
1

Golog-Style Search Control for Planning

JORGE A. BAIER, CHRISTIAN FRITZ, SHEILA A. MCILRAITH

ABSTRACT. Domain control knowledge (DCK) has proven effective in improving

the efficiency of plan generation by reducing the search space for a plan. Procedural

DCK is a compelling type of DCK that supports a natural specification of the skele-

ton of a plan. Unfortunately, most state-of-the-art planners do not have the machinery

necessary to exploit procedural DCK. To resolve this deficiency, we propose to com-

pile procedural DCK directly into the Planning Domain Definition Language (PDDL),

specifically PDDL2.1. PDDL is the de facto standard input language for state-of-the-

art automated planning systems. Our compilation enables any PDDL2.1-compatible

planner to exploit procedural DCK without the need for special-purpose computational

machinery. The contributions of this paper are threefold. First, inspired by the logic

programming language GOLOG, we propose a PDDL-based semantics for an Algol-

like procedural language that can be used to specify procedural DCK as a program.

Second, we provide a polynomial algorithm that translates an ADL planning instance

and a DCK program, into an equivalent, program-free PDDL2.1 instance whose plans

are only those that adhere to the program. Third, we argue that the resulting planning

instance is well-suited to being solved by domain-independent heuristic planners. To

this end, we propose three approaches to computing domain-independent heuristics for

our translated instances, sometimes leveraging properties of our translation to guide

search. In our experiments on familiar PDDL planning benchmarks we show that the

proposed compilation of procedural DCK can significantly speed up the performance

of a heuristic search planner. Our translators are implemented and available on the web.

Foreword (by Sheila McIlraith)

When Hector, Ray Reiter, and colleagues at the University of Toronto first introduced the

GOLOG logic programming language, it was viewed as a means of specifying high level

control for robots and software agents, as well as for industrial processes and discrete

event simulations. Part of GOLOG’s elegance was its situation calculus semantics which

enabled GOLOG programs to reason about the complex dynamics of the world, as specified

in situation calculus. From an outsider’s perspective, GOLOG was inextricably tied to the

situation calculus and to the simple interpreter that allowed it to reason over the situation

calculus specification of dynamical systems.

Our motivation with this work was to bring the same basic GOLOG philosopy to bear on

dynamical systems described in the less expressive Planning Domain Definition Language

(PDDL) [McDermott 1998], using a GOLOG-style language to specify programs that either

imparted procedural search control on the plan generation process or that specified what

could be viewed as a complex, temporally extended plan objective. In contrast to GOLOG,

the semantics of this GOLOG-style language was provided in PDDL. More importantly,

rather than use a GOLOG interpreter to extract a plan, the mechanism by which we specified

our PDDL semantics enabled us to compile away our GOLOG-like programs and to exploit

Jorge A. Baier, Christian Fritz, Sheila A. McIlraith

highly effective state-of-the-art planning technology to synthesize plans that adhered to the

constraints of the GOLOG-like programs.

Our initial work in this vein is reflected in the article that follows, a version of which

originally appeared under the title “Exploiting Procedural Domain Control Knowledge in

State-of-the-Art Planners” in the Proceedings of the Seventeenth International Conference

on Automated Planning and Scheduling (ICAPS2007). A follow-on paper at KR2008 ex-

amined related issues, extending the expressivity of our GOLOG-like language to include a

number of ConGolog constructs.

The article that follows was written for a planning audience and as such extols the virtues

and shortcomings of the work from a plan generation perspective. Indeed, an important

benefit of our work is that it provides a means for state-of-the-art planners to exploit proce-

dural domain control knowledge (DCK) specified in a GOLOG-like language. This benefit

is also shared by GOLOG researchers in so far as the work provides a computationally

effective means of synthesizing a class of GOLOG program executions with respect to a

restricted class of dynamical systems. However, the benefits of this work do not stop there.

The technique used to specify the semantics, here in PDDL, in the KR2008 paper in the sit-

uation calculus, is interesting because it avoids the need for reification – something Hector

particularly liked about the work. Further, from our understanding of the relationship be-

tween PDDL and situation calculus and between GOLOG and other DCK formalisms such

as Hierarchical Task Networks (HTNs) (elaborated upon by Alfredo Gabaldon in this vol-

ume), this body of work enables not only GOLOG, but also HTN-like DCK, or even hybrid

GOLOG-HTN DCK to be compiled away in a similar fashion and for plans and program

executions to be synthesized using efficient automated planning technology.

1 Introduction

Domain control knowledge (DCK) imposes domain-specific constraints on the definition

of a valid plan. As such, it can be used to impose restrictions on the course of action

that achieves the goal. While DCK sometimes reflects a user’s desire to achieve the goal

a particular way, it is most often constructed to aid in plan generation by reducing the

plan search space. Moreover, if well-crafted, DCK can eliminate those parts of the search

space that necessitate backtracking. In such cases, DCK together with blind search can

yield valid plans significantly faster than state-of-the-art planners that do not exploit DCK.

Indeed most planners that exploit DCK, such as TLPLAN [Bacchus and Kabanza 1998] or

TALPLANNER [Kvarnström and Doherty 2000], do little more than blind depth-first search

with cycle checking in a DCK-pruned search space. Since most DCK reduces the search

space but still requires a planner to backtrack to find a valid plan, it should prove beneficial

to exploit better search techniques. In this paper we explore ways in which state-of-the-art

planning techniques and existing state-of-the-art planners can be used in conjunction with

DCK, with particular focus on procedural DCK.

As a simple example of DCK, consider the trucks domain of the 2006 International

Planning Competition, where the goal is to deliver packages between certain locations

using a limited capacity truck with restricted access. Once a package reaches its destination

it must be delivered to the customer. We can write simple and natural procedural DCK that

significantly improves the efficiency of plan generation for instance: Repeat the following

until all packages have been delivered: Unload everything from the truck, and, if there is

any package in the current location whose destination is the current location, deliver it.

After that, if any of the local packages have destinations elsewhere, load them on the truck

Golog-Style Search Control for Planning

while there is space. Drive to the destination of any of the loaded packages. If there are

no packages loaded on the truck, but there remain packages at locations other than their

destinations, drive to one of these locations.

Procedural DCK, as used in HTN [Nau, Cao, Lotem, and Muñoz-Avila 1999] or GOLOG

[Levesque, Reiter, Lespérance, Lin, and Scherl 1997], is action-centric. It is much like a

programming language, and often times like a plan skeleton or template. It can (condition-

ally) constrain the order in which domain actions should appear in a plan. In order to exploit

it for planning, we require a procedural DCK specification language. To this end, we pro-

pose a language based on GOLOG that includes typical programming languages constructs

such as conditionals and iteration as well as nondeterministic choice of actions in places

where control is not germane. We argue that these action-centric constructs provide a natu-

ral language for specifying DCK for planning. We contrast them with DCK specifications

based on linear temporal logic (LTL) which are state-centric and though still of tremendous

value, arguably provide a less natural way to specify DCK. We specify the syntax for our

language as well as a PDDL-based semantics following Fox and Long [2003].

With a well-defined procedural DCK language in hand, we examine how to use state-of-

the-art planning techniques together with DCK. Of course, most state-of-the-art planners

are unable to exploit DCK. As such, we present an algorithm that translates a PDDL2.1-

specified Action Description Language (ADL) [Pednault 1989] planning instance and as-

sociated procedural DCK into an equivalent, program-free PDDL2.1 instance whose plans

provably adhere to the DCK. Any PDDL2.1-compliant planner can take such a planning

instance as input to their planner, generating a plan that adheres to the DCK.

Since they were not designed for this purpose, existing state-of-the-art planners may not

exploit techniques that optimally leverage the DCK embedded in the planning instance. As

such, we investigate how state-of-the-art planning techniques, rather than planners, can be

used in conjunction with our compiled DCK planning instances. In particular, we propose

domain-independent search heuristics for planning with our newly-generated planning in-

stances. We examine three different approaches to generating heuristics, and evaluate them

on three domains of the 2006 International Planning Competition. Our results show that

procedural DCK improves the performance of state-of-the-art planners, and that our heuris-

tics are sometimes key to achieving good performance.

2 Background

In this section, we review the subset of PDDL2.1 that we use to define the semantics of

our GOLOG-like language. PDDL is the de facto standard specification language for in-

put to most state-of-the-art planners, providing a means of specifying planning domains

(roughly, predicates and actions) and planning instances (roughly, objects, initial state, and

goal specification).

2.1 A Subset of PDDL 2.1

In PDDL, a planning instance is a pair I = (D,P), where D is a domain definition and P
is a problem. To simplify notation, we assume thatD and P are described in an ADL subset

of PDDL. The difference between this ADL subset and PDDL 2.1 is that no concurrent or

durative actions are allowed [Fox and Long 2003].

Following convention, domains are tuples of finite sets (PF ,Ops,ObjsD, T, τD), where

PF defines domain predicates and functions, Ops defines operators, ObjsD contains do-

main objects, T is a set of types, and τD ⊆ ObjsD×T is a type relation associating objects

Jorge A. Baier, Christian Fritz, Sheila A. McIlraith

to types. An operator (or action schema) is also defined by a tuple 〈O(~x),~t,Prec(~x),Eff (~x)〉,
where O(~x) is the unique operator name and ~x = (x1, . . . , xn) is a vector of variables.

Furthermore, ~t = (t1, . . . , tn) is a vector of types. Each variable xi ranges over objects as-

sociated with type ti. Moreover, Prec(~x) is a boolean formula with quantifiers (BFQ) that

specifies the operator’s preconditions. BFQs are defined inductively as follows. Atomic

BFQs are either of the form t1 = t2 or R(t1, . . . , tn), where ti (i ∈ {1, . . . , n}) is a term

(i.e. either a variable, a function literal, or an object), and R is a predicate symbol. If ϕ is a

BFQ, then so is Qx-t ϕ, for a variable x, a type symbol t, and Q is either ∃ or ∀. BFQs are

also formed by applying standard boolean operators over other BFQs. Finally Eff (~x) is a

list of conditional effects, each of which can be in one of the following forms:

∀y1-t1 · · · ∀yn-tn. ϕ(~x, ~y) ⇒ R(~x, ~y), (1)

∀y1-t1 · · · ∀yn-tn. ϕ(~x, ~y) ⇒ ¬R(~x, ~y), (2)

∀y1-t1 · · · ∀yn-tn. ϕ(~x, ~y) ⇒ f(~x, ~y) = obj, (3)

where ϕ is a BFQ whose only free variables are among ~x and ~y, R is a predicate, f is a

function, and obj is an object After performing a ground operator – or action – O(~c) in

a certain state s, for all tuples of objects that may instantiate ~y such that ϕ(~c, ~y) holds in

s, effect (1) (resp. (2)) expresses that R(~c, ~y) becomes true (resp. false), and effect (3)

expresses that f(~c, ~y) takes the value obj. As usual, states are represented as finite sets of

atoms (ground formulae of the form R(~c) or of the form f(~c) = obj).
Planning problems are tuples (Init ,Goal ,ObjsP , τP), where Init is the initial state,

Goal is a sentence with quantifiers for the goal, and ObjsP and τP are defined analogously

as for domains.

Semantics: Fox and Long [2003] gave a formal semantics for PDDL 2.1. In particular, they

define when a sentence is true in a state and what state trace is the result of performing a

set of timed actions. A state trace intuitively corresponds to an execution trace, and the sets

of timed actions are ultimately used to refer to plans. In the ADL subset of PDDL2.1, since

there are no concurrent or durative actions, time does not play any role. Hence, state traces

reduce to sequences of states and sets of timed actions reduce to sequences of actions.

Building on Fox and Long’s semantics, we assume that |= is defined such that s |= ϕ
holds when sentence ϕ is true in state s. Moreover, for a planning instance I , we as-

sume there exists a relation Succ such that Succ(s, a, s′) iff s′ results from performing

an executable action a in s. Finally, a sequence of actions a1 · · · an is a plan for I if

there exists a sequence of states s0 · · · sn such that s0 = Init, Succ(si, ai+1, si+1) for

i ∈ {0, . . . , n− 1}, and sn |= Goal .

3 A Language for Procedural Control

In contrast to state-centric languages, that often use LTL-like logical formulae to specify

properties of the states traversed during plan execution, procedural DCK specification lan-

guages are predominantly action-centric, defining a plan template or skeleton that dictates

actions to be used at various stages of the plan.

Procedural control is specified via programs rather than logical expressions. The specifi-

cation language for these programs is based on GOLOG [Levesque, Reiter, Lespérance, Lin,

and Scherl 1997] and thus incorporates desirable elements from imperative programming

languages such as iteration and conditional constructs. However, to make the language

more suitable to planning applications, it also incorporates nondeterministic constructs.

Golog-Style Search Control for Planning

These elements are key to writing flexible control since they allow programs to contain

missing or open program segments, which are filled in by a planner at the time of plan

generation. Finally, our language also incorporates property testing, achieved through so-

called test actions. These actions are not real actions, in the sense that they do not change

the state of the world, rather they can be used to specify properties of the states traversed

while executing the plan. By using test actions, our programs can also specify properties

of executions similarly to state-centric specification languages.

The rest of this section describes the syntax and semantics of the procedural DCK spec-

ification language we propose to use. We conclude this section by formally defining what

it means to plan under the control of such programs.

3.1 Syntax

Our procedural search control language is based on GOLOG. In contrast to GOLOG, our

language supports specification of types for program variables, but does not support proce-

dures.

Programs are constructed using the implicit language for actions and boolean formulae

defined by a particular planning instance I . Additionally, a program may refer to variables

drawn from a set of program variables V . This set V will contain variables that are used

for nondeterministic choices of arguments. In what follows, we assume O denotes the set

of operator names from Ops , fully instantiated with objects defined in I or elements of V .

The set of programs over a planning instance I and a set of program variables V can

be defined by induction. In what follows, assume φ is a boolean formula with quantifiers

on the language of I , possibly including terms in the set of program variables V . Atomic

programs are defined as follows.

1. nil : the empty program.

2. o: a single operator instance, where o ∈ O.

3. any: “any action”.

4. φ?: a test action, that tests for the truth of formula φ.

If σ1, σ2 and σ are programs, so are the following:

1. (σ1;σ2): a sequence of programs.

2. if φ thenσ1 elseσ2: a conditional sentence.

3. whileφdoσ: a while-loop.

4. σ∗: nondeterministic iteration.

5. (σ1|σ2): nondeterministic choice between two programs.

6. π(x-t)σ: nondeterministic choice of variable x ∈ V of type t ∈ T .

Before we formally define the semantics of the language, we show some examples that

give a sense of the language’s expressiveness and semantics.

• while¬clear(B)doπ(b-block) putOnTable(b): while B is not clear choose any b
of type block and put it on the table.

• any∗; loaded(A, Truck)?: Perform any sequence of actions until A is loaded in

Truck. Plans under this control are such that loaded(A, Truck) holds in the final

state.

• (load(C,P); fly(P,LA) | load(C, T); drive(T,LA)): Either load C on the plane

P or on the truck T , and perform the right action to move the vehicle to LA.

Jorge A. Baier, Christian Fritz, Sheila A. McIlraith

3.2 Semantics

The problem of planning for an instance I under the control of program σ corresponds to

finding a plan for I that is also an execution of σ from the initial state. In the rest of this

section we define what those legal executions are. Intuitively, we define a formal device to

check whether a sequence of actions a1 · · · an corresponds to the execution of a program σ.

The device we use is a nondeterministic finite state automaton with ε-transitions (ε-NFA).

For the sake of readability, we remind the reader that ε-NFAs are like standard nondeter-

ministic automata except that they can transition without reading any input symbol, through

the so-called ε-transitions. ε-transitions are usually defined over a state of the automaton

and a special symbol ε, denoting the empty symbol.

An ε-NFAAσ,I is defined for each program σ and each planning instance I . Its alphabet

is the set of operator names, instantiated by objects of I . Its states are program configura-

tions which have the form [σ, s], where σ is a program and s is a planning state. Intuitively,

as it reads a word of actions, it keeps track, within its state [σ, s], of the part of the program

that remains to be executed, σ, as well as the current planning state after performing the

actions it has read already, s.
Formally, Aσ,I = (Q,A,Tr , qo, F), where Q is the set of program configurations, the

alphabet A is a set of domain actions, the transition function is Tr : Q× (A∪{ε}) → 2Q,

q0 = [σ, Init], and F is the set of final states.

Our definition of Tr closely follows the definition of Trans and Final from GOLOG’s

transition semantics [De Giacomo, Lespérance, and Levesque 2000].

The transition function Tr is defined as follows for atomic programs.

Tr([a, s], a) = {[nil , s′]} iff Succ(s, a, s′), for any a ∈ A, (4)

Tr([any, s], a) = {[nil, s′]} iff Succ(s, a, s′), for any a ∈ A, (5)

Tr([φ?, s], ε) = {[nil , s]} iff s |= φ. (6)

Equations 4 and 5 dictate that actions in programs change the state according to the Succ re-

lation described in the previous section. Finally, Equation 6 defines transitions for φ? when

φ is a sentence (i.e., a formula with no program variables). It expresses that a transition can

only be carried out if the plan state so far satisfies φ.

Now we define Tr for non-atomic programs. In the definitions below, assume that a ∈
A ∪ {ε}, and that σ1 and σ2 are subprograms of σ, where occurring elements in V may

have been instantiated by any object in the planning instance I .

Tr([(σ1;σ2), s], a) = {[(σ′
1;σ2), s

′] | [σ′
1, s

′] ∈ Tr([σ1, s], a)} if σ1 6= nil , (7)

Tr([(nil ;σ2), s], ε) = {[σ2, s]}, (8)

Tr([if φ thenσ1 elseσ2, s], ε) =

{

[σ1, s] if s |= φ,

[σ2, s] if s 6|= φ,
(9)

Tr([(σ1|σ2), s], ε) = {[σ1, s], [σ2, s]} (10)

Tr([whileφdoσ1, s], ε) =

{

{[nil , s]} if s 6|= φ,

{[σ1;whileφdoσ1, s]} if s |= φ,
(11)

Tr([σ∗
1 , s], ε) = {[(σ1;σ

∗
1), s], [nil , s]}, (12)

Tr([π(x-t)σ1, s], ε) = {[σ1|x/o, s] | (o, t) ∈ τD ∪ τP }. (13)

Golog-Style Search Control for Planning

where σ1|x/o denotes the program resulting from replacing any occurrence of x in σ1 by

o. We now give some intuitions for the definitions. First, a transition on a sequence cor-

responds to transitioning on its first component first (Eq. 7), unless the first component is

already the empty program, in which case we transition on the second component (Eq. 8).

A transition on a conditional corresponds to a transition in the then or else part depending

on the truth value of the condition (Eq. 9). A transition of the nondeterministic choice

leads to the consideration of either of the programs (Eq. 10). A transition of a while-loop

corresponds to the nil program if the condition is false, and corresponds to the body fol-

lowed by the while-loop if the condition is true (Eq. 11). On the other hand, a transition

of σ∗
1 represents two alternatives: executing σ1 at least once, or stopping the execution of

σ∗
1 , with the remaining program nil (Eq. 12). Finally, a transition of the nondeterministic

choice corresponds to a transition of its body when the variable has been replaced by any

object of the right type (Eq. 13).

To end the definition of Aσ,I , Q corresponds precisely to the program configurations

[σ′, s] where σ′ is either nil or a subprogram of σ such that program variables may have

been replaced by objects in I , and s is any possible planning state. Moreover, Tr is as-

sumed empty for elements of its domain not explicitly mentioned above. Finally, the set

of accepting states is F = {[nil , s] | s is any state over I}, i.e., those where no program

remains in execution. We can now formally define an execution of a program.

DEFINITION 1 (Execution of a program). A sequence of actions a1 · · · an is an execution

of σ in I iff a1 · · · an is accepted by Aσ,I .

We use the symbol ⊢ to represent a single computation of the automaton. We say that

q ⊢ q′ iff there exists an a such that q′ ∈ Tr(q, a). The symbol ⊢∗ represents the reflexive

and transitive closure of ⊢. Finally, q0 ⊢k qk iff there are exist states q1, . . . , qk−1 such that

q0 ⊢ q1 ⊢ q2 ⊢ . . . ⊢ qk−1 ⊢ qk.

Before defining what we mean by planning in the presence of control, we prove a num-

ber of results that justify the correctness of our automata-based semantics. The detailed

proofs can be found in Baier’s Ph.D. thesis [Baier 2010]. The first result proves that the

definition of the sequence is intuitively correct, i.e., the execution of σ1;σ2 corresponds to

the execution of σ1 followed by σ2.

PROPOSITION 2. Let σ1 and σ2 be programs. If

[σ1;σ2, s] ⊢ q1 ⊢ q2 ⊢ . . . ⊢ qk−1 ⊢ qk = [nil , s′],

then for some i ∈ [1, k], qi = [σ2, s
′] and [σ1, s] ⊢

∗ [nil , s′].

Our second result establishes that the semantics for the execution of an if - then - else

is intuitively correct.

PROPOSITION 3. Let φ be a BFQ and let σ1 and σ2 be programs, then the following

holds:

[if φ thenσ1 elseσ2, s] ⊢
∗ [nil , s′]

iff

s |= φ and [σ1, s] ⊢
∗ [nil , s′], or s 6|= φ and [σ2, s] ⊢

∗ [nil , s′].

The execution of a nondeterministic choice of programs has the intended meaning too,

as shown by the following result.

Jorge A. Baier, Christian Fritz, Sheila A. McIlraith

PROPOSITION 4. Let σ1 and σ2 be programs, then the following holds:

[(σ1|σ2), s] ⊢
∗ [nil , s′] iff [σ1, s] ⊢

∗ [nil , s′] or [σ2, s] ⊢
∗ [nil , s′].

Now we prove that the execution of the while loop correspond to a repeated execution

of the body of the loop.

PROPOSITION 5. Let φ be a BFQ and σ be a program. If

[whileφdoσ, s] ⊢ q1 ⊢ q2 ⊢ . . . ⊢ qk ⊢ [nil , s′],

then:

1. for all i ∈ [1, k], qi is either of the form qi = [σr;whileφdoσ, ri], or of the form

qi = [whileφdoσ, ri].

2. for all i ∈ [1, k], if qi is of the form qi = [whileφdoσ, ri] then i < k iff ri |= φ.

State qk is of the form qk = [whileφdoσ, rk]

3. Finally, let n be the number of states qi (i ∈ [1, k]) of the form qi = [whileφdoσ, ri].
Then, [σn, s] ⊢∗ [nil, s′], where σn represents the sequence that repeats σ n times.

In the GOLOG language [Levesque, Reiter, Lespérance, Lin, and Scherl 1997], the if -

then - else construct is defined by macro expansion, in terms of test actions and non-

deterministic choices. Below we prove that our semantics for the if - then - else and for

the GOLOG macro expansion of such a construct are equivalent.

PROPOSITION 6. Let φ be a BFQ and let σ1 and σ2 be programs, then the following

holds:

[if φ thenσ1 elseσ2, s] ⊢ [σ, s] iff [(φ?;σ1)|(¬φ?;σ2), s] ⊢
3 [σ, s].

Now that we have justified the correctness of the semantics of the control language, we

return to planning. We are now ready to define the notion of planning under procedural

control.

DEFINITION 7 (Planning under procedural control). A sequence of actions a1a2 · · · an is

a plan for instance I under the control of program σ iff a1a2 · · · an is a plan for I and is an

execution of σ in I .

4 Compiling Control into the Action Theory

This section describes a translation function that, given a program σ in the DCK language

defined above together with a PDDL2.1 domain specification D, outputs a new PDDL2.1

domain specification Dσ and problem specification Pσ . The two resulting specifications

can then be combined with any problem P defined overD, creating a new planning instance

that embeds the control given by σ, i.e. that is such that only action sequences that are

executions of σ are possible. This enables any PDDL2.1-compliant planner to exploit

search control specified by any program.

To account for the state of execution of program σ and to describe legal transitions

in that program, we introduce a few bookkeeping predicates and a few additional actions.

Figure 1 graphically illustrates the translation of an example program shown as a finite state

Golog-Style Search Control for Planning

1 2

3 4

5 6

7 8 9

noop

noop

noop

test(ψ)

test(¬ψ)

test(φ)

test(¬φ)

a

b

c

if

while
sequence

Figure 1: Automaton for whileφdo (if ψ then a else b); c.

automaton. Intuitively, the operators we generate in the compilation define the transitions

of this automaton. Their preconditions and effects condition on and change the automaton’s

state.

The translation is defined inductively by a function C(σ, n,E) which takes as input a

program σ, an integer n, and a list of program variables with types E = [e1-t1, . . . , ek-tk],
and outputs a tuple (L,L′, n′) with L a list of domain-independent operator definitions, L′

a list of domain-dependent operator definitions, and n′ another integer. Intuitively, E con-

tains the program variables whose scope includes (sub-)program σ. Moreover, L′ contains

restrictions on the applicability of operators defined in I , and L contains additional control

operators needed to enforce the search control defined in σ. Integers n and n′ abstractly

denote the program state before and after execution of σ.

We use two auxiliary functions. Cnoop(n1, n2) produces an operator definition that

allows a transition from state n1 to n2. Similarly Ctest(φ, n1, n2, E) defines a similar

transition, but conditioned on φ. They are defined as:1

Cnoop(n1, n2) = 〈noop n1 n2(), [], state = sn1
, [state = sn2

]〉

Ctest(φ, n1, n2, E) = 〈test n1 n2(~x),~t,Prec(~x),Eff (~x)〉 with

(~e-t, ~x) = mentions(φ,E), ~e-t = e1-t1, . . . , em-tm,

Prec(~x) =
(

state = sn1
∧ φ[ei/xi]

m
i=1 ∧

∧m

i=1
bound(ei) → map(ei, xi)

)

,

Eff (~x) = [state = sn2
] · [bound(ei),map(ei, xi)]

m
i=1.

Function mentions(φ,E) returns a vector ~e-t of program variables and types that occur in

φ, and a vector ~x of new variables of the same length. Bookkeeping predicates serve the

following purposes: state denotes the state of the automaton; bound(e) expresses that the

program variable e has been bound to an object of the domain; map(e, o) states that this

object is o. Thus, the implication bound(ei) → map(ei, xi) forces parameter xi to take the

value to which ei is bound, but has no effect if ei is not bound.

Consider the inner box of Figure 1, depicting the compilation of the if statement. It is

1We use A ·B to denote the concatenation of listsA and B.

Jorge A. Baier, Christian Fritz, Sheila A. McIlraith

defined as:

C(if φ thenσ1 elseσ2, n, E) = (L1 · L2 ·X,L
′
1 · L

′
2, n3) with

(L1, L
′
1, n1) = C(σ1, n+ 1, E),

(L2, L
′
2, n2) = C(σ2, n1 + 1, E), n3 = n2 + 1,

X = [Ctest(φ, n, n+ 1, E), Ctest(¬φ, n, n1 + 1, E),

Cnoop(n1, n3), Cnoop(n2, n3)]

and in the example we have φ = ψ, n = 2, n1 = 4, n2 = 6, n3 = 7, σ1 = a, and σ2 = b.
The inductive definitions for other programs σ are:

C(nil , n, E) = ([], [], n)

C(O(~r), n, E) = ([], [〈O(~x),~t,Prec′(~x),Eff ′(~x)〉], n+ 1) with

〈O(~x),~t,Prec(~x),Eff (~x)〉 ∈ Ops,

~r = r1, . . . , rm,

Prec′(~x) = (state = sn ∧
∧

i s.t. ri∈E

bound(ri) → map(ri, xi) ∧
∧

i s.t. ri 6∈E

xi = ri),

Eff ′(~x) = [state = sn ⇒ state = sn+1] ·

[state = sn ⇒ bound(ri) ∧ map(ri, xi)]i s.t. ri∈E

C(φ?, n, E) = ([Ctest(φ, n, n+ 1, E)], [], n+ 1)

C((σ1;σ2), n, E) = (L1 · L2, L
′
1 · L

′
2, n2) with

(L1, L
′
1, n1) = C(σ1, n, E), (L2, L

′
2, n2) = C(σ2, n1, E)

C((σ1|σ2), n, E) = (L1 · L2 ·X,L
′
1 · L

′
2, n2 + 1) with

(L1, L
′
1, n1) = C(σ1, n+ 1, E),

(L2, L
′
2, n2) = C(σ2, n1 + 1, E),

X = [Cnoop(n, n+ 1), Cnoop(n, n1 + 1),

Cnoop(n1, n2 + 1), Cnoop(n2, n2 + 1)]

C(whileφdoσ, n,E) = (L ·X,L′, n1 + 1) with

(L,L′, n1) = C(σ, n+ 1, E), X = [Ctest(φ, n, n+ 1, E),

Ctest(¬φ, n, n1 + 1, E), Cnoop(n1, n)]

C(σ∗, n, E) = (L · [Cnoop(n, n2), Cnoop(n1, n)], L
′, n2) with

(L,L′, n1) = C(σ, n,E), n2 = n1 + 1

C(π(x-t, σ), n, E) = (L ·X,L′, n1 + 1) with

(L,L′, n1) = C(σ, n,E · [x-t]),

X = [〈free n1(x), t, state = sn1
,

[state = sn1+1,¬bound(x), ∀y.¬map(x, y)]〉]

The atomic program any is handled by macro expansion to above defined constructs.

As mentioned above, given program σ, the return value (L,L′, nfinal) of C(σ, 0, []) is

such that L contains new operators for encoding transitions in the automaton, whereas

L′ contains restrictions on the applicability of the original operators of the domain. Now

Golog-Style Search Control for Planning

we are ready to integrate these new operators and restrictions with the original domain

specification D to produce the new domain specification Dσ .

Dσ contains a constrained version of the operators O(~x) of the original domain D also

mentioned in L′. Let [〈O(~x),~t,Preci(~x),Eff i(~x)〉]
n
i=1 be the sublist of L′ that contains

additional conditions for operator O(~x). The operator replacing O(~x) in Dσ is defined as:

〈O′(~x), ~t, Prec(~x) ∧
∨n

i=1
Preci(~x), Eff (~x) ∪

⋃n

i=1
Eff i(~x)〉

Additionally,Dσ contains all operator definitions in L. Objects inDσ are the same as those

in D, plus a few new ones to represent the program variables and the automaton’s states si
(0 ≤ i ≤ nfinal). Finally Dσ inherits all predicates in D plus bound(x), map(x, y), and

function state.

The translation, up to this point, is problem-independent; the problem specification Pσ

is defined as follows. Given any predefined problem P over D, Pσ is like P except that

its initial state contains condition state = s0, and its goal contains state = snfinal
. Those

conditions ensure that the program must be executed to completion.

As is shown below, planning in the generated instance Iσ = (Dσ, Pσ) is equivalent to

planning for the original instance I = (D,P) under the control of program σ, except that

plans on Iσ contain actions that were not part of the original domain definition (test, noop,

and free).

THEOREM 8 (Correctness). Let Filter(α,D) denote the sequence that remains when re-

moving from α any action not defined in D. If α is a plan for instance Iσ = (Dσ, Pσ) then

Filter(α,D) is a plan for I = (D,P) under the control of σ. Conversely, if α is a plan for

I under the control of σ, there exists a plan α′ for Iσ , such that α = Filter(α′, D).

Proof. Appears in [Baier, Fritz, and McIlraith 2007]. ⊓⊔

Now we turn our attention to analyzing the size of the output planning instance relative

to the original instance and control program. Assume we define the size of a program as the

number of programming constructs and actions it contains. Then we obtain the following

result.

THEOREM 9 (Succinctness). Let σ is a program of size m, and let k be the maximal nest-

ing depth of π(x-t) statements in σ, then |Iσ| (the overall size of Iσ) isO((k+p)m), where

p is the size of the largest operator in I .

Proof. Appears in [Baier, Fritz, and McIlraith 2007]. ⊓⊔

The encoding of programs in PDDL2.1 is, hence, in worst case O(k) times bigger than

the program itself. It is also easy to show that the translation is done in time linear in the

size of the program, since, by definition, every occurrence of a program construct is only

dealt with once.

5 Exploiting DCK in State-of-the-Art Heuristic Planners

Our objective in translating procedural DCK to PDDL2.1 was to enable any PDDL2.1-

compliant state-of-the-art planner to seamlessly exploit our DCK. In this section, we in-

vestigate ways to best leverage our translated domains using domain-independent heuristic

search planners.

Jorge A. Baier, Christian Fritz, Sheila A. McIlraith

There are several compelling reasons for wanting to apply domain-independent heuristic

search to these problems. Procedural DCK can take many forms. Often, it will provide

explicit actions for some parts of a sequential plan, but not for others. In such cases, it will

contain unconstrained fragments (i.e., fragments with nondeterministic choices of actions)

where the designer expects the planner to figure out the best choice of actions to realize a

sub-task. In the absence of domain-specific guidance for these unconstrained fragments, it

is natural to consider using a domain-independent heuristic to guide the search.

In many domains it is very hard to write deterministic procedural DCK, i.e. DCK that

restricts the search space in such a way that solutions can be obtained very efficiently, even

using blind search. An example of such a domain is one where plans involve solving an

optimization sub-problem. In such cases, procedural DCK will contain open parts (frag-

ments of nondeterministc choice within the DCK), where the designer expects the planner

to figure out the best way of completing a sub-task. However, in the absence of domain-

specific guidance for these open parts, it is natural to consider using a domain-independent

heuristic to guide the search.

In other cases, it is the choice of action arguments, rather than the choice of actions

that must be optimized. In particular, fragments of DCK may collectively impose global

constraints on action argument choices that need to be enforced by the planner. As such,

the planner needs to be aware of the procedural control in order to avoid backtracking.

By way of illustration, consider a travel planning domain comprising two tasks “buy air

ticket” followed by “book hotel”. Each DCK fragment restricts the actions that can be

used, but leaves the choice of arguments to the planner. Further suppose that budget is

limited. We would like our planner to realize that actions used to complete the first task

should save enough money to complete the second task. The ability to do such lookahead

can be achieved via domain-independent heuristic search.

In the rest of the section we propose three ways in which one can leverage our trans-

lated domains using a domain-independent heuristic planner. These three techniques differ

predominantly in the operands they consider in computing heuristics.

5.1 Direct Use of Translation (Simple)

As the name suggests, a simple way to provide heuristic guidance while enforcing program

awareness is to use our translated domain directly with a domain-independent heuristic

planner. In short, take the original domain instance I and control σ, and use the resulting

instance Iσ with any heuristic planner. We call this the Simple heuristic.

Unfortunately, when exploiting a relaxed graph to compute heuristics, two issues arise.

bound predicates are relaxed, whatever value is already assigned to a variable, will remain

assigned to that variable. This can cause a problem with iterative control. For example, as-

sume program σL
def
= whileφdoπ(c-crate)unload(c, T), is intended for a domain where

crates can be only unloaded sequentially from a truck. As soon as c is assigned a value,

such a value will be considered in all possible iterations of the while loop, which is not

what is intended by the program, and has the potential of returning misleading estimates.

The second issue is one of efficiency. Since fluent state is also relaxed, the benefits of

the reduced branching factor induced by the programs is lost. This has an effect on the time

required to compute the heuristic.

Golog-Style Search Control for Planning

1 2 7 8
test(φ)

test(not φ)

test(fp ≤ 5) test(fp > 5)

Figure 2: H-ops translation of while loops. While computing the heuristics, pseudo-

fluent fp is increased each time no new effect is added into the relaxed state, and it is set to

0 otherwise. The loop can be exited if the last five (7-2) actions performed didn’t add any

new effect.

5.2 Modified Program Structure (H-ops)

The H-ops approach addresses the two issues potentially affecting the computation of the

Simple heuristic. It is designed to be used with planners that use heuristics based on the

relaxed planning graph. The input to the planner in this case is a pair (Iσ,HOps), where

Iσ = (Dσ, Pσ) is the translated instance, and HOps is an additional set of planning oper-

ators. The planner uses the operators in Dσ to generate successor states while searching.

However, when computing the heuristic for a state s it uses the operators in HOps .

Additionally, function state and predicates bound and map are not relaxed. This means

that when computing the relaxed graph we actually delete their instances from the relaxed

states. As usual, deletes are processed before adds. The expansion of the graph is stopped

if the goal or a fixed point is reached. Finally, a relaxed plan is extracted in the usual way,

and its length is reported as the heuristic value. In the computation of the length, auxiliary

actions such as tests and noops are ignored.

The “un-relaxing” of state, bound and map addresses the problem of reflecting the re-

duced branching factor provided by the control program while computing the heuristics.

However, it introduces other problems. Returning to the σL program defined above, since

state is now un-relaxed, the relaxed graph expansion cannot escape from the loop, because

under the relaxed planning semantics, as soon as φ is true, it remains true forever. A similar

issue occurs with the nondeterministic iteration. Furthermore, we want to avoid state dupli-

cation, i.e. having state equal to two different values at the same time in the same relaxed

state. This could happen for example while reaching an if construct whose condition is

both true and false at the same time (this can happen because p and not-p can both be true

in a relaxed state).

This issue is addressed by the HOps operators. To avoid staying in the loop forever,

the loop will be exited when actions in it are no longer adding effects. Figure 2 provides a

graphical illustration. An important detail to note is that the loop is not entered when φ is

not found true in the relaxed state. (The expression not φ should be understood as negation

as failure.) Moreover, the pseudo-fluent fp is an internal variable of the planner that acts

as a real fluent for the HOps . A similar approach is adopted for nodeterministic iterations,

whose description we omit here.

Since loops are guaranteed to be exited, the computation of H-ops is guaranteed to finish

because at some relaxed state the final state of the automaton will be reached. At this point,

if the goal is not true, no operators will be possible and a fixed point will be produced

immediately.

For if ’s, if the condition is both true and false at the same time, the then part is

processed first, followed by the else part. The objective of this is avoidance of state

Jorge A. Baier, Christian Fritz, Sheila A. McIlraith

test(not φ) noop
s2
0

s1
0

s1f

s2f

σ1

σ2

continue

exitif

escape t

escape e

testesc(φ)

Figure 3: H-ops translation for if - then - else . Action testesc(φ) is possible if condition

φ is true. If condition ¬φ is also true in the relaxed state, the testesc(φ) adds a fact

escape active that will enable the execution of continue and escape t and escape e.

Actions escape t and escape e are possible only when no other actions are possible.

This is checked using the pseudo-fluent fp described in Figure 2. Action exitif is only

possible if escape active is true. Both the noop and the escape e actions delete the

fact escape active. Nested if constructs are handled using a parameterized version of the

escape active predicate.

duplication. However, this new interpretation of the if introduces a new problem. This

problem occurs when, while performing the actions of one of the parts, no action is pos-

sible anymore. Intuitively, this could happen because the heuristics has chosen the wrong

subprogram to execute actions from. Indeed, if there exists an execution of the program

from state s that executes the “then” part of the if , it can happen that, during the computa-

tion of the heuristic for s, the “else” part forces some actions to occur that are not possible.

Under normal circumstances, the non existence of any possible action produces a fixed

point. Because the goal is not reached on such a fixed point, the heuristic regards the goal

as unreachable, which could be a wrong estimation.

To solve this problem, H-ops considers new “escape” actions, that are executable only

when no more actions are possible. Escapes can be performed only inside “then” or “else”

bodies. After executing an escape, the simulation of the program’s execution jumps to the

“else” part if the escape occurs in the “then” part, or to the end of the if , if the escape

occurs in the “else” part. Figure 3 provides a graphical depiction.

5.3 A Program-Unaware Approach (Basic)

Our program-unaware approach (Basic) completely ignores the program when computing

heuristics. Here, the input to the planner is a pair (Iσ,Ops), where Iσ is the translated

instance, and Ops are the original domain operators. The Ops operators are used ex-

clusively to compute the heuristic. Hence, Basic’s output is not at all influenced by the

control program. Note that although Basic is program unaware, it can sometimes provide

good estimates, as we see in the following section. This is especially true when the DCK

characterizes a solution that would be naturally found by the planner if no control were

used. It is also relatively fast to compute.

6 Implementation and Experiments

Our implementation takes a PDDL planning instance and a DCK program and generates a

new PDDL planning instance. It will also generate appropriate output for the Basic and H-

ops heuristics, which require a different set of operators. Thus, the resulting PDDL instance

Golog-Style Search Control for Planning

may contain definitions for operators that are used only for heuristic computation using the

:h-action keyword, whose syntax is analogous to the PDDL keyword :action.

Our planner is a modified version of TLPLAN, which does a best-first search using an

FF-style heuristic. It is capable of reading the PDDL with extended operators.

We performed our experiments on the trucks, storage and rovers domains (30 instances

each). We wrote DCK for these domains. For details of the GOLOG code used for these ex-

amples, see [Baier 2010]. We ran our three heuristic approaches (Basic, H-ops, and Simple)

and cycle-free, depth-first search on the translated instance (blind). Additionally, we ran

the original instance of the program (DCK-free) using the domain-independent heuristics

provided by the planner (original). Table 1 shows various statistics on the performance of

the approaches. Furthermore, Figure 4 shows times for the different heuristic approaches.

Not surprisingly, our data confirms that DCK helps to improve planner performance,

solving more instances across all domains. In some domains (i.e., storage and rovers) blind

depth-first cycle-free search is sufficient for solving most of the instances. However, quality

of solutions (plan length) is poor compared to the heuristic approaches. In trucks, DCK is

only effective in conjunction with heuristics; blind search can solve very few instances.

We observe that H-ops is the most informative (expands fewer nodes). This fact does not

pay off in time in the experiments shown in the table. Nevertheless, it is easy to construct

instances where the H-ops performs better than Basic. This happens when the DCK control

restricts the space of valid plans (i.e., prunes out valid plans). We have experimented with

various instances of the storage domain, where we restrict the plan to use only one hoist.

In some of these cases H-ops outperforms Basic by orders of magnitude.

7 Related Work and Discussion

DCK can be used to constrain the set of valid plans and has proven an effective tool in re-

ducing the time required to generate a plan. Nevertheless, many of the planners that exploit

it use arguably less natural state-centric DCK specification languages, and their planners

use blind search. In this paper we examined the problem of exploiting procedural DCK

with state-of-the-art planners. Our goal was to specify rich DCK naturally in the form of

a program template and to exploit state-of-the-art planning techniques to actively plan to-

wards the achievement of this DCK. To this end we made three contributions: provision of

a GOLOG-like procedural DCK language syntax and PDDL semantics; a polynomial-time

algorithm to compile DCK and a planning instance into a PDDL2.1 planning instance that

could be input to any PDDL2.1-compliant planner; and finally a set of techniques for ex-

ploiting domain-independent heuristic search with our translated DCK planning instances.

Each contribution is of value in and of itself. The language can be used without the compila-

tion, and the compiled PDDL2.1 instance can be input to any PDDL2.1-compliant state-of-

the-art planner, not just the domain-independent heuristic search planner that we propose.

Our experiments show that procedural DCK improves the performance of state-of-the-art

planners, and that our heuristics are sometimes key to achieving good performance.

Much of the previous work on DCK in planning has exploited state-centric specifica-

tion languages. In particular, TLPLAN [Bacchus and Kabanza 1998] and TALPLAN-

NER [Kvarnström and Doherty 2000] employ declarative, state-centric, temporal languages

based on LTL to specify DCK. Such languages define necessary properties of states over

fragments of a valid plan. We argue that they could be less natural than our procedural

specification language.

Though not described as DCK specification languages there are a number of languages

Jorge A. Baier, Christian Fritz, Sheila A. McIlraith

1000

100

1

0.1

0.01
0 5 10

10

15 20 25 30

se
c
o
n
d
s

problem

original

Basic

H-ops

Simple

blind

(a) rovers

1000

100

1

0.1

0.01
0 5 10

10

15 20 25 30

se
c
o
n
d
s

problem

original

Basic

H-ops

Simple

blind

(b) storage

1000

100

1

0.1

0.01
0 5 10

10

15 20 25

se
c
o
n
d
s

problem

original

Basic

H-ops

Simple

blind

(c) trucks

Figure 4: Running times of the three heuristics and the original instance; logarithmic scale;

run on an Intel Xeon, 3.6GHz, 2GB RAM

Golog-Style Search Control for Planning

original Simple Basic H-ops blind

T
ru

ck
s

#n 1 0.31 0.41 0.26 19.85

#s 9 9 15 14 3

ℓmin 1 1 1 1 1

ℓavg 1.1 1.03 1.02 1.04 1.04

ℓmax 1.2 1.2 1.07 1.2 1.07

R
o
v
er

s

#n 1 0.74 1.06 1.06 1.62

#s 10 19 28 22 30

ℓmin 1 1 1 1 1

ℓavg 2.13 1.03 1.05 1.21 1.53

ℓmax 4.59 1.2 1.3 1.7 2.14

S
to

ra
g
e

#n 1 1.2 1.13 0.76 1.45

#s 18 18 20 21 20

ℓmin 1 1 1 1 1

ℓavg 4.4 1.05 1.01 1.07 1.62

ℓmax 21.11 1.29 1.16 1.48 2.11

Table 1: Comparison between different approaches to planning (with DCK). #n is the av-

erage factor of expanded nodes to the number of nodes expanded by original (i.e., #n=0.26

means the approach expanded 0.26 times the number of nodes expanded by original). #s

is the number of problems solved by each approach. ℓavg denotes the average ratio of the

plan length to the shortest plan found by any of the approaches (i.e., ℓavg=1.50 means that

on average, on each instance, plans where 50% longer than the shortest plan found for that

instance). ℓmin and ℓmax are defined analogously.

from the agent programming and/or model-based programming communities that are re-

lated to procedural control. We have mentioned the GOLOG logic programming language.

EAGLE is a somewhat related goal language designed to also express intentionality [dal

Lago, Pistore, and Traverso 2002]. Further, languages such as the Reactive Model-Based

Programming Language (RMPL) [Kim, Williams, and Abramson 2001] – a procedural

language that combines ideas from constraint-based modeling with reactive programming

constructs – also share expressive power and goals with procedural DCK. Finally, HTN

specification languages such as those used in SHOP [Nau, Cao, Lotem, and Muñoz-Avila

1999] provide domain-dependent hierarchical task decompositions together with partial

order constraints, not easily describable in our language.

A focus of our work was to exploit state-of-the-art planners and planning techniques with

our procedural DCK. In contrast, well-known DCK-enabled planners such as TLPLAN and

TALPLANNER use DCK to prune the search space at each step of the plan and then employ

blind depth-first cycle-free search to try to reach the goal. Unfortunately, pruning is only

possible for maintenance-style DCK and there is no way to plan towards achieving other

types of DCK as there is with the heuristic search techniques proposed here.

Similarly, GOLOG interpreters, while exploiting procedural DCK, have traditionally em-

ployed blind search to instantiate nondeterministic fragments of a GOLOG program. Most

recently, Claßen, Eyerich, Lakemeyer, and Nebel [2007] have proposed to integrate an in-

cremental GOLOG interpreter with a state-of-the-art planner. Their motivation is similar

Jorge A. Baier, Christian Fritz, Sheila A. McIlraith

to ours, but there is a subtle difference: they are interested in combining agent program-

ming and efficient planning. The integration works by allowing a GOLOG program to make

explicit calls to a state-of-the-art planner to achieve particular conditions identified by the

user. The actual planning, however, is not controlled in any way. Also, since the GOLOG

interpreter executes the returned plan immediately without further lookahead, backtracking

does not extend over the boundary between GOLOG and the planner. As such, each frag-

ment of nondeterminism within a program is treated independently, so that actions selected

locally are not informed by the constraints of later fragments as they are with the approach

that we propose. Their work, which focuses on the semantics of ADL in the situation

calculus, is hence orthogonal to ours.

Finally, there is related work that compiles DCK into standard planning domains. Baier

and McIlraith [2006], Cresswell and Coddington [2004], Edelkamp [2006], and Rintanen

[2000], propose to compile different versions of LTL-based DCK into PDDL/ADL plan-

ning domains. The main drawback of these approaches is that translating full LTL into

ADL/PDDL is worst-case exponential in the size of the control formula whereas our com-

pilation produces an addition to the original PDDL instance that is linear in the size of

the DCK program. Son, Baral, Nam, and McIlraith [2006] further show how HTN, LTL,

and GOLOG-like DCK can be encoded into planning instances that can be solved using an-

swer set solvers. Nevertheless, they do not provide translations that can be integrated with

PDDL-compliant state-of-the-art planners, nor do they propose any heuristic approaches to

planning with them.

8 Postlude

The focus of this research, as described here, has been to improve planner performance

while also enabling standard planners to plan for a richer class of goals. In addition to

this practical achievement, there are a number of interesting theoretical insights in this

work. We explore these in more detail in [Fritz, Baier, and McIlraith 2008]. In this later

work we go beyond the simplified GOLOG-like language discussed here, and consider full

GOLOG with procedures, including its extension for concurrency, ConGolog [De Giacomo,

Lespérance, and Levesque 2000].

The main technical contribution of this follow-on work is the definition of a compilation

scheme that takes a ConGolog program and a basic action theory of the situation calculus

as input and outputs a new basic action theory that represents the program in the context

of the original theory. I.e., the resulting basic action theory describes the same tree of

situations as the tree of situations induced by the program in conjunction with the original

basic action theory. This compilation eliminates the need for a ConGolog interpreter. The

resulting theory can be interpreted by any implementation of the situation calculus. Further,

providing semantics to ConGolog programs in this way eliminates the need for reification

in the specification of the semantics.

This compiled semantics is useful for a variety of purposes. First and foremost, as dis-

cussed in the previous sections, standard PDDL-compliant planners can plan using Con-

Golog programs to specify search control and/or temporally extended goals. While the

target language in [Fritz, Baier, and McIlraith 2008] was that of basic action theories of

the situation calculus, in certain cases it is possible to also compile to other representa-

tions, such as PDDL. This requires certain restrictions to keep the state space finite, but

important features such as concurrency can be represented. Intuitively, in the context of the

previously described compilation to PDDL, this is achieved by allowing the state machine

Golog-Style Search Control for Planning

to be in multiple states at the same time. The type of concurrency achieved is interleaving,

just as it is in the original ConGolog.

Secondly, it is possible to represent a significant subset of HTNs [Ghallab, Nau, and

Traverso 2004] in ConGolog, which given this work means that it is now possible to reason

about such HTNs in the situation calculus as well. Given ConGolog’s ability to represent

and reason about recursive procedures, these HTNs may similarly make use of recursive

method definitions.

Thirdly, since the semantics of programs in the compilation result is captured via flu-

ents, action preconditions and action effects, it is possible to reason about program exe-

cutions using regression. Loosely speaking, one can “regress programs”, i.e., reduce all

the constraints that are imposed by a program on the legal executions of that program into

constraints about the initial state of the world, when presented with a sequence of actions.

This is different from regressing a formula over a program. Rather, since after compilation

all constraints that the program imposes on the evolution of the world (the tree of situations

described by the underlying basic action theory) are now explicitly expressed as condi-

tions over fluents, these program constraints can be regressed. Just as this was the original

motivation for Reiter’s use of regression, this use of regression allows applying regular

theorem provers that only need to reason about the initial state. Hence, reasoning about

the truth values of fluents amounts to mere database look-up. Practically this means that,

when given a specific sequence of actions, one can test whether or not it constitutes a legal

execution of the regressed program without temporal projection and without the need for

program interpretation. This has significant implications with respect to execution monitor-

ing of (Con)Golog programs, building on the unifying perspective of execution monitoring

developed in Fritz’s Ph.D. thesis [Fritz 2009].

Acknowledgements We are grateful to Yves Lespérance, Hector Levesque and ICAPS

anonymous reviewers for their feedback. This research was funded by the Natural Sciences

and Engineering Research Council of Canada (NSERC) and by the Ontario Ministry of

Research and Innovation (MRI).

References

Bacchus, F. and F. Kabanza [1998]. Planning for temporally extended goals. Annals of

Mathematics and Artificial Intelligence 22(1-2), 5–27.

Baier, J. [2010]. Effective search techniques for non-classical planning via reformula-

tion. Ph.D. thesis, University of Toronto, Toronto, Canada.

Baier, J., C. Fritz, and S. McIlraith [2007]. Exploiting procedural domain control knowl-

edge in state-of-the-art planners (extended version). Technical Report CSRG-565,

University of Toronto.

Baier, J. A. and S. A. McIlraith [2006]. Planning with first-order temporally extended

goals using heuristic search. In Proc. of the 21st National Conference on Artificial

Intelligence (AAAI-06), Boston, USA, pp. 788–795.

Claßen, J., P. Eyerich, G. Lakemeyer, and B. Nebel [2007]. Towards an integration of

Golog and planning. In Proc. of the 20th Int’l Joint Conference on Artificial Intelli-

gence (IJCAI-07), Hyderabad, India, pp. 1846–1851.

Cresswell, S. and A. M. Coddington [2004]. Compilation of LTL goal formulas into

PDDL. In Proc. of the 16th European Conference on Artificial Intelligence (ECAI-

04), Valencia, Spain, pp. 985–986.

Jorge A. Baier, Christian Fritz, Sheila A. McIlraith

dal Lago, U., M. Pistore, and P. Traverso [2002]. Planning with a language for extended

goals. In Proc. of AAAI/IAAI, Edmonton, Alberta, Canada, pp. 447–454.

De Giacomo, G., Y. Lespérance, and H. Levesque [2000]. ConGolog, a concurrent pro-

gramming language based on the situation calculus. Artificial Intelligence 121(1-2),

109–169.

Edelkamp, S. [2006]. On the compilation of plan constraints and preferences. In Proc. of

the 16th Int’l Conference on Automated Planning and Scheduling (ICAPS-06), Lake

District, UK, pp. 374–377.

Fox, M. and D. Long [2003]. PDDL2.1: An extension to PDDL for expressing temporal

planning domains. Journal of Artificial Intelligence Research 20, 61–124.

Fritz, C. [2009]. Monitoring the Generation and Execution of Optimal Plans. Ph.D.

thesis, University of Toronto, Toronto, Canada.

Fritz, C., J. A. Baier, and S. A. McIlraith [2008]. ConGolog, Sin Trans: Compiling

ConGolog into basic action theories for planning and beyond. In Proc. on the 11th

Int’l Conference on Principles of Knowledge Representation and Reasoning (KR-

08), Sydney, Australia, pp. 600–610.

Ghallab, M., D. Nau, and P. Traverso [2004]. Automated Planning: Theory and Practice.

Morgan Kaufmann.

Kim, P., B. C. Williams, and M. Abramson [2001]. Executing reactive, model-based

programs through graph-based temporal planning. In Proc. of the 17th Int’l Joint

Conference on Artificial Intelligence (IJCAI-01), Seattle, USA, pp. 487–493.

Kvarnström, J. and P. Doherty [2000]. TALPlanner: A temporal logic based forward

chaining planner. Annals of Mathematics and Artificial Intelligence 30(1-4), 119–

169.

Levesque, H., R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl [1997]. GOLOG:

A logic programming language for dynamic domains. Journal of Logic Program-

ming 31(1-3), 59–83.

McDermott, D. V. [1998]. PDDL — The Planning Domain Definition Language. Tech-

nical Report TR-98-003/DCS TR-1165, Yale Center for Computational Vision and

Control.

Nau, D. S., Y. Cao, A. Lotem, and H. Muñoz-Avila [1999]. SHOP: Simple hierarchical

ordered planner. In Proc. of the 16th Int’l Joint Conference on Artificial Intelligence

(IJCAI-99), Stockholm, Sweden, pp. 968–975.

Pednault, E. P. D. [1989]. ADL: Exploring the middle ground between STRIPS and the

situation calculus. In Proc. of the 1st Int’l Conference on Principles of Knowledge

Representation and Reasoning (KR-89), Toronto, Canada, pp. 324–332.

Rintanen, J. [2000]. Incorporation of temporal logic control into plan operators. In Proc.

of the 14th European Conference on Artificial Intelligence (ECAI-00), Berlin, Ger-

many, pp. 526–530. IOS Press.

Son, T. C., C. Baral, T. H. Nam, and S. A. McIlraith [2006]. Domain-dependent knowl-

edge in answer set planning. ACM Transactions on Computational Logic 7(4), 613–

657.

