluding Remarks
LTL synthesis is both an important and challenging prob-
lem for which broadly effective tools have remained largely
elusive. Motivated by recent advances in the efficiency of
FOND planning, this work sought to examine the viability
of FOND planning as a computational tool for the realiza-
tion of LTL synthesis. To this end, we established the the-
oretical correspondence between LTL synthesis and strong
solutions to FOND planning. We also provided the first
approach to automatically translate a realizability problem,
given by an specification in LTL or LTLf , into a planning
problem described in PDDL. Experiments with state-of-the-
art LTL synthesis and FOND solvers highlighted properties
that challenged or supported each of the solvers. Our exper-
iments show automated planning to be a viable and effective
tool for highly structured LTL synthesis problems.

Acknowledgements The authors gratefully acknowledge
funding from the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and from Fondecyt
grant number 1150328.

References
Ron Alford, Ugur Kuter, Dana Nau, and Robert P Goldman.
Plan aggregation for strong cyclic planning in nondetermin-
istic domains. Artificial Intelligence, 216:206–232, 2014.
Rajeev Alur and Salvatore La Torre. Deterministic gener-
ators and games for LTL fragments. ACM Trans. Comput.
Logic, 5(1):1–25, January 2004.
Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph
Sifakis. Controller synthesis for timed automata. In Pro-
ceedings of the IFAC Symposium on System Structure and
Control, pages 469–474. Elsevier, 1998.
Fahiem Bacchus and Froduald Kabanza. Planning for tem-
porally extended goals. Annals of Mathematics and Artificial
Intelligence, 22(1-2):5–27, 1998.

Fahiem Bacchus and Froduald Kabanza. Using temporal
logics to express search control knowledge for planning. Ar-
tificial Intelligence, 116(1-2):123–191, 2000.
Jorge A. Baier and Sheila A. McIlraith. Planning with first-
order temporally extended goals using heuristic search. In
Proceedings of the 21st National Conference on Artificial In-
telligence (AAAI), pages 788–795, Boston, MA, July 2006.
Jorge A. Baier and Sheila A. McIlraith. Planning with
temporally extended goals using heuristic search. In Pro-
ceedings of the 16th International Conference on Automated
Planning and Scheduling (ICAPS), pages 342–345, 2006.
Jorge A. Baier, Fahiem Bacchus, and Sheila A. McIlraith. A
heuristic search approach to planning with temporally ex-
tended preferences. Artificial Intelligence, 173(5-6):593–
618, 2009.
Meghyn Bienvenu, Christian Fritz, and Sheila A. McIlraith.
Specifying and computing preferred plans. Artificial Intelli-
gence, 175(7–8):1308–1345, 2011.
Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, Naiy-
ong Jin, and Jean-François Raskin. Acacia+, a tool for LTL
synthesis. In Proceedings of the 24th International Confer-
ence on Computer Aided Verification (CAV), pages 652–657,
2012.
Alberto Camacho, Eleni Triantafillou, Christian Muise,
Jorge A. Baier, and Sheila A. McIlraith. Non-deterministic
planning with temporally extended goals: LTL over finite
and infinite traces. In Proceedings of the 31st AAAI Confer-
ence on Artificial Intelligence (AAAI), 2017.
Alonzo Church. Applications of recursive arithmetic to the
problem of circuit synthesis. Summaries of the Summer In-
stitute of Symbolic Logic, Cornell University 1957, 1:3–50,
1957.
Amanda Coles and Andrew Coles. LPRPG-P: relaxed plan
heuristics for planning with preferences. In Proceedings of
the 21st International Conference on Automated Planning
and Sched. (ICAPS), 2011.
Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal
logic and linear dynamic logic on finite traces. In Proceed-
ings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI), 2013.
Giuseppe De Giacomo and Moshe Y. Vardi. Synthesis for
LTL and LDL on finite traces. In Proceedings of the 24th
International Joint Conference on Artificial Intelligence (IJ-
CAI), pages 1558–1564, 2015.
Giuseppe De Giacomo, Paolo Felli, Fabio Patrizi, and Se-
bastian Sardiña. Two-player game structures for generalized
planning and agent composition. In Proceedings of the 24th
AAAI Conference on Artificial Intelligence (AAAI), 2010.
Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury
Fauchille, Thibaud Michaud, Etienne Renault, and Laurent
Xu. Spot 2.0 — a framework for LTL and ω-automata ma-
nipulation. In Proceedings of the 14th International Sympo-
sium on on Automated Technology for Verification and Anal-
ysis (ATVA), volume 9938 of Lecture Notes in Computer Sci-
ence, pages 122–129. Springer, October 2016.

Stefan Edelkamp. On the compilation of plan constraints
and preferences. In Proceedings of the 16th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), pages 374–377, 2006.
Rüdiger Ehlers. Unbeast: Symbolic bounded synthesis. In
Proceedings of the 17th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 272–275, 2011.
Jicheng Fu, Vincent Ng, Farokh B. Bastani, and I-Ling Yen.
Simple and fast strong cyclic planning for fully-observable
nondeterministic planning problems. In Proceedings of the
22nd International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 1949–1954, 2011.
Hector Geffner and Blai Bonet. A Concise Introduction to
Models and Methods for Automated Planning. Synthesis
Lectures on Artificial Intelligence and Machine Learning,
7(2):1–141, 2013.
Patrik Haslum, Malte Helmert, and A Jonsson. Safe, strong
and tractable relevance analysis for planning. In Proceed-
ings of the 23nd International Conference on Automated
Planning and Sched. (ICAPS), pages 317–321, 2013.
Malte Helmert. The Fast Downward planning system. Jour-
nal of Artificial Intelligence Research, 26:191–246, 2006.
Swen Jacobs, Felix Klein, and Sebastian Schirmer. A high-
level LTL synthesis format: TLSF v1.1. In Proceedings
Fifth Workshop on Synthesis, SYNT@CAV 2016, Toronto,
Canada, July 17-18, 2016., pages 112–132, 2016.
Barbara Jobstmann and Roderick Bloem. Optimizations
for LTL synthesis. In Formal Methods in Computer-Aided
Design, 6th International Conference, FMCAD 2006, San
Jose, California, USA, November 12-16, 2006, Proceedings,
pages 117–124, 2006.
Peter Kissmann and Stefan Edelkamp. Solving fully-
observable non-deterministic planning problems via transla-
tion into a general game. In Proceedings of the 32nd Annual
German Conference on AI (KI09), pages 1–8, 2009.
Robert Mattmüller, Manuela Ortlieb, Malte Helmert, and
Pascal Bercher. Pattern database heuristics for fully ob-
servable nondeterministic planning. In Proceedings of the
20th International Conference on Automated Planning and
Sched. (ICAPS), pages 105–112, 2010.
Christian Muise, Sheila A. McIlraith, and J. Christopher
Beck. Improved Non-deterministic Planning by Exploiting
State Relevance. In Proceedings of the 22nd International
Conference on Automated Planning and Sched. (ICAPS),
pages 172–180, 2012.
Hector Palacios and Hector Geffner. From Conformant into
Classical Planning: Efficient Translations that May Be Com-
plete Too. In Proceedings of the 17th International Con-
ference on Automated Planning and Scheduling (ICAPS),
pages 264–271, 2007.
Fabio Patrizi, Nir Lipovetzky, and Hector Geffner. Fair LTL
synthesis for non-deterministic systems using strong cyclic
planners. In Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI), 2013.

Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of re-
active(1) designs. In Verification, Model Checking, and Ab-
stract Interpretation, 7th International Conference, VMCAI
2006, Charleston, SC, USA, January 8-10, 2006, Proceed-
ings, pages 364–380, 2006.
Amir Pnueli and Roni Rosner. On the synthesis of a reac-
tive module. In Conference Record of the Sixteenth Annual
ACM Symposium on Principles of Programming Languages,
Austin, Texas, USA, January 11-13, 1989, pages 179–190,
1989.
Amir Pnueli. The temporal logic of programs. In Proceed-
ings of the 18th IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 46–57, 1977.
Raymond Reiter. Knowledge in Action: Logical Founda-
tions for Specifying and Implementing Dynamical Systems.
MIT Press, Cambridge, MA, 2001.
Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä. Plan-
ning as satisfiability: parallel plans and algorithms for plan
search. Artificial Intelligence, 170(12-13):1031–1080, 2006.
Sebastian Sardiña and Nicolás D’Ippolito. Towards fully
observable non-deterministic planning as assumption-based
automatic synthesis. In Proceedings of the 24th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
pages 3200–3206, 2015.
Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite
computations. Information and Computation, 115(1):1–37,
1994.

