
A Heuristic Search Approach to Planning with Temporally
Extended Preferences

Jorge Baiera,b,∗, Fahiem Bacchusa, Sheila A. McIlraitha

aDepartment of Computer Science, University of Toronto, Canada
bDepartment of Computer Science, Pontificia Universidad Católica de Chile, Chile

Abstract

Planning with preferences involves not only finding a plan that achieves the goal, it requires finding apreferredplan that
achieves the goal, where preferences over plans are specified as part of the planner’s input. In this paper we provide a technique
for accomplishing this objective. Our technique can deal with a rich class of preferences, including so-calledtemporally extended
preferences(TEPs). Unlike simple preferences which express desired properties of the final state achieved by a plan, TEPs can
express desired properties of the entire sequence of statestraversed by a plan, allowing the user to express a much richer set of
preferences. Our technique involves converting a planningproblem with TEPs into an equivalent planning problem containing
only simple preferences. This conversion is accompished byaugmenting the inputed planning domain with a new set of predicates
and actions for updating these predicates. We then provide acollection of new heuristics and a specialized search algorithm
that can guide the planner towards preferred plans. Under some fairly general conditions our method is able to find a most
preferred plan—i.e., an optimal plan. It can accomplish this without having to resort to admissible heuristics, which often perform
poorly in practice. Nor does our technique require an assumption of restricted plan length or make-span. We have implemented
our approach in the HPLAN -P planning system and used it to compete in the 5th International Planning Competition, where it
achieved distinguished performance in theQualitative Preferencestrack.

Key words: Planning with preferences, temporally extended preferences, PDDL3

1 Introduction

Classical planning requires a planner to find a plan that achieves a specified goal. In practice, however, not every
plan that achieves the goal is equally desirable. Preferences allow the user to provide the planner with information
that it can use to discriminate between successful plans; thisinformation allows the planner to distinguish successful
plans based on plan quality.

Planning with preferences involves not just finding a plan that achieves the goal, it requires finding one that achieves
the goal while also optimizing the user’s preferences. Unfortunately, finding an optimal plan can be computationally
expensive. In such cases, we would at least like the planner todirect its search towards a reasonably preferred plan.

In this paper we provide a technique for accomplishing this objective. Our technique is able to deal with a rich class
of preferences. Most notably this class includestemporally extended preferences(TEPs). The difference between a
TEP and a so-calledsimplepreference is that a simple preference expresses some desired propertyof the final state
achieved by the plan, while a TEP expresses a desired property of the sequence of states traversed by the plan. For

∗ Corresponding author.
Email addresses:jabaier@cs.toronto.edu (Jorge Baier),fbacchus@cs.toronto.edu (Fahiem Bacchus),

sheila@cs.toronto.edu (Sheila A. McIlraith).

Preprint submitted to Artificial Intelligence 27 November 2008

example, a preference that a shift worker work no more than 2 overtime shifts in a week is a temporally extended
preference. It expresses a condition on a sequence of daily schedules that might be constructed in a plan. Planning
with TEPs has been the subject of recent research (e.g. Delgrande et al., 2004; Son and Pontelli, 2004; Bienvenu et al.,
2006). It was also a theme of the 5th International Planning Competition (IPC-5).

The technique we provide in this paper is able to plan with a class of preferences that includes those that can be
specified in the planning domain definition language PDDL3 (Gerevini and Long, 2005). PDDL3 was specifically
designed for IPC-5. It extends PDDL2.2 to include, among other things, facilities for expressing both temporally
extended and simple preferences, where the temporally extended preferences are described by a subset of linear
temporal logic (LTL). It also supports quantifying the value of achieving different preferences through the specification
of a metric function. The metric function assigns to each plan a value that is dependent on the specific preferences
the plan satisfies. The aim in solving a PDDL3 planning instance is to generate a plan that satisfies the hard goals and
constraints while achieving the best possible metric value, optimizing this value if possible or at least returning a high
value plan if optimization is infeasible.

Our technique is a two part approach. The first part exploits existing work (Baier and McIlraith, 2006) to convert
planning problems with TEPs to equivalent problems containing only simple preferences defined over an extended
planning domain. The second part, and main contribution of ourwork, is to develop a set of new heuristics, and a
search algorithm that can exploit these heuristics to guide theplanner towards preferred plans. Many of our heuristics
are extracted from a relaxed plan graph, a technique that has previously been used to compute heuristics in classi-
cal planning. Previous heuristics for classical planning, however, are not well suited to planning with preferences.
The heuristics we present here are specifically designed to address the tradeoffs that arise when planning to achieve
preferences.

Our search algorithm is also very different from previous algorithms used in planning. As we will show, it has
a number of attractive properties, including the ability to findoptimal plans without having to resort to admissible
heuristics. This is important because admissible heuristics generally lead to unacceptable search performance. Our
method is also able to find optimal plans without requiring a restriction on plan length or make-span. This is important
because such restrictions do not generally allow the planner tofind a globally optimal plan. In addition, the search
algorithm is incremental in that it finds a sequence of plans each one improving on the previous. This is important
because in practice it is often necessary to trade off computation time with plan quality. The first plans in this sequence
of plans can often be generated fairly quickly and provide the user with at least a working plan if they must act
immediately. If more time is available the algorithm can continue to search for a better plan. The incremental search
process also employs a pruning technique to make each incremental search more efficient. The heuristics and search
algorithm presented here can easily be employed in other planning systems.

An additional contribution of the paper is that we have broughtall of these ideas together into a working planning
system called HPLAN -P. Our planner is built as an extension of the TLPLAN system (Bacchus and Kabanza, 1998).
The basic TLPLAN system uses LTL formulae to expressdomain control knowledge; thus, LTL formulae serve to
prune the search space. However, TLPLAN has no mechanism for providing heuristic guidance to the search.In con-
trast, our implementation extends TLPLAN with a heuristic search mechanism that guides the planner towards plans
that satisfy TEPs, while still pruning those partial plans thatviolate hard constraints. We also exploit TLPLAN ’s abil-
ity to evaluate quantified formulae to avoid having to convert the preference statements (many of which are quantified)
into a collection of ground instances. This is important because grounding the preferences can often yield intractably
large domain descriptions. We use our implementation to evaluate the performance of our algorithm and to analyze
the relative performance of different heuristics on problems from boththe IPC-5SimpleandQualitative Preferences
tracks.

In the rest of the paper we first provide some necessary background. This includes a brief description of the fea-
tures of PDDL3 that our approach can handle. In Section 3 we describe the first part of our approach—a method for
compiling a domain with temporally extended preferences into one that is solely in terms of simple (i.e., final state)
preferences. Section 4 describes the heuristics and search algorithm we have developed. It also presents a number
of formal properties of the algorithm, including characterizing various conditions under which the algorithm is guar-
anteed to return optimal plans. Section 5 presents an extensiveempirical evaluation of the technique, including an
analysis of the effectiveness of various combinations of the heuristics presented in Section 4. Section 7 summarizes
our contributions and discusses related work after which we provide some final conclusions.

2

2 Background

This section reviews the background needed to understand this paper. Section 2.1 presents some basic planning
definitions and a brief description of the planning domain definition language PDDL. Section 2.2 describes a variation
of the well-known approach to computing domain-independent heuristics based on the computation of relaxed plans
that is used by our planner to compute heuristics. As opposed to most well-known approaches, our method is able
to handle ADL domains directly without having to pre-compile the domain into a STRIPS domain. Section 2.3
describes the planning domain definition language PDDL3, a recent version of PDDL that enables the definition of
hard constraints, preferences, and metric functions.

2.1 An Overview of Planning Formalisms and Languages

A classical planning instance is a tupleI = (Objs,Oper, Init ,Goal), whereObjs is a finite set of objects,Oper is a
finite set of planning operators,Init is the initialstate, i.e., a finite set of ground literals—or simply,facts—describing
the initial state, andGoal describes the set of goal states.

In STRIPS planning instances (Fikes and Nilsson, 1971), the setOpercontains operator descriptions of the form
(pre(o),add(o),del(o)), wherepre(o) is a list of precondition facts for operatoro, add(o)—theadd list—is a list of
facts that are positive effects of operatoro, anddel(o)—thedelete list—is a list of facts that are negative effects of
operatoro. Finally, Goal is a set of goal facts.

In the more expressive ADL formalism (Pednault, 1989), operators still describe preconditions and effects, but
these can now be more than simple lists of ground literals. ADL preconditions can be arbitrary boolean formulae,
existentially or universally quantified over the set of objects Objs. ADL effects can beconditional, which means that
adds and deletes can be conditioned on the satisfaction of arbitrary boolean formulae. Effects can also beuniversalin
the sense that they affectall objects that satisfy a certain condition. For example, assumewe are describing a domain
where objects can contain other objects. Further, assume actionmove(x,y,z) moves objectx from locationy to location
z and in the process moves all objects inx to z as well. The precondition for this action is justat(x,y); i.e., the object
x has to be at locationy, while its effects can be defined by the list:

Eff = {add at(x,z),∀v[in(v,x) ⇒ add at(v,z)],del at(x,y),∀v[in(v,x) ⇒ del at(v,y)]}

Thus, the location of the objectx and all objects insidex changes toz.
In addition to more expressive preconditions and effects, ADL also allows for the representation of functions. This

means that states can contain, in addition to propositional facts, sentences of the formf (~c) = z, where f is a function
name,c is a tuple of objects inObjs, andz is an object inObjs. Actions can change the functions by assigningf (~c) a
different value as an add effect.

Finally, in ADL, Goal can be any formula (possibly quantified) that describes a condition that must be satisfied by
a goal state. For more details on ADL we refer the reader to (Pednault, 1989).

Although STRIPS and ADL can be used to provide formal descriptions of classical planning instances, they can-
not be used as a standard input language for planners since theirprecise syntactical form has never been standardized.
The Planning Domain Definition Language (PDDL) (McDermott, 1998), on the other hand, was specifically designed
to provide a uniform syntax for describing planning problems in thecontext of the 1998 International Planning Com-
petition. PDDL is currently ade factostandard for describing planning problems, and it has been extended and used
in all subsequent versions of IPC.

Recent versions of PDDL enable the definition of planning instances in a superset of ADL. For example, PDDL2.1 (Fox
and Long, 2003) extends ADL by enabling explicit representation of time. Among other features, it allows the spec-
ification of actions with duration. On the other hand, PDDL2.2(Edelkamp and Hoffmann, 2004) extends PDDL2.1
by allowing derived predicates (i.e., predicates defined axiomatically), and timed literals (i.e., literals that will be-
come true at a specified time instant). PDDL3, as we describe in Section 2.3, extends PDDL2.2 with hard constraints,
preferences, and metric functions.

3

The planning problem in both the STRIPS and the ADL settings isthe problem of finding a legal sequence of
actions—ground operators—that, when executed in the initial state, will lead to a state in which the goal condition
Goal is satisfied.

2.2 Planning as Heuristic Search

Many state-of-the-art domain-independent planners use domain-independent heuristics to guide the search for a
plan. Heuristics estimate the cost of achieving the goal from a certain state. They can be used with standard search
algorithms, and are usually key to good performance. They are typically computed by solving a relaxed version of
the original problem. One of the most popular domain-independent relaxations corresponds to ignoring the negative
effects of actions. This is the approach taken by many planners (e.g.,HSP(Bonet and Geffner, 2001) andFF (Hoffmann
and Nebel, 2001), among others). In the STRIPS formalism, this corresponds to ignoring delete lists.

In this paper we exploit heuristic search to plan with preferences.The heuristics presented here are based on the
well-known technique of computing arelaxed planning graph(Hoffmann and Nebel, 2001), which is the graph that
would be generated by GRAPHPLAN (Blum and Furst, 1997) on the STRIPS relaxed planning instance that ignores
negative effects. This graph is composed of fact layers—orrelaxed worlds—and action layers. The action layer at
leveln contains all actions that are possible in the relaxed world at depthn. The relaxed world at depthn+1 contains
all the facts that hold at layern+ 1 and is generated by applying all the positive effects of actions in action layern.
The graph is expanded until the goal is satisfied by the final relaxed world or a fixed point is reached.

Once the graph is expanded, one can compute arelaxedplan for the goals by regression from the goal facts in the
graph to the initial state. The length of this plan can then be used as a heuristic estimator of the cost for achieving the
goal. In the rest of the paper we assume familiarity with the extraction of relaxed plans. For more details we refer the
reader to the article by Hoffmann and Nebel (2001).

2.2.1 Relaxed Plans for Function-Free ADL Domains
To compute heuristics for function-free ADL domains one can first transform the domain to STRIPS, using a

well-known procedure described by Gazen and Knoblock (1997), and then compute the heuristic as usual. This is the
approach taken by some systems (e.g.FF) but unfortunately this procedure can lead to a considerable blowup in the
size of the original instance.

Our planner handles ADL domains, but takes a different approach. In particular, it computes the relaxed planning
graph directly from the ADL instance, using an approach similar tothat taken by the MARVIN planning system (Coles
and Smith, 2007). To effectively handle relaxed ADL domains (in which effects can be conditioned on negative facts),
the relaxed worlds represent both the facts that becometrue and the facts that becomefalseafter executing a set of
actions. To that end, the relaxed worlds are divided into two parts: a positive part, that represents added facts, and a
negative part, that represents deleted facts.

When computing a relaxed graph for a states, the set of relaxed worlds is a sequence of pairs of fact sets
(F+

0 ,F−

0), . . . ,(F+
n ,F−

n), with F+
0 = s and F−

0 = sc, wheresc is the set of facts not ins (i.e., the complement of
s). Furthermore, if actiona appears in the action layer at depthn, all facts that are added bya are included in the
positive relaxed world at depthF+

k+1, whereas facts that are deleted bya are added toF−

k+1. Moreover, all facts in layer
k are copied to layerk+1 (i.e.F+

n ⊆ F+
k+1 andF−

k ⊆ F−

k+1).
Special care has to be taken in the evaluation of preconditionsand conditions in conditional effects for actions,

because negations could appear anywhere in those conditions. To evaluate a formula in a relaxed world, we evaluate
its negation normal form(NNF) instead. In NNF, all negations appear right in front of atomic formulae. A formula can
easily be converted to NNF by pushing negations in using the standard rules¬∃. f ≡∀.¬ f ,¬∀. f ≡∃.¬ f ,¬(f1∧ f2)≡
¬ f1∨¬ f2, ¬(f1∨ f2) ≡ ¬ f1∧¬ f2, and¬¬ f ≡ f .

Now assume we want to determine whether or not the formulaφ is true in the relaxed state(F+
k ,F−

k) in the
graph with relaxed worlds(F+

0 ,F−

0) · · ·(F+
k ,F−

k) · · ·(F+
n ,F−

n). Furthermore, letφ ′ be the NNF ofφ . To evaluateφ
we instead evaluateφ ′ recursively in the standard way, interpreting quantifiers and boolean binary operators as usual.
When evaluating a positive factf , we return the truth value off ∈ F+

k . On the other hand, when evaluating a negative
fact ¬ f , we return the truth value off ∈ F−

k . In short,¬ f is true at depthk if f was deleted by an action or was
already false in the initial state. More formally,

4

Definition 1 (Truth of an NNF formula in a relaxed state). Let the relaxed planning graph constructed from the initial
states in a problem where the set of objects of the problem isObjs be (F+

0 ,F−

0) · · ·(F+
k ,F−

k). The following cases
define whenφ is true at levelk of the relaxed graph, which is denoted as(F+

k ,F−

k) |= φ .
• if φ is an atomic formula then(F+

k ,F−

k) |= φ iff φ ∈ F+
k .

• if φ = ¬ f , where f is an atomic formula, then(F+
k ,F−

k) |= φ iff φ ∈ F−

k
• if φ = ψ ∧ξ , then(F+

k ,F−

k) |= φ iff (F+
k ,F−

k) |= ψ and(F+
k ,F−

k) |= ξ .
• if φ = ψ ∨ξ , then(F+

k ,F−

k) |= φ iff (F+
k ,F−

k) |= ψ or (F+
k ,F−

k) |= ξ .
• if φ = ∀x.ψ, then(F+

k ,F−

k) |= φ iff for every o∈ Objs(F+
k ,F−

k) |= ψ(x/o), whereψ(x/o) is the formulaψ with
all free instances ofx replaced byo. 1

• if φ = ∃x.ψ, for someo∈ Objs(F+
k ,F−

k) |= ψ(x/o).

The standard relaxed plan extraction has to be modified slightlyfor the ADL case. Now, because actions have
conditional effects, whenever a factf is made true by actiona there is a particular set of facts that is responsible
for its addition, i.e. those that made both the precondition ofa and the condition in its conditional effect true. When
recursing from a subgoalf we add as new subgoals all those facts responsible for the addition of f (which could be
in either part of the relaxed world).

As is the case with STRIPS relaxed planning graphs, whenever a fact f is reachable from a state by performing a
certain sequence of legal actions, thenf eventually appears in a fact layer of the graph. The same happens in these
relaxed graphs. This is proven in the following proposition.

Proposition 2. Let s be a planning state, R= (F+
0 ,F−

0)(F+
1 ,F−

1) · · ·(F+
m ,F−

m) be the relaxed planning graph con-
structed from s up to a fixed point, andφ be an NNF formula. Ifφ is true after performing a legal sequence of actions
a1 · · ·an in s, then there exists some k≤ m such that(F+

k ,F−

k) |= φ .

Proof. See Appendix A.

This proposition verifies that the relaxed planning graph is in fact a relaxation of the problem. In particular, it says
that if the goal is not reachable in the relaxed planning graph then it is not achievable by a real plan.

Besides being a desirable property, this reachability result is key to some interesting properties of our search al-
gorithm. In particular, as we see later, it is essential to proving that some of the bounding functions we employ will
never prune an optimal solution (under certain reasonable assumptions).

2.3 Brief Description of PDDL3

PDDL3 was introduced by Gerevini and Long (2005) for the 5th International Planning Competition. It extends
PDDL2.2 by enabling the specification ofpreferencesandhard constraints. It also provides a way of defining ametric
functionthat defines the quality of a plan dependent on the satisfaction of the preferences.

The current version of our planner handles the non-temporal and non-numeric subset of PDDL3, which was the
language used for theQualitative Preferencestrack in IPC-5. In this subset, temporal features of the language such as
durative actions and timed fluents are not supported. Moreover, preference formulae that mention explicit times (e.g.,
using operators such aswithin andalways-within) are not supported. Numeric functions (PDDL fluents) are not
supported either. The rest of this section briefly describes the new elements introduced in PDDL3 that we do support.

2.3.1 Temporally Extended Preferences and Constraints
PDDL3 specifies TEPs and temporally extended hard constraints in a subset of a quantified linear temporal logic

(LTL) (Pnueli, 1977). These LTL formulae are interpreted overtrajectories, which in the non-temporal subset of
PDDL3 are sequences of states that result from the execution of a legal sequence of actions. Figure 1 shows the

1 In our implementation, bounded quantification is used so that this condition can be checked more efficiently. In particular, this
means that not every object inObjsneed be checked.

5

1. s0s1 · · ·sn |= (always φ) iff ∀i : 0≤ i ≤ n, si |= φ

2. s0s1 · · ·sn |= (sometime φ) iff ∃i : 0≤ i ≤ n, si |= φ

3. s0s1 · · ·sn |= (at end φ) iff sn |= φ

4. s0s1 · · ·sn |= (sometime-after φ ψ) iff ∀i if si |= φ then∃ j : i ≤ j ≤ n, sj |= ψ

5. s0s1 · · ·sn |= (sometime-before φ ψ) iff ∀i if si |= φ then∃ j : 0≤ j < i, sj |= ψ

6. s0s1 · · ·sn |= (at-most-once φ) iff ∀i : 0 < i ≤ n, if Si |= φ then∃ j : j ≥ i, ∀k : k > j, sk |= ¬φ

Fig. 1. Semantics of PDDL3’s temporally extended formulae that do not mention explicit time. The trajectorys0s1 · · ·sn represents
the sequence of states that results from the execution a sequence of actionsa1 · · ·an.

semantics of LTL-based operators that can be used in temporally extended formulae. The first two operators are
standard in LTL; the remaining ones are abbreviations that can bedefined in terms of standard LTL operators.

2.3.2 Temporally Extended Preferences and Constraints
Preferences and constraints (which can be viewed as being preferences that must be satisfied) are declared using

the:constraints construct. Each preference is given a name in its declaration, to allow for later reference. By way
of illustration, the following PDDL3 code defines two preferencesand one hard constraint.

(:constraints

(and

(preference cautious
(forall (?o - heavy-object)

(sometime-after (holding ?o)

(at recharging-station-1))))

(forall (?l - light)

(preference p-light (sometime (turn-off ?l))))

(always (forall ?x - explosive) (not (holding ?x)))))

Thecautious preference suggests that the agent be at a recharging station sometime after it has held a heavy ob-
ject, whereasp-light suggests that the agent eventually turn all the lights off. Finally, the (unnamed) hard constraint
establishes that an explosive object cannot be held by the agent at any point in a valid plan.

When a preference isexternallyuniversally quantified, it defines a family of preferences, containing an individual
preference for each binding of the variables in the quantifier. Therefore, preferencep-light defines an individual
preference for each object of typelight in the domain. Preferences that are not quantified externally, likecautious,
can be seen as defining a family containing a single preference.

Temporal operators cannot be nested in PDDL3. Our approach can however handle the more general case of nested
temporal operators.

2.3.3 Precondition Preferences
Precondition preferences are atemporal formulae expressing conditions that should ideally hold in the state in

which the action is performed. They are defined as part of the action’s precondition. For example, the preference
labeledecon below specifies a preference for picking up objects that are not heavy.

(:action pickup :parameters (?b - block)

(:precondition (and (clear ?b)

(preference econ (not (heavy ?b)))))

(:effect (holding ?b)))

Precondition preferences behave something like conditional action costs. They are violated each time the action is
executed in a state where the condition does not hold. In the above example,econ will be violated every time a heavy
block is picked up in the plan. Therefore these preferences can be violated a number of times.

6

2.3.4 Simple Preferences
Simple preferences are atemporal formulae that express a preference for certain conditions to hold in the final state

of the plan. They are declared as part of the goal. For example, the following PDDL3 code:

(:goal (and (delivered pck1 depot1)

(preference truck (at truck depot1))))

specifies both a hard goal (pck1 must be delivered atdepot1) and a simple preference (thattruck is atdepot1).
Simple preferences can also be externally quantified, in which case they again represent a family of individual prefer-
ences.

2.3.5 Metric Function
The metric function defines the quality of a plan, generally depending on the preferences that have been achieved

by the plan. To this end, the PDDL3 expression(is-violated name), returns the number of individual preferences
in thename family of preferences that have been violated by the plan. Whenname refers to a precondition preference,
the expression returns thenumber of timesthis precondition preference was violated during the execution of the plan.

The quality metric can also depend on the functiontotal-time, which, in the non-temporal subset of PDDL3,
returns the plan length, and the actual duration of the plan in more expressive settings. Finally, it is also possible to
define whether we want to maximize or minimize the metric, and how we want to weigh its different components. For
example, the PDDL3 metric function:

(:metric minimize (+ (total-time)

(* 40 (is-violated econ))

(* 20 (is-violated truck))))

specifies that it is twice as important to satisfy preferenceecon as to satisfy preferencetruck, and that it is less
important, but still useful, to find a short plan.

In this article we focus on metric functions that mention onlytotal-time or is-violated functions, since we
do not allow function symbols in the planning domain.

3 Preprocessing PDDL3

As described in the previous section, PDDL3 supports the definition of temporally extended preferences in a subset
of LTL. A brute force method for generating a preferred plan would be to generate all plans that realize the goal
and then to rank them with respect to the PDDL3 metric function. However, evaluating plans once they have been
generated is not efficient because there could be many plans that achieve the goal. Instead, we need to be able to
provide heuristic guidance to the planner to direct it towards the generation ofhigh-quality plans. This involves
estimating the merit of partial plans by estimating which of the TEPs could potentially be satisfied by one of its
extensions (and thus estimating the metric value that could potentially be achieved by some extension). With such
heuristic information the planner could then direct the search effort towards growing the most promising partial plans.

To actively guide the search towards plans that satisfy the problem’s TEPs we develop a two-part approach. The
first component of our approach is to exploit the techniques presented by Baier and McIlraith (2006) to convert a
planning domain containing TEPs into one containing an equivalent set of simple (final-state) preferences. Simple
preferences are quite similar to standard goals (they express soft goals), and thus this conversion enables the second
part of our approach, which is to extend existing heuristic approaches for classical goals to obtain heuristics suitable
for guiding the planner toward the achievement of this new set of simple preferences. The development and evaluation
of these new heuristics for simple preferences is one of the main contributions of our work and is described in the next
section. That section also presents a new search strategy that is effective in exploiting these heuristics.

In this section we describe the first part of our approach: how the techniques of Baier and McIlraith (2006) can be
exploited to compile a planning domain containing TEPs intoa domain containing only simple preferences. Besides
the conversion of TEPs we also describe how we deal with the other features of PDDL3 that we support (i.e., those
described in the previous section).

7

3.1 Temporally Extended Preferences and Constraints

Baier and McIlraith (2006) presented a technique that can construct an automatonAϕ from a temporally extended
formulaϕ. The automatonAϕ has the property that it accepts a sequence of states (e.g., a sequence of states generated
by a plan) if and only if that sequence of states satisfies the original formula ϕ. The technique works for a rich
subset of first-order linear temporal logic formulas that includesall of PDDL3’s TEPs. It also includes TEPs in which
the temporal operators are nested, which is not allowed in PDDL3.To encode PDDL3 preference formulae, each
preference formula is represented as an automaton. Reaching an accepting condition of the automaton corresponds to
satisfying the associated preference formula.

The automatonAϕ can then be embedded within the planning domain by extendingthe domain with new predicates
representing the state of the automaton. Thus, in the initial state of the planning problem these predicates will capture
the fact that the automaton, starting from its initial state, has just inputed the initial state of the problem. The technique
also modifies the domain’s actions so that they can properly update the “automata-state” predicates. When a sequence
of actions is applied starting in the initial state, the automata-state predicates are updated to capture the progress these
actions have made towards satisfying the preference formula to which the automaton corresponds. Hence we can
determine if a sequence of actions has satisfiedϕ by simply testing if the automata-state predicates in the finalstate
arising from these actions indicate that the automaton is in an accepting state. In other words, the technique allows
one to convert a temporally extended condition (ϕ) into a condition on the final state (the automaton state predicates
indicate thatAϕ is in a accepting state).

One important feature of the compilation technique we exploit is that it can constructparameterizedautomata. That
is, we do not need to expand a quantified first-order temporal extended formulaϕ into a larger propositional formula
(by computing all ground instantiations). This means that the technique generates compact domains, by avoiding
grounding of quantified preferences. Generating a compact compiled problem is key for good performance, as we will
see in Section 5. Although in general the size of the automatonthat results from compiling an arbitrary LTL formula
ϕ can be exponential in|ϕ|, in case of the restricted subset of LTL allowed by PDDL3 (in which formulae do not
allow nestings of temporal operators) an exponential blowup cannot occur.

Baier and McIlraith’s original paper was aimed at planning withtemporally extended goals, not preferences. Up to
the construction of the automata for each temporally extended formula, our approach is identical to that taken by them.
However, Baier and McIlraith (2006) then propose usingderived predicatesto embed the automata in the planning
domain. In our work we have chosen a different approach that is more compatible with the underlying TLPLAN

system we employed in our implementation. In the rest of the section, we give some more details on the construction
of automata and the way we embed these automata into a planning domain. Further details on automata construction
can be found in (Baier and McIlraith, 2006).

3.1.1 Parameterized Finite State Automata
The compilation process first constructs a parameterized nondeterministic finite-state automaton (PNFA)Aϕ for

each temporally extended preference or hard constraint expressed as an LTL formulaϕ. The PDDL3 operators pre-
sented in Fig. 1 that are abbreviations are first expanded into standard LTL operators following Gerevini and Long
(2005).

The PNFA represents a family of nondeterministic finite-state automata. Its transitions are labeled by first-order
formulae, and its input language is the set of all strings of planstates. A PNFAAϕ accepts a sequence of plan states
iff such a sequence satisfiesϕ. Figure 2 shows some examples of PNFA for first-order LTL formulae.

Parameters in the automaton appear when the LTL formula is externally quantified (e.g., Figure 2(b)). The intuition
is that differentobjects(or tuples of objects) can be in different states of the automaton. Tuples of objects can transition
from a stateq to a stateq′ when the automaton reads a plan states iff there is a transition betweenq andq′ that is
labeled by a formula that is satisfied ins.

As an example, consider a transportation domain with two packages,A andB, which are initially not loaded in
any vehicle. Focusing on the formula of Figure 2(b), we see that both objects start off in the initial stateq0. Then
the automaton inputs the initial state of the planning problem. That state satisfies the formula(implies (loaded
?x) (delivered ?x)) for both packagesA andB since neither is loaded in the initial state. Hence the packages
transition to stateq2 as well as stay in stateq0 (the automata is nondeterministic). This means that initiallyboth objects

8

(true)

(true)q0

q1

(exists (?c)
(and (cafe ?c)
(at ?c)))

q2

(true)

q0

q1

(loaded ?x)

(delivered ?x)

(delivered ?x)

?x

?x

?x(implies (loaded ?x)
(delivered ?x))

(implies (loaded ?x)
(delivered ?x))

(a) (b)

Fig. 2. PNFA for (a)(sometime (exists (?c) (and (cafe ?c) (at ?c)))), and (b) (forall (?x) (sometime-after

(loaded ?x) (delivered ?x))). In both PNFAq0 is the initial state and the accepting states are indicated by a double cir-
cle border.

satisfy the temporal formula, since both are in the automaton’s accepting stateq2. That is, the null plan satisfies the
formula (b) of Figure 2. Now, assume we perform the actionload(A,Truck). In the resulting state,B stays inq0 and
moves once again fromq0 to q2 while A now moves fromq0 to q1. Hence,A no longer satisfies the formula; it will
satisfy it only if the plan reaches a state wheredelivered(A) is true.

A PNFA is useful for computing heuristics because it effectivelyrepresents all the different paths to the goal that
can achieve a certain property; its states intuitively “monitor” the progress towards satisfying the original tempo-
ral formula. Therefore, while expanding a relaxed graph for computingheuristics, one is implicitly considering all
possible (relaxed) ways of satisfying the property.

3.1.2 Representing the PNFA Within the Planning Problem
After the PNFA has been constructed it must be embedded within the planning domain. This is accomplished by

extending the original planning problem with additional predicates that represent the state of the automaton in each
plan state. If the planning domain has multiple TEPs (as is usually the case), a PNFA is constructed for each TEP
formula and then embedded within the planning domain with automaton-specific automata-state predicates. That is,
the final planning problem will contain distinct sets of automata-state predicates, one for each embedded automaton.

To represent an automaton within the domain, we define a predicate specifying the automaton’s current set of states.
When the automaton is parameterized, the predicate has arguments, representing the current set of automaton states
for a particulartuple of objects. In our example, the fact(aut-state q0 A) represents that objectA is in automaton
stateq0. Moreover, for each automaton we define anaccepting predicate. The accepting predicate is true of a tuple of
objects if the plan has satisfied the temporal formula for the tuple.

Rather than modify the domain’s actions so that the automata state can be properly updated as actions are executed
(as was done by Baier and McIlraith (2006)) we instead modified the underlying TLPLAN system so that after every
action it would automatically apply a specified set ofautomata updates. Automata updates work like pseudo-actions
that are performed automatically while a new successor is generated. When generating the successor tos after per-
forming actiona, the planner builds the new states′ by adding and deleting the effects ofa. When this is finished,
it processes the automata updates overs′, generating a new successors′′. The states′′ is then regarded as the actual
successor ofs after performinga. The compilation process can then avoid changes to the domain’s actions and in-
stead insert all of the conditions needed to transition the automata state in one self-contained addition to the domain
specification.

Syntactically, the automata updates are encoded in the domain as first-order formulae that contain theadd anddel
keywords, just like regular TLPLAN action effect specifications. For the automata of Figure 2(b), the update would
include rules such as:

(forall (?x) (implies (and (aut-state q0 ?x) (loaded ?x))

(add (aut-state q1 ?x))))

That is, an object?x moves from stateq0 to q1 whenever(loaded ?x) is true.

9

Analogously, we define an update for the accepting predicate, which is performed immediately after the automata
update—if the automaton reaches an accepting state then we add the accepting predicate to the world state.

In addition to specifying how the automata states are updated, we also need to specify what objects are in what
automata states in the initial state of the problem. This means we must augment the problem’s initial state by adding
a collection of automata facts. Given the original initial state and an automaton, the planner computes the states that
every relevant tuple of objects can be in after the automaton hasinputed the problem’s initial state, and then adds the
corresponding facts to the new problem. In our example, the initial state of the new compiled problem contains facts
stating that bothA andB are in statesq0 andq2.

If the temporally extended formula originally described a hard constraint, the accepting condition of the automaton
can be treated as an additional mandatory goal. During search we also use TLPLAN ’s ability to incrementally check
temporal constraints to prune from the search space those plans that have already violated the constraint.

3.2 Precondition Preferences

Precondition preferences are very different from TEPs: they are atemporal, and are associated with the execution of
actions. If a precondition preferencep is violatedn times during the plan, then the PDDL3 function(is-violated
p) returnsn.

Therefore, the compiled problem contains anewdomain functionis-violated-counter-p, for each precondi-
tion preference familyp. This function keeps track of how many times the preference has been violated. It is initialized
to zero and is (conditionally) incremented whenever its associated action is performed in a state that violates the atem-
poral preference formula. In the case where the preference is quantified,the function is parameterized, which allows
us to compute the number of times different objects have violated the preference.

For example, consider the PDDL3pickup action given above. In the compiled domain, the original declaration is
replaced by:
(:action pickup :parameters (?b - block)

(:precondition (clear ?b))

(:effect (and (when (heavy ?b)

(increase (is-violated-counter-econ) 1)))

(holding ?b))) ;; add (holding ?b)

3.3 Simple Preferences

As with TEPs, we add newaccepting predicatesto the compiled domain, one for each simple preference. We also
define updates, analogous to the automata updates for these accepting predicates. Accepting predicates become true
iff the preference is satisfied. Moreover, if the preference is quantified, these accepting predicates are parameterized:
they can be true of some tuples of objects and at the same time befalse for other tuples.

3.4 Metric Function

For each preference familyname , we define a newdomain function is-violated-name . The return values
of these functions are defined in terms of the accepting predicates (for temporally extended and simple prefer-
ences) and in terms of the violation counters (for precondition preferences). If preferencep is quantified, then the
is-violated-p function counts the number of object tuples that fail to satisfy the preference.

By way of illustration, the TLPLAN code that is generated for the preference p-light defined in Section2.3.2 is:
(def-defined-function (is-violated-p-light)

(local-vars ?x) ;; ?x is a local variable

(and (:= ?x 0) ;; ?x initialized to 0

(forall (?l) (light ?l)

(implies (not (preference_p-light_satisfied ?l))

(:= ?x (+ ?x 1)))) ;; increase ?x by 1 if preference not satisfied

(:= is-violated-p-light ?x))) ;; return total sum

10

wherepreference_p-light_satisfied is the accepting predicate defined for preference p-light. Note ourtrans-
lation avoids grounding by using quantification to refer to all objects of typelight.

If the original metric function contains the PDDL3 function(total-time), we replace its occurrence by the
TLPLAN function (plan-length), which counts the number of actions in the plan. Thus, actions are implicitly
associated a unitary duration.

The metric function in the resulting instance is defined just as in the PDDL3 definition but by making reference to
these new functions. If the objective was to maximize the function we invert the sign of the function body. Therefore,
we henceforth assume that the metric is always to be minimized.

In the remainder of the paper, we use the notationis-violated(p,N) to refer to the value ofis-violated-p in
a search nodeN. We will sometimes refer to the metric function asM, and we will useM(N) to denote the value of
the metric in search nodeN.

4 Planning with Preferences via Heuristic Search

Starting with the work ofUNPOP (McDermott, 1996),HSP (Bonet and Geffner, 2001), andFF (Hoffmann and
Nebel, 2001), forward-chaining search guided by heuristics has proved to be a powerful and useful paradigm for
solving planning problems. As shown above, the automata encoding of temporally extended preferences allows us to
automatically augment the domain with additional predicates that serve to keep track of the partial plans’ progress
towards achieving the TEPs. The central advantage of this approach is that it converts the planning domain to one
with simple preferences. In particular, now the achievement of a TEP is marked by the achievement of an accepting
predicate for the TEP, which is syntactically identical to a standard goal predicate.

This means that, in the converted domain, standard techniquesfor computing heuristic distances to goal predicates
can be utilized to obtain heuristic distances to TEP accepting predicates. For example, the standard technique based
on a relaxed planning graph (Hoffmann and Nebel, 2001), which approximates the distance to each goal and each
TEP accepting predicate can be used to heuristically guide a forward-chaining search.

Nevertheless, although the standard methods can be fairly easily modified in this manner, our aim here is to develop
a search strategy that is more suitable to the problem of planningwith TEPs. In particular, our approach aims to provide
a search algorithm with three main features. First, the planner should find good plans, which optimize a supplied metric
function. Second, it should be able to generate optimal plans,or at least be able to generate an improvement over an
existing plan. Finally, since in some contexts it might be very hard to achieve an optimal plan—and hence a great deal
of search effort could be required—we want the algorithm to find at least one plan as quickly as possible.

Heuristic search with non-admissible heuristics, like the relaxed goal distances employed in planners likeFF can be
very effective at quickly finding a plan. However, they offer no assurances about the quality of the plan they find. On
the other hand, if an admissible heuristic is used, the plan found is guaranteed to be optimal (assuming the heuristic is
admissible with respect to the supplied plan metric). Unfortunately, admissible heuristics typically perform poorly in
practice (Bonet and Geffner, 2001). Hence, with an admissible heuristic the plan often fails to find any plan. This is
typically unacceptable in practice.

In this section we develop a heuristic search technique that exploits the special structure of the translated planning
domains in order to (a) find a plan fairly rapidly using a non-admissible heuristic and (b) generate a sequence of
improved plans that, under some fairly general conditions, terminates with an optimal plan by using a bounding
technique. In particular, our search technique allows one to generate better plans—or even optimal plans—if one has
sufficient computational resources available. It also allows one to improve on an existing plan and sometimes prove a
plan to be optimal.

In the rest of the section we begin by describing a set of different heuristic functions that can serve to guide the
search towards satisfying goals and preferences. Then, we describeour search algorithm and analyze some of its
properties.

11

4.1 Heuristics Functions for Planning with Preferences

Our algorithm performs a forward search in the space of states guided by heuristics. Most of the heuristic functions
given below are computed at a search nodeN by constructing a relaxed graph as described in Section 2.2.1. The graph
is expanded from the planning state corresponding toN and is grown until allgoal facts and allpreferencefacts (i.e.,
instances of the accepting predicates) appear in the relaxed state or a fixed point is reached. The goal facts correspond
to the hard goals, and the preference facts correspond to instantiations of the accepting predicates for the converted
TEPs.

Since in our compiled domain we need to update the automata predicates, the procedure in Section 2.2.1 is modified
to apply automata updates in action layers after all regular actions have been performed. On the other hand, because
our new compiled domain has functions, in addition we modify the procedure in Section 2.2.1 toignore all effects
that directly affect the value of a function. This means that in the relaxed worlds, all preference counters will have the
same value as in the initial states. Note that since preference counters do not appear in the conditions of conditional
effects or in the preconditions of actions, Proposition 2 continues to hold for relational facts; in particular, it holds for
accepting predicates.

Below we describe a suite of heuristics that can be computed from the relaxed graph and can be used for planning
with preferences. They are designed to guide the search towards (1) satisfying the goal, and (2) satisfying highly
valued preferences, i.e., those preferences that are given a higherweight in the metric function. However, highly valued
preferences can be very hard to achieve and hence guiding the planner towards the achievement of such preferences
might yield unacceptable performance. To avoid this problem, our approach tries to account for the difficulty of
satisfying preferences as well as their value, ultimately attempting to achieve a tradeoff between these two factors.

4.1.1 Goal Distance Function (G)
This function returns an estimate of the number of actions needed to achieve the goal (planning problems often

contain a hard “must achieve” goal as well as a collection of preferences).G is the same as the heuristic used by the
FF planner but modified for the ADL case. The value returned byG is the number of actions contained in a relaxed
plan that achieves the goal.

4.1.2 Preference Distance Function (P)
This function is a measure of how hard it is to reach the various preference facts. It is based on a heuristic proposed

by Zhu and Givan (2005) for conjunctive hard goals, but adapted to the case of preferences. LetP be the set of pref-
erence facts that appear in the relaxed graph, and letd(f) be the depth at whichf first appears during the construction
of the graph. ThenP(N) = ∑ f∈P d(f)k, for some parameterk. Notice that unreachable preference facts (i.e., those not
appearing in the relaxed graph) do not affectP’s value.

4.1.3 Optimistic Metric Function (O)
The O function is an estimate of the metric value achievable from a search nodeN in the search space.O does

not require constructing the relaxed planning graph. Rather, we compute it by assuming (1) no further precondition
preferences will be violated in the future, (2) TEPs that are violated and that can be proved to be unachievable fromN
are regarded as false, (3) all remaining preferences are regarded as satisfied, and that (4) the value of(total-time)
is evaluated to the length of the plan corresponding toN. To prove that a TEPp is unachievable fromN, O uses a
sufficient condition. It checks whether or not the automaton for p is currently in a state from which there is no path
to an accepting state. Examples of LTL formulae that can be detected by this technique as always being falsified in
the future are those of the form(always ϕ). Indeed, as soon asϕ becomes false, from no state in the automaton’s
current set of states will it be possible to reach an accepting state.

Although O clearly underestimates the set of preferences that can be violated by any plan extendingN it is not
necessarily a lower bound on the metric value of any plan extending N. It will be a lower bound when the metric
function is non-decreasing in the number of violated preferences.As we will see later, lower bounds for the metric
function can be used to soundly prune the search space and speed up search.

12

Definition 3 (NDVPL metric functions). Let I be a (preprocessed) PDDL3 planning instance, let the setΓ contain
its preferences, and letlength(N) be the length of the sequence of action that generatedN. A metric functionM is
non-decreasing in the number of violated preferences and in plan length(NDVPL) iff for any two nodesN andN′ it
holds that:
(1) If length(N) ≥ length(N′), and for everyp ∈ Γ, is-violated(p,N) ≥ is-violated(p,N′), thenM(N) ≥

M(N′), and
(2) If (total-time) appears inM, and length(N) > length(N′), and for everyp ∈ Γ, is-violated(p,N) ≥

is-violated(p,N′), thenM(N) > M(N′).

NDVPL metrics are natural when the objective of the problem is to minimize the metric function (as in our prepro-
cessed instances). Problems with NDVPL metrics are those in which violating preferences never improves the metric
of the plan. Furthermore, adding more actions to a plan that fail to satisfy any new preferences can never improve its
metric. Below, in Remark 16, we see thatadditivemetrics, which were the only metrics used in IPC-5, satisfy this
condition.

Proposition 4. If the metric function is NDVPL, then O(N) is guaranteed to be a lower bound on the metric value of
any plan extending N.

Proof. The optimistic metric only regards as violated those preferences that are provably violated in every successor
of N (i.e., in every state reachable fromN by some sequence of actions). It regards as satisfied all remainingprefer-
ences. That is,O is evaluating the metric in a hypothetical nodeNO such that for any nodeN′ reachable fromN and for
everyp∈ Γ is-violated(p,NO) ≤ is-violated(p,N′). Furthermore, becauseO evaluates the plan length to that
of N, our hypothetical node is such thatlength(NO) = length(N) and hence we havelength(NO)≤ length(N′).
Since the metric function is NDVPL, it follows from Definition 3 that for every successorN′ of N, M(NO) ≤ M(N′).
It follows thatO(N) returns a lower bound on the metric value of any plan extendingN. �

The O function is a variant of the“optimistic weight” heuristic in the PPLAN planner (Bienvenu et al., 2006).
PPLAN progressesLTL preferences (as defined by Bacchus and Kabanza (1998)) through every node of the search
space. The optimistic weight assumes as falsified only thoseLTL preferences that have progressed to false.

4.1.4 Best Relaxed Metric Function (B)
The B function is another estimate of the metric value achievable byextending a nodeN. It utilizes the relaxed

planning graph grown from the state corresponding toN to obtain its estimate. In particular, we evaluate the metric
function in each of the relaxed worlds of the planning graph and take B to be the minimum among these values.
The metric function evaluated in a relaxed worldw, M(w), evaluates theis-violated functions directly onw, and
evaluates(total-time) as the length of the sequence of actions that corresponds toN.

For the case of NDVPL metric functions,B is similar toO, but can return tighter estimates. Indeed, note that the last
layer of the relaxed graph contains a superset of the preference facts that can be made true by some successor to the
current state. Also, because the counters for precondition preferences are not updated while expanding the graph, the
value of theis-violated functions for precondition preferences is constant over the relaxed states. This represents
the implicit assumption that no further precondition preferenceswill be violated. The metric value of the relaxed
worlds does not increase (and sometimes actually decreases), since the number of preference facts increases in deeper
relaxed worlds. As a result, the metric of the deepest relaxed worldis the one that will be returned byB. This value
corresponds to evaluating the metric function in a relaxed state where: (1)is-violated functions for precondition
preferences are identical to the ones inN, (2) preference facts that do not appear in the relaxed graph are regarded as
violated, and (3) all remaining preferences are regarded as satisfied. This condition (2) is stronger than condition (2)
in the definition ofO above. Indeed, no preference that is detected as unsatisfiable bythe method described forO can
appear in the relaxed graph, since there is no path to an accepting state of that preference. Hence, no action can ever
add the accepting predicate for the preference.

By using the relaxed graph,B can sometimes detect preferences that are not satisfiable by any successor ofN but
that cannot be spotted byO’s method. For example, consider we have a preferenceϕ = (sometime f), and consider

13

further that factf is not reachable from the current state. The myopicO function would regard this preference as
satisfiable, because it is always possible to reach the final state of the automaton for formulaϕ (the automaton for
f looks like the one in Figure 2(a)). On the other hand,f might not appear in the relaxed graph—becausef is
unreachable from the current state—and thereforeB would regardϕ as unsatisfiable.

These observations lead to the conclusion thatB(N) will also be a lower bound on the metric value of any successor
of N under the NDVPL condition.

Proposition 5. If the metric function is NDVPL, then B(N) is guaranteed to be a lower bound on the metric value of
any plan extending N.

Proof. Proposition 2 implies that all preference facts that could ever be achieved by some successors ofN will
eventually appear in the deepest relaxed world. Because the metric is NDVPL, this implies that the metric value of
the deepest relaxed world is also the minimum, and therefore such avalue will be returned by theB function. Now
we can apply the same argument as in the proof for Proposition 4, since the returned metric value corresponds to
evaluating the metric in a hypothetical node in which allis-violated counters are lower or equal than those of any
plan extendingN. �

4.1.5 Discounted Metric Function (D(r))
TheD function is a weighting of the metric function evaluated in the relaxed worlds. Assumew0,w1, . . . ,wn are the

relaxed worlds in the relaxed planning graph, wherewi is at depthi and thew0 = (s,sc), i.e., the positive and negative
facts of the state whereD(r) is being evaluated. Then the discounted metric,D(r), is:

D(r) = M(w0)+
n−1

∑
i=0

(M(wi+1)−M(wi))r
i , (1)

whereM(wi) is the metric function evaluated in the relaxed worldwi andr is a discount factor (0≤ r ≤ 1).
TheD function is optimistic with respect to preferences that appear earlier in the relaxed graph (i.e., preferences

that seem easy) and pessimistic with respect to preferences thatappear later (preferences that seem hard). Intuitively,
theD function estimates the metric value of plans extending the current state by “believing” more in the satisfaction
of preferences that appear to be easier. Observe thatM(wi+1)−M(wi) is the amount of metric valuegainedwhen
passing from relaxed worldwi to wi+1. This amount is then multiplied byr i , which decreases asi increases. Observe
also that, although the metric gains are discounted, preferencesthat are weighted higher in the PDDL3 metric will
also have a higher impact on the value ofD. That is,D achieves the desired tradeoff between the ease of achieving a
preference and the value of achieving it.

A computational advantage of theD function is that it is easy to compute. As opposed to other approaches, this
heuristic never needs to make an explicit selection of the preferences to be pursued by the planner.

Finally, observe that whenr is close to 1, the effect of discounting is low, and when it is close to 0, the metric
is quickly discounted. Whenr is close to 0 theD function is myopic in the sense that it discounts heavily those
preferences that appear deeper in the graph.

4.2 The Planning Algorithm

Our planning algorithm searches for a plan in a series ofepisodes. The purpose of each of these episodes is to find
a plan for the goal that has a better value than the best found so far. In each planning episode a best-first search for a
plan is initiated using some of the heuristics proposed above.The episode ends as soon as it finds a plan whose quality
is better than that of the plan found in the previous episode. The search terminates when the search frontier is empty.
The algorithm is shown as Algorithm 1.

When search is started (i.e., no plan has been found), the algorithmuses the goal distance function (G) as its
heuristic in a standard best-first search. The other heuristics are ignored in this first planning episode. This is motivated
by the fact that the goal is a hard condition that must be satisfied. In some problems the other heuristics (that guide the

14

Algorithm 1 HPLAN -P’s search algorithm
1: function SEARCH-HPLAN -P(initial stateinit , goal formulagoal, a set of hard constraintshConstraints, metric function

METRICFN, heuristic function USERHEURISTIC)
2: frontier← INITFRONTIER(init) ⊲ initialize search frontier
3: closed←∅
4: bestMetric←worst case upper bound
5: HEURISTICFN←G
6: while frontier is not emptydo
7: current← Best element fromfrontier according to HEURISTICFN
8: if ¬CLOSED?(current,closed) and current satisfieshConstraintsthen
9: if METRICBOUNDFN(current) < bestMetricthen ⊲ pruning by bounding

10: if current satisfiesgoaland its metric is< bestMetricthen
11: Output plan forcurrent
12: if this is first plan foundthen
13: HEURISTICFN← USERHEURISTICFN
14: frontier← INITFRONTIER(init) ⊲ search restarted
15: ReinitializeclosedList
16: end if
17: bestMetric←METRICFN(current)
18: end if
19: succ← successors ofcurrent
20: frontier← mergesuccinto frontier
21: closed← closed∪{current}
22: end if
23: end if
24: end while
25: end function

planner towards achieving a preferred plan) can conflict with achieving the goal, or might cause the search to become
too difficult.

After finding the first plan, the algorithm restarts the search from scratch, but this time it uses some combination of
the above heuristics to guide the planner towards a preferred plan.Let USERHEURISTIC() denote this combination.
USERHEURISTIC() could be any combination of the above heuristic functions. Nevertheless, in this paper we consider
only a small subset of all possible combinations. In particular, we consider onlyprioritized sequences of heuristics,
where the lower priority heuristics are used only to break ties in the higher priority heuristics.

Since achieving the goal remains mandatory, USERHEURISTIC() always usesG as the first priority, together with
some of the other heuristics at a lower priority. For example, consider the prioritization sequenceGD(0.3)O. When
comparing two states of the frontier, the planner first looks at the G function. The best state is the one with lower
G value (i.e., lower distance to the goal). However, if there is a tie, then it usesD(0.3) (the best state being the one
with a smaller value). Finally, if there is still a tie, it uses theO function to break it. In Section 5, we investigate the
effectiveness of several such prioritized heuristics sequences.

4.2.1 Pruning the Search Space
Once we have completed the first planning episode (usingG) we want to ensure that each subsequent planning

episode yields a better plan. Whenever a plan is found, it willonly be returned if its metric is lower than that of the
last plan found (line 10).

Moveover, in each episode we can use the metric value of the previously found plan to prune the search space, and
thus improve search performance. In each planning episode, the algorithm prunes from the search space any nodeN
that we estimate cannot reach a better plan than the best plan found so far. This estimate is provided by the function
METRICBOUNDFN(), which is given as an argument to the search algorithm. METRICBOUNDFN(N) must compute
or estimate a lowerbound on the metric of any plan extendingN.

Pruning is realized by the algorithm in line 9, when the condition in theif becomes false. As the value ofbestMetric
gets updated (line 17), the pruning constraint imposes a tighterbound causing more partial plans to be rejected.

TheO andB heuristic functions defined above are well-suited to be used as METRICBOUNDFN(). Indeed, we tried
both of them in our experiments. On the other hand, it is also simple to “turn-off” pruning by simply passing a null

15

function as METRICBOUNDFN().

4.2.2 Discarding Nodes in Closed List
Under certain conditions, our algorithm will also prune nodes that revisit a plan state that has appeared in a previ-

ously expanded node. This is done for efficiency, and allows the algorithm to avoid considering plans with cycles.
The algorithm keeps a list of nodes that have already been expanded in the variableclosed, just as in standard

best-first search. Furthermore, whencurrent is extracted from the search frontier, its state is checked againstthe set of
closed nodes (line 8). If there exists a node in the closed list with the same state and a better or equal heuristic value
(i.e., CLOSED?(current,closed) is true), then the nodecurrent will be pruned from the search space.

Note that for two states to be identical in the compiled planning instance every boolean predicate has to coin-
cide and, moreover, values assigned to each ground function also have to coincide. In particular, this means that
is-violated counters in two identical states are also identical, i.e., thepreferences are equally satisfied. Neverthe-
less, two search nodes with identical states can still be assigned different heuristic values. Given the way we have
defined USERHEURISTIC(), different heuristic values will be assigned to nodes with identical states only when the
metric function depends on(total-time). If the (total-time) function appears positively in the metric (i.e., the
metric is such that for otherwise equally preferred plans, longer ones are never preferred to shorter ones), then dis-
carding of nodes cannot prune any node that leads to an optimal plan. We discuss this further in the next section.

Finally, note that the cycles we are eliminating are those thatoccur in the compiled instance,not those occurring in
the original instance. Indeed, in the original instance there might be LTL preferences that can be satisfied by visiting
the same state twice. For example consider the preference:eventually turn the light switch on and sometime after turn
it off. Any plan that contains the actionturn-onimmediately followed byturn-off satisfies the preference but also visits
the same state twice. In our compiled domains however such a plan will not produce a cycle, and therefore will not be
pruned. This is because the set of current states of the preference’s automaton—represented by the automata domain
predicates—changes when performing those actions; indeed it changes from a non-accepting state to an accepting
state.

4.3 Properties of the Algorithm

In this section we show that under certain conditions our searchalgorithm is guaranteed to returnoptimal and
k-optimalplans. We will prove this result without imposing any restriction on the USERHEURISTIC() function. In
particular, we can still ensure optimality even if this function is inadmissible. In planning this is important, as inad-
missible heuristics are typically required for adequate search performance.

The first requirement in our proofs is that the pruning performed by the algorithm issound.

Definition 6 (Sound Pruning). The pruning performed by Algorithm 1 issoundiff whenever a nodeN is pruned
(line 9) the metric value of any plan extendingN exceeds the current boundbestMetric.

When Algorithm 1 uses sound pruning, no state will be incorrectlypruned from the search space. That is, nodeN is
not pruned from the search space if some plan extending it can achieve a metric-value superior to the current bound.
To guarantee that the algorithm performs sound pruning it suffices to provide a lowerbound function as input to the
algorithm.

Theorem 7. If METRICBOUNDFN(N) is a lower bound on the metric value of any plan extending N, then Algo-
rithm 1 performs sound pruning.

Proof. If nodeN is not in closed and is pruned from the search space then (a) METRICBOUNDFN(N)≥ bestMetric. If
METRICBOUNDFN() is a lower bound on the metric value of any plan extendingN, then (b) METRICBOUNDFN(N)≤
M(Np) for any solution nodeNp extendingN. By putting (a) and (b) together we obtain that ifN is not in closed and
it is pruned, thenM(Np) ≥ bestMetric, for every solution nodeNp extendingN, i.e., pruning is sound. �

As proven previously in Section 4.1, if the metric function is NDVPL, O andB will both be lower bound functions,

16

and therefore provide sound pruning. Notice also that “turning off” pruning by having METRICBOUNDFN() return a
value that is always less thanbestMetric, also provides sound pruning.

The second requirement for optimality has to do with the discarding of closed nodes performed in line 8. To preserve
optimality, the algorithm must not remove a node that can lead to a plan that is more preferred than any plan that can
be achieved by extending nodes that are not discarded. Formally,

Definition 8 (Discarding of Closed Nodes Preserves Optimality). The discarding of nodes by Algorithm 1 preserves
optimality iff for any nodeN that is discarded in line 8, there is either already an optimal node (i.e., plan)NO in the
closed list or there exists a nodeN in frontier that can be extended to a plan with optimal quality.

The condition defined above holds when using NDVPL metrics under fairly general conditions. In particular, it
holds for any NDVPL metric that is independent of(total-time). It also holds if the NDVPL metric depends on
(total-time), andO or B is used as a first tie breaker afterG or P in USERHEURISTIC(). Finally, it will hold if D is
used as the first tie breaker for NDVPL metric functions that areadditive on total-time.

Definition 9 (Additive on total-time (ATT)). A metric functionM is additive on total time (ATT) iff it is such that
M(N) = MP(N) + MT(N), whereMP(N) is an expression that does not mention the function(total-time), and
MT(N) is an expression whose only plan-dependent function is(total-time).

Intuitively, an ATT metric is a sum of a function that only depends on theis-violated functions, and a function
that includes(total-time) but does not include anyis-violated functions. Now we are ready to state our result
formally.

Theorem 10. The discarding of nodes done by Algorithm 1 preserves optimality if the Algorithm performs sound
pruning, the metric function M is NDVPL and:
(1) M is independent of(total-time), or
(2) M is dependent on(total-time) and O or B are used as the first tie breaker inUSERHEURISTIC() after G or

P, or
(3) M is ATT and D is used as the first tie breaker inUSERHEURISTIC() after G or P.

Proof. See Appendix.

An important fact about sound pruning is that it never prunes optimal plans from the search space, unless another
optimal plan has already been found. An important consequence of this fact, is that the search algorithm will be able
to find optimal plans under fairly general conditions. Our first result says that, under sound pruning, optimality is
guaranteed when the algorithm terminates.

Theorem 11. Assume Algorithm 1 performs sound pruning, and that its nodediscarding preserves optimality. If it
terminates, the last plan returned, if any, is optimal.

Proof. Each planning episode has returned a better plan, and the algorithm stops only when the final planning episode
has rejected all possible plans. Since the algorithm never prunes or discards a node that can be extended to an optimal
unless an optimal plan has already been found then no plan better than the last one returned exists. �

Theorem 11 still does not guarantee that an optimal solution will be found because the algorithm might never
terminate. To guarantee this we must impose further conditions that restrict the explored search space to be finite.
Once we have these conditions, optimality is easy to prove since the search must eventually terminate.

Theorem 12. Assume the following conditions hold:
(1) The initial value of bestMetric (worst case upper bound) inAlgorithm 1 is finite;

17

(2) The set of cycle-free nodes N such thatMETRICBOUNDFN(N) is less than the initial value of bestMetric is
finite;

(3) Algorithm 1 performs sound pruning;
(4) Node discarding in Algorithm 1 preserves optimality.

Then Algorithm 1 is guaranteed to find an optimal plan, if one exists.

Proof. Each planning episode only examines nodes with estimated metric value—given by METRICBOUNDFN—
that is less thanbestMetric. By assumption 2, this is a finite set of nodes, so each episodemust complete and the
algorithm must eventually terminate. Now the result follows from Theorem 11. �

In Theorem 12, condition 1 is satisfied by any implementation ofthe algorithm that uses a sufficiently large number
for the initial value ofbestMetric. Moreover, Theorem 7 shows how condition 3 can be satisfied, andTheorem 10
shows how condition 4 can be satisfied. Condition 2, however,can sometimes be falsified by a PDDL3 instance.
In particular, the metric function can be defined in such a way thatits value improvesas the number of violated
precondition preferences increases. Under such a metric function the plans’ metric values might improve without
bound as the plan length increases. This would mean that the number of plans with metric value less than the intitial
bound,bestMetric, becomes unbounded, and condition 2 will be violated. We canavoid cases like this when the metric
function isbounded on precondition preferences.

Definition 13 (BPP metrics). Let the individual precondition preferences for a planning instanceP be Γ, and letU
denote the initial value ofbestMetric. A metric function isbounded on precondition preferences(BPP) if there exists
a valuer i for each precondition preferencepi ∈ Γ such that in every nodeN with METRICBOUNDFN(N) < U , pi is
never violated more thanr i times.

BPP metrics are such that theis-violated functions are always smaller than a fixed bound in every node with
metric value lower thanU . This property guarantees that there are only a finite number of plans with value less than
U , and ultimately enables us to prove another optimality result:

Corollary 14. Assume that the metric function for planning instance P is BPP and assume conditions 1, 3, and 4 in
Theorem 12 hold. Then Algorithm 1 finds an optimal plan for P.

Proof. We need only prove that the set of nodesN with METRICBOUNDFN(N) < bestMetricis finite. This will
satisfy condition 2 and allow us to apply Theorem 12. The BPP condition ensures that each precondition functionpi

in N can only have a value in the range 0–r i (for some fixed valuer i). Since the precondition functions are the only
functions in the planning instance (the remaining elements of the state are boolean predicates), this means that only a
finite number of different states can have this property. �

Note that the NDVPL property, which we could use to satisfy condition (4) in Theorem 12,does notimply nec-
essarily the BPP property. As an example suppose a domain whereprecPref is a precondition preference, and
goalPref1 andgoalPref2 are final-state preferences. Assume we are using theB function as METRICBOUNDFN
and that the metric for a nodeN is defined as:

M(N) = is-violated(goalPref1,N)∗is-violated(precPref,N)+is-violated(goalPref2,N). (2)

M is clearly NDVPL since it cannot decrease as plans violate more preferences. However,M does not necessarily
increaseas more preferences are violated, which can lead to situations in which we have an infinite set of goal nodes
with the same metric value. Indeed, assumegoalPref2 is an unreachable preference that cannot be detected by the
relaxed graph (i.e., it is such that it won’t be detected by ourB bounding function). Moreover, assume the planner
has found a node that satisfiesgoalPref1. AssumingprecPref can be violated by some action in the planning
instance, there might be infinite plans that could be generatedthat violateprecPref repeatedly while still satisfying

18

goalPref1. Because theis-violated functions are represented within the state, those plans cannot be eliminated
by the algorithm since they will not produce cycles.

The BPP and NDVPL properties are quite natural conditions on the metric function. Indeed, it is reasonable to
assume that violated preferences are undesirable. Hence, a plan should become (arbitrarily) worse as the number of
preferences it violates becomes (arbitrarily) larger. Such a property is sufficient to guarantee both the NDVPL and the
BPP conditions. Theadditivefamily of metric functions satisfies both conditions, and it isdefined as follows.

Definition 15 (Additive metric function). A PDDL3 metric function isadditive, if it has the formM = ∑n
i=0 ci ×

is-violated(pi), whereci ≥ 0.

Remark 16. Additive metric functions satisfy the NDVPL condition and satisfy the BPP condition when MET-
RICBOUNDFN is eitherB or O.

Additive metric functions were used in all of the problems in the qualitative preference track of IPC-5. Therefore,
our algorithm—when usingO or B for pruning—is guaranteed to find an optimal solution for these problems, given
sufficient time and memory. In practice, however, due to restrictions of time and memory, the algorithm finds the
optimal solution only in the most simple problems. On the other larger problems it returned the best plan its completed
planning episodes found in the time alloted.

4.3.1 k-Optimality
Instead of searching for an optimal plan among the set of all valid plans, one might be interested in restricting

attention to a subset of the valid plans. For example, there might be resource usage limitations that might further
constrain the set of plans that one is willing to accept. This might be the case when a shift worker cannot be asked
to work more than one overtime shift in three days, or a plane cannotlog more than a certain number of continuous
kilometers. If the set of plans one is interested in can be characterized by a temporally extended property, it suffices
to add such a property to the set of hard constraints. The optimality results presented above, will allow the planner to
find the optimal plan from among the restricted set of plans, regardless of the property used.

For some interesting properties, however, we can find optimal plans under weaker conditions on the metric function
than those required in the general case above. This is the case, for example, when we are interested in plans whose
length is bounded by a certain value.

Several existing preference planners are able to find plans that are optimal among the set of plans with restricted
length or makespan. For example, PPLAN (Bienvenu et al., 2006) when given a boundk is able to find an optimal plan
among those with lengthk or less. Similarly, both the system by Brafman and Chernyavsky (2005) and SATPLAN-P
(Giunchiglia and Maratea, 2007) return optimal plans among those plans of makespann, wheren is a parameter. It
should be noted, however, that such plans need not be globally optimal. That is, there could be plans of longer length
or makespan that have higher value than the plan returned by these systems. Our algorithm, on the other hand, can
return the globally optimal plan under conditions described above. If we are interested, however, in plans of restricted
length then our algorithm can returnk-optimal plans under weaker conditions.

Definition 17 (k-optimal plan). A plan isk-optimaliff it is the optimal among the set of plans of lengthi ≤ k.

To achievek-optimality, we force the algorithm to search in the space of planswhose length is smaller than or equal
to k, by imposing an additional hard constraint that restricts the length of the plan.

Theorem 18. Assume Algorithm 1 uses sound pruning, and that the set of initial hard constraints contains the formula
(total-time) ≤ k. Then, the returned plan (if any) is k-optimal.

Proof. Since the space of plans of length up tok is finite, each planning episode will terminate with an improved
plan (if any exists). Because of sound pruning, no node can be wrongly pruned from the search space. Hence, the last
returned plan (if any) is optimal. �

19

Note that this result does not require restrictions on the metric function such as condition 2 in Theorem 12. Thus,
this result is satisfied by a broader family of metric functions than those that satisfy Theorem 12; for example, it is
satisfied when using NDVPL metrics such as the one in Equation 2.

5 Implementation and Evaluation

We have implemented our ideas in the planner HPLAN -P. HPLAN -P consists of two modules. The first is a pre-
processor that reads PDDL3 problems and generates a planning problem with only simple preferences expressed as a
TLPLAN domain. The second module is a modified version of TLPLAN that is able to compute the heuristic functions
and implements the algorithm of Section 4.

Recall that two of the key elements in our algorithm are the iterative pruning strategy and the heuristics used for
planning. In the following subsections we evaluate the effectiveness of our planner in obtaining good quality plans
using several combinations of the heuristics. As a testbed, weuse the problems of the qualitative preferences track
of IPC-5, all of which contain TEPs. The IPC-5 domains are composedof two transportation domains:TPP and
trucks, a production domain:openstacks, a domain which involves moving objects by using machines under several
restrictions:storage, and finally,rovers, which models a rover that must move and collect experiments (formore
details, we refer the reader to the IPC-5 booklet (Dimopoulos et al., 2006)). Each domain consists of 20 problems. The
problems in thetrucks, openstacks, androvers domains have hard goals and preferences. The remaining problems
have only preferences. Preferences in these domains impose interesting restrictions on plans, and usually there is no
plan that can achieve them all.

At the end of the section, we compare our planner against the other planners that participated in IPC-5. The results
are based on the data available from IPC-5 (Gerevini et al., 2006) andour own experiments.

5.1 The Effect of Iterative Pruning

To evaluate the effectiveness of iterative pruning we compared the performance of three pruning functions: the
optimistic metric (O), the best relaxed metric (B), and no pruning at all. From our experiments, we conclude that most
of the time pruning can only produce better results than no pruning, and that, overall, pruning withB usually produces
better results than pruning withO.

To compare the different strategies, we ran all IPC-5 problems withO and no pruning, with a 30-minute timeout.
The heuristics used in these experiments were the four top-performing strategies on each domain, under pruning with
B.

The impact of pruning varies across different domains. In three of the domains, the impact of pruning is little.
In the storage andTPP domains, pruning has no effect, in practice. In therovers domain, the impact is slim:O
performs as good asB does, and no pruning, on average, produces solutions with a 0.05% increase on the metric.
An increased impact is observed in thetrucks domain, where the top-performing heuristics improve the metric of the
first plan found by 30.60% underB pruning, while underO pruning the metric is improved by 28.02% on average,
and under no pruning by 21.33% on average. Finally, the greatestimpact can be observed on theopenstacks domain.
Here,B produces 13.63% improvement on average, while both no pruning and pruning withO produce only 1.62%
improvement.

In general, pruning has a noticeable impact when, during search, it can be frequently proven that certain preferences
will not be satisfied. In the case of theopenstacks domain for example, most preferences require certain products
(which are associated withorders) to bedelivered. On the other hand, the goal usually requires a number of orders to
beshipped. To ship an order one is required to start the order, and then ship it. However, to deliver a product associated
with ordero, one needs tomakethe product aftero has been started and before theo has been shipped. Thus, whenever
an ordero is shipped, theB function automatically regards as unsatisfiable all preferences that involved the delivery
of an unmade product associated witho. This occurs frequently in the search for plans for this domain. Theinitial
solution, which ignores preferences, produces a plan with nomake-productactions. As the search progresses, states
that finish an order early are constantly pruned away, which in turnfavours addingmake-productactions.

20

Domain 1 Plan >1 Plan
Best heuristics

Worst heuristics

openstacks 18 14 BP[13.77], DO(1)[13.63],
DB(1)[13.63], BD(1)[13.63], B[13.63]

D(0)B[7.56], for r ∈ {0.01,0.05,0.1}:
DO(r)[7.63] and DB(r)[7.63]

trucks 5 4 D(0)O[30.68], OD(0)[30.68] PB[5.35], OP[5.35], PO[5.35],
O[12.02]

storage 16 9 BO[37], OB[37], B[37], O[37],
BD(0.05)[35.62], OD(0.05)[35.55],
BD(0)[35.42]

PO[21.04], PB[21.04], BP[24.18],
OP[24.18]

rovers 11 9 D(0.1)O[17.15], D(0.1)B[17.15],
D(0.3)B[16.91], D(0.3)O[16.91],
O(0.01)D[16.47], O(0.05)D[16.47]

BP[6.97], OP[7.16], B[10.85],
OB[10.85], BO[10.85], O[10.85]

TPP 20 20 O[40.32],BO[32.02],B[32.02],OB[33.97]for r ≤ 0.9: BD(r)[9.03],
OD(0.9)[10.98]

Table 1
Performance of different heuristics in the problems of theQualitative Preferencestrack of IPC-5. The second column shows the
number of problems where at least one plan was found. The third, shows how many of these plans were subsequently improved
upon by the planner. The average percent metric improvementwrt. the first plan found is shown in square brackets.

A side effect of pruning is that it can sometimes prove (when the conditions of Theorem 11 are met) that an optimal
solution has been found. Indeed, the algorithm stops on most of the simplest problems across all domains (therefore,
proving it has found an optimal plan). If no pruning was used the search would generally never terminate.

5.2 Performance of Heuristics

To determine the effectiveness of various prioritized heuristic sequences (Section 4.1) we compared 42 heuristic se-
quences usingBas a pruning function, allowing the planner to run for 15 minutes over each of the 80 IPC-5 problem in-
stances. All the heuristics hadG as the highest priority (therefore, we omitG from their names). Specifically, we exper-
imented withO, B, OP, PO, BP, PB, andBD(r), D(r)B, OD(r), D(r)O for r ∈ {0,0.01,0.05,0.1,0.3,0.5,0.7,0.9,1}.

In general, we say that a heuristic is better than another if it produces plans with better quality, where quality is
measured by the metric of the plans. To evaluate how good a heuristic is, we measure the percent improvement of
the metric of the last plan found with respect to the metric of the first plan found. Thus, if the first plan found has
metric 100, and the last has metric 20, the percent improvement is80%. Since a first plan is always found usingG, its
metric value is always the same, regardless of the heuristic we choose. Hence this measure can be used to objectively
compare performance.

Table 1 shows the best and worst performing heuristics in each of the domains tested. In many domains, several
heuristics yield very similar performance. Moreover, we concludethat the heuristic functions that use the relaxed
graph are key to good performance. In all problems, saveTPP, the heuristics that used the relaxed graph had the best
performance. The case ofTPP is pathological in the qualitative preference track. However, upon looking at the actual
plans traversed during the search we observed that it is not the case thatO is agoodheuristic for this problem, indeed
O is almost totally blind since in most statesO is equal to 0. Rather, it turns out that heuristics based on the relaxed
graph arepoor in this domain, misguiding the search. In Section 6, we explainscenarios in which our heuristics can
perform badly, and give more details on whyTPP is one of these cases.

5.3 Comparison to Other Approaches

We entered HPLAN -P in the IPC-5Qualitative Preferencestrack (Gerevini et al., 2006), achieving 2nd place
behind SGPlan5 (Hsu et al., 2007). Despite HPLAN -P’s distinguished standing, SGPlan5’s performance was superior
to HPLAN -P’s, sometimes finding better quality plans, but generally solving more problems and solving them faster.
SGPlan5’s superior performance was not unique to the preferences tracks. SGPlan5 dominated all 6 tracks of the
IPC-5satisficing plannercompetition. As such, we conjecture that their superior performance can be attributed to the

21

partitioning techniques they use, which are not specific to planning with preferences, and that these techniques could
be combined with those of HPLAN -P. This is supported by the fact that HPLAN -P has similar or better performance
than SGPlan5 on simple planning instances, as we see in experiments shown at the end of this section.

HPLAN -P consistently performed better thanMIPS-BDD (Edelkamp et al., 2006) andMIPS-XXL (Edelkamp, 2006);
HPLAN -P can usually find plans of better quality and solve many more problems.MIPS-BDD and MIPS-XXL use
related techniques, based on propositional Büchi automata, to handle LTL preferences. We think that part of our
superior performance can be explained because our compilation does not ground LTL formulae, avoiding blowups,
and also because the heuristics are easy to compute. For example, MIPS-XXL andMIPS-BDD were only able to solve
the first two problems (the smallest) of theopenstacks domain, whereas HPLAN -P could quickly find plans for almost
all of them. In this domain the number of preferences was typically high (the third instance already contains around
120 preferences). On the other hand, something similar occurs in thestorage domains. In this domain, though, there
are many fewer preferences, but these are quantified. More details can be found on the results of IPC-5 (Gerevini
et al., 2006).

While we did not enter theSimple Preferencestrack, experiments performed after the competition indicate that
HPLAN -P would have done well in this track. To perform a comparison, we ranour planner for 15 minutes2 on the
first 20 instances3 of each domain. In Table 2, we show the performance of HPLAN -P’s best heuristics compared to
all other participants, in those domains on which all four planners solved at least one problem. HPLAN -P was able
to solve 20 problems in all domains, excepttrucks, where it could only solve the 5 simpler instances (see Table 3
for details on thetrucks domain). In the table, #S is the number of problems solved by eachapproach, andRatio is
the average ratio between the metric value obtained by the particular planner and the metric obtained by our planner.
Thus, values over 1 indicate that our planner is finding better plans, whereas values under 1 indicate the opposite. The
results for HPLAN -P were obtained on an Intel(R) Xeon(TM) CPU 2.66GHz machine running Linux, with a timeout
of 15min. Results for other planners were extracted from the IPC-5 official results, which were generated on a Linux
Intel(R) Xeon(TM) CPU 3.00GHz machine, with a 30 min. timeout. Memory was limited to 1GB for all processes.

We conclude that SGPlan5 typically outperforms HPLAN -P. SGPlan5, on average, obtains plans that are no more
than 25% better in terms of metric value than those obtained by HPLAN -P. Moreover, in the most simple instances
usually HPLAN -P does equally well or better than SGPlan5 (see Table 3). HPLAN -P can solve more instances than
those solved byYochanPS , MIPS-XXL and MIPS-BDD. Furthermore, it outperformsYochanPS and MIPS-XXL in
terms of achieved plan quality. HPLAN -P’s performance is comparable to that ofMIPS-BDD in those problems that
can be solved by both planners. Finally, we again observed thatthe best-performing heuristics in domains other than
TPP are those that use the relaxed graph, and, in particular, theD heuristic.

We ran a final comparison between SGPlan5 and HPLAN -P on theopenstacks-nce domain (Haslum, 2007).
openstacks-nce is a re-formulation of the originalopenstacks simple-preferences domain that does not include
actions with conditional effects. These two domains are essentially equivalent in the sense that plans in one domain
have a corresponding plan with equal quality in the other. The results are shown in Table 4. We observe that HPLAN -P
consistently outperforms SGPlan5 across all instances of this domain, obtaining plans that are usually at least 50%
better in quality. We also observe that the performance of HPLAN -P is consistent across the two formulations, which
is not the case with SGPlan5.

6 Discussion

In previous sections, we proposed a collection of heuristics that can be used in planning with TEPs and simple
preferences in conjunction with our incremental search algorithm. In our experimental evaluation we saw that in most
domains the heuristics that utilize the relaxed planning graphare those that provide the best performance. Given the
limited number of domains in which we have had the opportunityto test the planner, it is hard—and might be even be
impossible—to conclude which is the best combination of heuristics to use. It is even hard to give a justified recipe

2 In IPC-5, planners where given 30 min. on a similar machine.
3 Only thepathways domain has more than 20 problems.

22

Domain HPLAN -P SGPlan5 YochanPS MIPS-BDD MIPS-XXL

#S Ratio #S Ratio #S Ratio #S Ratio #S Ratio

TPP 20 1 20 .78–.8 11 1.02–1.07 9 0.94–0.99 9 1.68–1.78

openstacks 20 1 20 .89–.92 * * 2 2.5 18 6.45–6.81

storage 20 1 20 .74–.76 5 3.86–3.95 4 1 4 15.41

pathways 20 1 20 .77 4 1.02 10 0.79 16 1.19–1.21
Table 2
Relative performance of HPLAN -P’s best heuristics for simple preferences, compared to other IPC-5 participants.Ratiocompares
the performance of the particular planner and HPLAN -P’s. Ratio> 1 means HPLAN -P is superior, and Ratio< 1 means otherwise.
#S is the number of problems solved. “*” means the planner didnot compete in the domain.

for their use. However, some situations in which our heuristics perform poorly can be identified and analyzed. Below
we describe two reasons for potential poor performance.

The first reason for potentially poor performance is due to our choice of using prioritized sequences of heuristics.
We have chosen the goal distanceG to appear as the first priority to guide the planner towards satisfying the must-
achieve goals for a pragmatic reason: the goal is the most important thing to achieve. However, this design decision
sometimes makes the search algorithm focus excessively on goalachievement to the detriment of preference satis-
faction. This issue becomes particularly relevant when there areinteractions between the goal and the preferences.
Consider, for example, a situation in which a preferencep canonlybe achievedafterachieving the goal. Furthermore,
assume the goalg is the conjunctionf1∧ f2, and assume that prior to achievingp one has to makef2 false. In cases
like this, after the algorithm finds a plan for the goal, it can hardly find a plan that also satisfiesp. When extending
any plan forg, the planner will always choose an action that does not invalidate the subgoalf2 over an action that
invalidatesf2, if such an action is available. This is because the goal distance (G) of any search node in whichf2 is
false is strictly greater than the goal distance in which bothf1 and f2 are true. As a consequence, the algorithm will
have trouble achievingp, and actually will only achievep when extending a plan forg whenno actionsthat invalidate
f2 are available. Unfortunately the only way of getting into such asituation implies exhausting the search space of
plans that extend a plan forg without invalidatingg.

The second source for poor performance is the loss of structure in which we incur by computing our heuristic
in a planning instance in which the action’s deletes (i.e., negative effects) are ignored. The inaccurate reachability
information provided by this relaxation might significantly affect the performance of all our heuristics based on the
relaxed planning graph (i.e.,P, B, andD). Consider for example an instance in which there are no hard goalsand there
are two preferences,p1 andp2. Assume further thatp2 is a preference that is rather easy to achieve from any state but
that has to be violated in order to achievep1. Assume that we are in a state in whichp2 is satisfied butp1 is not, and
in which we need to perform at least three actions to achieve bothp1 and p2. Let those actions bea, b, andc, such
thata makesp2 false andp1 true, and finally actionb followed byc reestablishp1, as shown in Figure 3. Moreover,
assume that actione is applicable ins, and that it leads tos2—a state from whichp1 and p2 can be reached by the
same sequence of three actions. Because theD heuristic is computed on the delete relaxation,D will always prefer to
expands2 instead ofs1. A relaxed solution ons2 may achieve both preferences at depth 1, since the preferencep2 is
already satisfied at depth 0. On the other hand, a relaxed solution ons1 may achieve both preferences at depth 2, since
in s1 two actions are needed to reestablishp2. Once the algorithm expandss2, there could be another action applicable
in s2, analogous toe, that would steer the search away froms3.

It is precisely a situation similar to that described above thatmakes the heuristics based on the relaxed graph
(especiallyD andP), perform poorly in theTPP domain.TPP is a transportation problem in which trucks can move
between markets and depots transporting goods. A good can be putinto the truck by performing aload followed by a
store. Stored goods can be unloaded from the truck performing anunload. Once in a market, one has tobuyan object
before it becomes ready to load. In problems of theTPP domain there is a preference that states that any good must
be eventually loaded on some truck (p1). On the other hand, there is a preference that states that all trucks should be
unloaded at the end of the plan (p2). Once we have considered moving a truck to a market and bought a certain good,
saygood1, our plan prefix has achievedp2 but not p1. A reasonable course of action to achieve both preferences
would be toload good1 on the truck, followed by astore, and followed by anunload. However, the state that results

23

Instance YochanPS
MIPS-BDD MIPS-XXL SGPlan5

HPLAN -P

O OD(r=0.5) OD(r=0) OD(r=1)

TPP-01 22 16 16 16 16 16 16 16

TPP-02 36 24 24 24 24 24 24 24

TPP-03 24 29 29 29 29 29 29 29

TPP-04 45 35 35 35 39 35 35 42

TPP-05 103 89 223 79 103 79 87 105

TPP-06 133 110 275 101 120 118 114 120

TPP-07 124 126 322 100 124 135 135 135

openstacks-01 * 12 63 13 6 6 6 6

openstacks-02 * 12 63 16 4 4 4 4

openstacks-03 * ns 88 12 36 30 36 30

openstacks-04 * ns 98 26 47 44 45 49

openstacks-05 * ns 133 36 25 21 25 21

openstacks-06 * ns 133 33 21 18 21 18

openstacks-07 * ns 285 67 87 74 87 74

trucks-01 0 0 0 1 0 0 0 0

trucks-02 3 0 0 0 0 0 0 0

trucks-03 0 0 0 0 0 0 0 0

trucks-04 0 0 ns 0 3 1 3 4

trucks-05 1 ns ns 0 0 0 0 0

storage-01 6 3 18 5 3 3 3 3

storage-02 11 5 37 8 5 5 5 5

storage-03 49 6 158 14 6 6 6 6

storage-04 51 9 197 17 9 9 9 9

storage-05 165 ns ns 87 97 130 130 97

storage-06 ns ns ns 124 161 195 195 161

storage-07 ns ns ns 160 274 281 307 274

pathways-01 2 2 3 2 2 2 2 2

pathways-02 3 3 5 3 3 4 4 4

pathways-03 3 3 4.7 3 3 3.7 3.7 3.7

pathways-04 3 2 3 2 2 2 2 2

pathways-05 ns 7 10.2 6.5 8.5 9 10.2 10.2

pathways-06 ns 8 12.9 10 12.9 12.9 12.9 12.9

pathways-07 ns 11 12.5 8 12.5 12.5 12.5 12.5
Table 3
Plan quality (metric) of three of HPLAN -P’s heuristics compared to the IPC-5Simple Preferencesparticipants on the simpler,
non-metric problems. “ns” means that the instance what not solved by the planner. “*” means the planner did not compete inthe
domain.

24

openstacks-nce openstacks

Instance SGPlan5
HPLAN -P

SGPlan5
HPLAN -P

O OD(.5) OD(0) OD(1) O OD(.5) OD(0) OD(1)

01 70 11 11 11 11 13 6 6 6 6

02 70 7 11 7 11 16 4 4 4 4

03 90 38 42 37 41 12 36 30 36 30

04 100 48 49 46 49 26 47 44 45 49

05 140 48 48 48 48 36 25 21 25 21

06 140 35 41 34 41 33 21 18 21 18

07 300 98 98 98 98 67 87 74 87 74

08 620 140 152 148 148 123 86 78 86 78

09 620 154 155 154 154 121 109 123 109 123

10 120 30 25 30 20 20 19 11 10 13

11 120 36 26 36 22 21 19 22 23 12

12 153 80 81 80 73 23 52 45 45 51

13 223 190 172 181 174 48 171 167 167 167

14 65 47 22 47 24 6 32 23 21 21

15 210 125 123 125 126 0 74 67 67 67

16 210 133 133 133 133 0 74 63 67 63

17 450 224 255 269 254 0 209 179 179 180

18 930 588 558 929 557 0 557 464 464 493

19 1581 1581 1581 1581 1581 254 1581 1581 1581 1581

20 1348 1348 1348 1348 1348 424 1348 1348 1348 1348

openstacks-nce openstacks

Table 4
Metric values obtained by four of HPLAN -P’s heuristics and SGPlan5 on theopenstacks andopenstacks-nce (Haslum, 2007)
domains.

s

s1

s2 s3

a

a b

b c

c

e

{¬p1, p2}

{¬p1, p2}

{p1,¬p2}

{p1,¬p2}

{p1,¬p2}

{p1,¬p2} {p1, p2}

{p1, p2}

Fig. 3. A situation in which ourD heuristics prefers a node that does not lead to the quick satisfaction of bothp1 andp2.

from performing aload is never preferred by the planner, since just like in Figure 3, aload invalidatesp2 while making
p1 true. Instead, an action that preserves thep2 property (e.g., abuyof another good) is always preferred. This leads
the planner to consider all possible combinations of sequences thatbuya good before considering aload. Even worse,
after performing all possible buys, for a similar reason the search prefers to use other truck to move to another market
to keep on buying products.

25

7 Related Work

There is a significant amount of work on planning with preferences that is related, in varying degrees, to the method
we have presented here. We organize this work into two groups: first, planners that are able to plan with preferences
in non-PDDL3 preference languages or using soft goals; second, work that focuses on the PDDL3 language. In the
rest of the section we review the literature in these two categories.

7.1 Other Preference Languages

PPLAN (Bienvenu et al., 2006) is a plannning system that exploits progression to plan directly with TEPs using
heuristic search. In contrast to HPLAN -P, which is incremental, PPLAN always returns an optimal plan whose length
is bounded by a plan-length parameter (i.e., it isk-optimal). Unfortunately, PPLAN uses an admissible heuristic that is
far less informative than the heuristics proposed here. As such, it is far less efficient. The heuristic in PPLAN is similar
to ourO heuristic, and thus does not provide an estimate of the cost to achieving unsatisfied preferences. PPLAN was
developed prior to the definition of PDDL3 and exploits its ownqualitative preference language,LPP, to define
preferences.LPP supports rich TEPs, including nested LTL formulae (unlike PDDL3)and rather than specifying a
metric objective function, theLPPobjective is expressed as a logical formula. PPLAN ’s LPP language is an extension
and improvement over thePP language proposed by Son and Pontelli (2004).

The HPLAN -QP planner (Baier and McIlraith, 2007) was proposed as an answerto some of the shortcomings
of PPLAN . It is an extension to the HPLAN -P system, allowing planning forqualitativeTEPs guided by heuristics
similar to those that have been proposed in this paper. The preference language is based onLPP, the language used by
PPLAN . HPLAN -QP guides the search actively towards satisfaction of preferences (unlike PPLAN), and like HPLAN -
P, guarantees optimality of the last plan found given sufficient resources.

Also related is the work onpartial satisfaction planning problems(PSPs) (over-subscription planning) (van den
Briel et al., 2004; Smith, 2004). PSPs can be understood as a planning problem with no hard goals but rather a collec-
tion of soft goals each with an associated utility; actions also have costs associated with them. Some existing planners
for PSPs (Sanchez and Kambhampati, 2005; Do et al., 2007) are also incremental and use pruning techniques. How-
ever in general, they do not offer any optimality guarantees. Recently, Benton et al. (2007) developed an incremental
planner,BBOP-LP, that uses branch-and-bound pruning for PSP planning, similar toour approach.BBOP-LP is able to
offer optimality guarantees given sufficient resources. However, in contrast to HPLAN -P, it uses very different tech-
niques for obtaining the heuristics. To compute heuristics it first relaxes the original planning problem and creates an
integer programming (IP) model of this new problem. It then computes heuristics from a linear-programming relax-
ation of the IP model. Lastly, Feldmann et al. (2006) propose a planner for PSPs that iteratively invokes METRIC-FF
to find better plans.

Bonet and Geffner (2006) have proposed a framework for planning withaction costs and costs/rewards associated
with fluents. Their cost model can represent PSPs as well as the simple preferences subset of PDDL3. They propose
admissible heuristics and an optimal algorithm for planning under this model. Heuristics are obtained by compiling a
relaxed instance of the problem to d-DNNF, while the algorithm isa modification ofA∗. The approach does not scale
very well for large planning instances, in part because of its need to employ an admissible heuristic.

Finally, there has been work that casts the preference-based planning problem as an answer set programming prob-
lem (ASP), as a constraint satisfaction problem (CSP), and as a satisfiability (SAT) instance. The paper by Son and
Pontelli (2004) proposed one of the first languages for preference-based planning,PP, and cast the planning problem
as an optimization of an ASP problem. TheirPP language includes TEPs expressed in LTL. Brafman and Chernyavsky
(2005) proposed a CSP approach to planning with final-state qualitative preferences specified using TCP-nets. Addi-
tionally, Giunchiglia and Maratea (2007) proposed a compilation of preference-based planning problems into SAT.
None of these approaches exploits heuristic search and thus are fundamentally different form the approach proposed
here. The latter two approaches guide the search for a solution byimposing a variable/value ordering that will attempt
to produce preferred solutions first. Because these works are recasting the problem into a different formalism, they
explore a very different search space than our approach. Note also that the conversion to ASP, CSP or SAT requires
assuming a fixed bound on plan length limiting the approach to at best findingk-optimal plans.

26

7.2 IPC-5 competitors

Most related to our work are the approaches taken by the planners that competed in IPC-5, both because they used
the PDDL3 language and because many used some form of heuristic search.YochanPS (Benton et al., 2006) is a
heuristic planner for simple preferences based on the Sapaps system (van den Briel et al., 2004). Our approach is sim-
ilar to theirs in the sense that both use a relaxed graph to obtaina heuristic estimate.YochanPS is also an incremental
planner, employing heuristics geared towards classical goals. However, to compute its heuristic, it explicitly selects
a subset of preferences to achieve then treats this subset as a classical goal. This process can be very costly in the
presence of many preferences.

MIPS-XXL (Edelkamp et al., 2006) andMIPS-BDD (Edelkamp, 2006) both use Büchi automata to plan with tem-
porally extended preferences. While the approach to compiling away the TEPs also constructs an automata (as in our
approach), their translation process generates grounded preferenceformulae. This makes the translation algorithm
prone to unmanageable blow-up. Further, the search techniques used in both of these planners are quite different from
those we exploit.MIPS-XXL iteratively invokes a modified METRIC-FF (Hoffmann, 2003) forcing plans to have de-
creasing metric values.MIPS-BDD, on the other hand, performs a cost-optimal breath-first search that does not employ
a heuristic.

Finally, the winner of the preferences tracks at IPC-5, SGPlan5 (Hsu et al., 2007), uses a completely different ap-
proach. It partitions the planning problem into several subproblems. It then uses a modified version ofFF to solve
those subproblems and finally integrates these sub-solutions into a solution for the entire problem. During the integra-
tion process it attempts to minimize the metric function. SGPlan5 is not incremental, and seems to suffer from some
non-robustness in its performance as shown by the results given in Table 4 (where its performance on an reformulated
but equivalent domain changes quite dramatically).

8 Conclusions and Future Research

In this paper we have presented a new technique for planning withpreferences that can deal with simple preferences,
temporally extended preferences, and hard constraints. The core ofthe technique, our new set of heuristics and incre-
mental search algorithm, are both amenable to integration with avariety of classical and simple-preference planners.
The compilation technique for converting TEPs to simple preferences can also be made to work with other planners,
although the method of embedding the constructed automata weutilize here might need some modification, depen-
dent on the facilities available in that planner. Our methodof embedding the constructed automata utilized TLPLAN ’s
ability to deal with numeric functions and quantification. In particular, TLPLAN ’s ability to handle quantification
allowed us to utilize the parameterized representation of the preferences generated by the compilation, leading to a
considerably more compact domain encoding.

We have presented a number of different heuristics for planning with preferences. These heuristics have the feature
that some of them account for the value that could be achieved from unsatisfied preferences, while others account for
the difficulty of actually achieving these preferences. Our method for combining these different types of guidance is
quite simple (tie-breaking), and more sophisticated combinations of these or related heuristics could be investigated.
More generally, the question of identifying the domain features for which particular heuristics are most suitable is an
interesting direction for future work.

We have also presented an incremental best-first search planning algorithm. A key feature of this algorithm is that
it can use heuristic bounding functions to prune the search spaceduring its incremental planning episodes. We have
proved that under some fairly natural conditions our algorithm can generate optimal plans. It is worth noting that
these conditions do not require the algorithm to utilize admissible heuristics. Nor do they require imposing a priori
restrictions on the plan size (length or makespan) which would allow the algorithm to only achievek-optimality rather
than global optimality.

The algorithm can also employ different heuristics in each incremental planning episode, something we exploit
during the very first planning episode by ignoring the preferences and only asking the planner to search for a plan
achieving the goals. The motivation for this is that we want atleast one working plan in hand before trying to find
a more preferred plan. In our experiments, however, the remaining planning episodes are all executed with one fixed

27

heuristic. More flexible schedules of heuristics could be investigated in future work.
Finally we have implemented our method by extending the TLPLAN planning system and have performed extensive

experiments on the IPC-5 problems to evaluate the effectiveness of our heuristic functions and search algorithm. While
no heuristic dominated all test cases, several clearly providedsuperior guidance towards good solutions. In particular,
those that use the relaxed graph in some way proved to be the most effective in almost all domains. Experiments
also confirmed the essential role of pruning when solving large problems. HPLAN -P scales better than many other
approaches to planning with preferences, and we attribute much ofthis superior performance to the fact that we do
not ground our planning problems.

Although the proposed heuristics perform reasonably well in many of the benchmarks we have tested, we have
identified cases in which they perform poorly. In some cases, computing heuristics over the delete relaxation can
provide bad guidance in the presence of preferences. The resolution of some of the issues we have raised above open
interesting avenues for future research.

Acknowledgements

We gratefully acknowledge funding from Natural Sciences and Engineering Research Council of Canada (NSERC)
and from the Ontario Ministry of Research and Innovation Early Researcher Award. We also thank Christian Fritz for
helpful discussions during the development of our planner, and the anonymous reviewers for their useful feedback.

A Proof for Proposition 2

In this section we prove Proposition 2. First, we prove three intermediate results that will be used by the final proof.
The first intermediate result says that if an NNF formulaφ overP is true in a states (denoted ass |= φ), thenφ will

also be true in a relaxed state(F+,F−) if every proposition that is true ins is also true in such a relaxed state. This is
proven in the following lemma.

Lemma 19. Let P be a set of propositions,φ be an NNF formula, and s,F+,F− ⊆ P be states. Then if s|= φ , and
(F+,F−) is such that:
(1) (F+,F−) |= p, for every p∈ s, and
(2) (F+,F−) |= ¬p, for every p∈ sc,

then(F+,F−) |= φ .

Proof. The proof that follows is by induction on the structure ofφ .
Base cases (φ = p or φ = ¬p) They both follow directly from the conditions of this Lemma.
Induction We have the following cases
• if φ = ψ ∧ ξ , thens |= ψ ands |= ξ . By inductive hypothesis, also(F+,F−) |= ψ and(F+,F−) |= ξ . It follows

from Definition 1 that(F+,F−) |= φ .
• if φ = ψ ∨ξ , then the proof is analogous to the previous case.
• if φ = ∀x.ψ, then for everyo∈ Objswe have thats |= ψ(x/o). By inductive hypothesis, for everyo∈ Objs then

(F+,F−) |= ψ(x/o), hence by Definition 1, we have that(F+,F−) |= φ .
• if φ = ∃x.ψ, the proof is analogous to the previous case. �

The final intermediate result is actually a version of Proposition 2 but for simple facts.

Lemma 20. Let s be a planning state, R= (F+
0 ,F−

0)(F+
1 ,F−

1) · · ·(F+
m−1,F

−

m−1)(F
+
m ,F−

m) be the relaxed planning graph
constructed from s up to a fixed point. Moreover, let sn be the state that results after performing a legal sequence of
actions a1 · · ·an in s, then there exists some k≤ m such that(F+

k ,F−

k) |= f , for every f∈ s, and such that(F+
k ,F−

k) |=
¬ f for every f∈ sc.

28

Proof. SinceR has been constructed to a fixed point,F+
m−1 = F+

m andF−

m−1 = F−
m , andm > 0. Moreover, assume

that the set of states generated by performing the action sequence overs is s1 · · ·sn (i.e., statesi is generated after
performing the sequence of actionsa1 · · ·ai overs). The following proof for the lemma is by induction on the length
of the action sequence,n.
Base Case (n= 0) We prove that in this case we can considerk = 0. In this case the sequence of actions performed
ons is empty. By definition of the construction ofR, F+

k = F+
0 = s andF−

0 = F−

k = sc. Let f be an arbitrary fact.
(1) f ∈ s. Then, by Definition 1,(F+

k ,F+
k) |= f , for k = 0 concluding the proof for this case.

(2) f ∈ sc. Then, again by Definition 1, we obtain(F+
k ,F−

k) |= ¬ f , for k = 0.
Induction Let us assume that the theorem is true forn− 1. We now prove that it is also true forn. We divide this
proof into four cases. Again, assumef is an arbitrary fact.
(1) f ∈ sn and f ∈ sn−1. This case is trivial, since by inductive hypothesis we have that (F+

k ,F−

k) |= f for some
k≤ m.

(2) f 6∈ sn and f 6∈ sn−1. Again, by induction hypothesis(F+
k ,F−

k) |= ¬ f for somek≤ m.
(3) f ∈ sn and f 6∈ sn−1. Then,an must have added factf when performed insn−1. We now prove that actionan is

executable at some levelk′ ≤ m−1 of the relaxed graph, and that it will add factf to the relaxed graph at level
k′ +1≤ m.

Let us assume that the precondition of actionan is ϕP and that the condition of the conditional effect that adds
f is ϕc. Then since both formulae are satisfied insn−1, we have that

sn−1 |= ϕP∧ϕc. (A.1)

Moreover, by inductive hypothesis, we have that there exists ak′ ≤ msuch that

(F+
k′ ,F

−

k′) |= p, for everyp∈ sn−1 (A.2)

(F+
k′ ,F

−

k′) |= ¬p, for everyp∈ sc
n−1 (A.3)

At this point, we can safely assume also thatk′ < m, because ifk′ were equal tom, then (A.2) and (A.3) also
hold fork′ = m−1, because the graph has been constructed to a fixed point.

Now, we combine equations (A.2), (A.3), and (A.1) with Lemma 19 to conclude that(F+
k′,,F

−

k′) |= ϕP ∧
ϕc. Action an is therefore executable at levelk′ of the relaxed graph, and the conditionϕc, which enables the
conditional effect that addsf is also true at levelk′. Therefore,f is added to the relaxed graph at levelk =
k′ +1≤ m, concluding the proof for this case.

(4) f 6∈ sn and f ∈ sn−1. Proof is analogous to previous case. �

Now we are ready to prove our result.

Proof. [Proof for Proposition 2] By Lemma 20, we know that there exists ak ≤ m such that for eachp ∈ sn,
(F+

k ,F−

k) |= p, and for eachp∈ sc then(F+
k ,F−

k) |=¬p. Becausesn |= φ it follows from Lemma 19 that(F+
k ,F−

k) |= φ .
�

B Proof for Theorem 10

Before we start our proof we prove a lemma which establishes that, under the conditions of Theorem 10, if two
nodes with exactly the same state have differentB, D, orOmetric value, then their lengths must also differ analogously.

Lemma 21. Let N1 and N2 be two search nodes that correspond to the same planning state s. Furthermore, let the
metric M of the instance be NDVPL and depend on(total-time). If R(N1) ≤ R(N2), and:
(1) R is either O or B, or
(2) M is ATT and R is D.

thenlength(N1) ≤ length(N2).

29

Proof. We divide the proof in two cases.
Case 1:R is eitherO or B. ThenR(N1) = M(N′

1), whereN′
1 is a hypothetical node with the samelength asN1 but in

which possibly more preferences are satisfied. Analogously,R(N2) = M(N′
2) for a nodeN′

2 with the samelength as
N2. Therefore,

M(N′

1) ≤ M(N′

2). (B.1)

Because the planning state associated toN1 andN2 are identical, we know thatN′
2 andN′

1 are such that they satisfy
exactly the same preferences, i.e., ifΓ is the set of preferences of the planning instance, for allp ∈ Γ we have
thatis-violated(p,N′

1) = is-violated(p,N′
2). Now, using the contra-positive of implication (2) in the NDVPL

definition (Def. 3) and Equation B.1, we have thatlength(N′
1) ≤ length(N′

2). This implies thatlength(N1) ≤
length(N2), and concludes the proof for this case.
Case 2:R is D andM is ATT. BecauseM is ATT, then by Equation 1,D(N1) = M(N1)+R1, whereR1 is an expression
that does not depend on(total-time), i.e. it only depends onN1’s state. Likewise,D(N2) = M(N2)+R2, whereR2

only depends on the state ofN2. Since both the states corresponding toN1 andN2 are equal, we have thatR1 = R2.
Hence, becauseD(N1) ≤ D(N2) we have thatM(N1) ≤ M(N2), which by the contra-positive of implication (2) in the
NDVPL definition (Def. 3) implies thatlength(N1) ≤ length(N2). This concludes this case, finishing the proof.�

Now we are ready to prove our result. First, note that the search is restarted from scratch after the first plan is
found. This also means that the closed list is reinitialized. Second, note that if two nodesN1 andN2 have the same
state associated to them then both theG and theP functions evaluated on these nodes return the same value. Therefore,
if U SERHEURISTIC(N1) ≤ USERHEURISTIC(N2), then this means that the tie breaker functions used, sayR, is such
thatR(N1) ≤ R(N2) whereR is eitherO, B or D.

The sketch of the proof is as follows. We assume that a nodeN that leads to an optimal plan is discarded by the
algorithm. Then we prove that if this happens then either the optimal was found or there is a node in the frontier that
can be extended to another optimal plan.

Assume there exists an optimal planp1 = a1a2 · · ·an that traverses the sequence of statess0s1 · · ·sn. LetN1 be a node
formed by applyingp1 on s0. Because the metric is NDVPL, we assume that this plan contains no cycles (otherwise,
had the plan contained any cycles, by removing them we could not make it worse). Suppose further that at some point
in the search, there is a nodeN that is generated by applyinga1a2 · · ·a j in the initial state (withj < n) and that is
discarded by the algorithm in line 8. This means that there exists another closed node, sayNC that is associated the
same state asN, and that is such that

USERHEURISTIC(NC) ≤ USERHEURISTIC(N). (B.2)

Both nodes are associated the same statesj , hence theis-violated counters are identical for each preference. This
means thatNC is constructed froms0 by a sequence of actionsb1b2 · · ·bk. This sequence of actions gets to the same
statesj , hence the sequencep2 = b1b2 · · ·bka j+1 · · ·an is also a plan.

Let N2 be a node that would be constructed by applyingp2 in s0. Now we prove thatN2 also corresponds to an
optimal plan. We have two cases.
Case 1:The metric depends on(total-time). Because the Inequality B.2 implies thatR(NC) ≤ R(N), whereR is
eitherO, D or B, by Lemma 21, we have thatlength(NC) ≤ length(N), and thereforek ≤ j. We clearly have that
length(N2)≤ length(N1), furthermore because all precondition counters are identical, it follows from the NDVPL
condition thatM(N2) ≤ M(N1). Given thatN1 represents an optimal plan, we conclude thatM(N2) = M(N1), and
thereforeN2 also represents an optimal plan.
Case 2:The metric does not depend on(total-time). Therefore, because nodeN2 reaches the same state asN1 does
andM only depends on properties encoded in the state,M(N1) = M(N2) and henceN2 also represents an optimal plan.
This concludes case 2.

Now, we know that sinceNC, a predecessor ofN2 was expanded by the algorithm, one of the following things
happen:
(1) A successor ofNC is in frontier. In this case, the condition of Def. 8 follows immediately.
(2) N2 is in the closed list. This implies that the condition of Def. 8is also satisfied.

30

(3) A successor ofNC has been discarded by the algorithm. In this case, such a successor also leads to an optimal
plan. This means that we could apply the same argument in thisproof for such a node, leading to eventually
satisfy the condition of Def. 8 since the algorithm has visited finitely many nodes.

References

Bacchus, F., Kabanza, F., 1998. Planning for temporally extended goals. Annals of Mathematics and Artificial Intel-
ligence 22 (1-2), 5–27.

Baier, J. A., McIlraith, S. A., 2006. Planning with first-order temporally extended goals using heuristic search. In:
Proceedings of the 21st National Conference on Artificial Intelligence (AAAI). Boston, MA, pp. 788–795.

Baier, J. A., McIlraith, S. A., 2007. On domain-independent heuristics for planning with qualitative preferences. In:
7th Workshop on Nonmonotonic Reasoning, Action and Change (NRAC).

Benton, J., Kambhampati, S., Do, M. B., July 2006. YochanPS:PDDL3 simple preferences and partial satisfaction
planning. In: 5th International Planning Competition Booklet(IPC-2006). Lake District, England, pp. 54–57.

Benton, J., van den Briel, M., Kambhampati, S., September 2007. A hybrid linear programming and relaxed plan
heuristic for partial satisfaction problems. In: Proceedings of the 17th International Conference on Automated
Planning and Scheduling (ICAPS). Providence, RI, pp. 34–41.

Bienvenu, M., Fritz, C., McIlraith, S., 2006. Planning with qualitative temporal preferences. In: Proceedings of the
10th International Conference on Knowledge Representation and Reasoning (KR). Lake District, England, pp.
134–144.

Blum, A., Furst, M. L., 1997. Fast planning through planning graph analysis. Artificial Intelligence 90 (1-2), 281–300.
Bonet, B., Geffner, H., 2001. Planning as heuristic search. Artificial Intelligence 129 (1-2), 5–33.
Bonet, B., Geffner, H., 2006. Heuristics for planning with penalties and rewards using compiled knowledge. In:

Proceedings of the 10th International Conference on Knowledge Representation and Reasoning (KR). pp. 452–
462.

Brafman, R., Chernyavsky, Y., June 2005. Planning with goal preferences and constraints. In: Proceedings of the 15th
International Conference on Automated Planning and Scheduling(ICAPS). Monterey, CA, pp. 182–191.

Coles, A. I., Smith, A. J., February 2007. Marvin: A heuristic search planner with online macro-action learning.
Journal of Artificial Intelligence Research 28, 119–156.

Delgrande, J. P., Schaub, T., Tompits, H., June 2004. Domain-specific preferences for causal reasoning and planning.
In: Proceedings of the 14th International Conference on AutomatedPlanning and Scheduling (ICAPS). Whistler,
Canada, pp. 63–72.

Dimopoulos, Y., Gerevini, A., Haslum, P., Saetti, A., July 2006. The benchmark domains of the detrministic part of
ipc-5http://zeus.ing.unibs.it/ipc-5/.

Do, M. B., Benton, J., van den Briel, M., Kambhampati, S., 2007. Planning with goal utility dependencies. In: Proceed-
ings of the 20th International Joint Conference on Artificial Intelligence (IJCAI). Hyderabad, India, pp. 1872–1878.

Edelkamp, S., July 2006. Optimal symbolic PDDL3 planning with MIPS-BDD. In: 5th International Planning Com-
petition Booklet (IPC-2006). Lake District, England, pp. 31–33.

Edelkamp, S., Hoffmann, J., 2004. PDDL2.2: The language for the classical part of the 4th international planning
competition. Tech. Rep. 195, Computer Science Department, University of Freiburg.

Edelkamp, S., Jabbar, S., Naizih, M., July 2006. Large-scaleoptimal PDDL3 planning with MIPS-XXL. In: 5th
International Planning Competition Booklet (IPC-2006). Lake District, England, pp. 28–30.

Feldmann, R., Brewka, G., Wenzel, S., July 2006. Planning with prioritized goals. In: Proceedings of the 10th Inter-
national Conference on Knowledge Representation and Reasoning (KR). Lake District, England, pp. 503–514.

Fikes, R., Nilsson, N. J., 1971. STRIPS: A new approach to the application of theorem proving to problem solving.
Artificial Intelligence 2 (3/4), 189–208.

Fox, M., Long, D., 2003. PDDL2.1: An extension to PDDL for expressing temporal planning domains. Journal of
Artificial Intelligence Research 20, 61–124.

Gazen, B. C., Knoblock, C. A., September 1997. Combining theexpressivity of UCPOP with the efficiency of graph-
plan. In: ECP97. Toulouse, France, pp. 221–233.

31

Gerevini, A., Dimopoulos, Y., Haslum, P., Saetti, A., July 2006. 5th International Planning Competition.http://
zeus.ing.unibs.it/ipc-5/.

Gerevini, A., Long, D., 2005. Plan constraints and preferences forPDDL3. Tech. Rep. 2005-08-07, Department of
Electronics for Automation, University of Brescia, Brescia, Italy.

Giunchiglia, E., Maratea, M., 2007. Planning as satisfiability with preferences. In: Proceedings of the 22nd AAAI
Conference on Artificial Intelligence (AAAI). Vancouver, British Columbia, pp. 987–992.

Haslum, P., 2007. Openstacks SP-NCE domain.
URL http://users.rsise.anu.edu.au/~patrik/ipc5.html

Hoffmann, J., 2003. The Metric-FF planning system: Translating“ignoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research 20, 291–341.

Hoffmann, J., Nebel, B., 2001. The FF planning system: Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14, 253–302.

Hsu, C.-W., Wah, B., Huang, R., Chen, Y., January 2007. Constraint partitioning for solving planning problems with
trajectory constraints and goal preferences. In: Proceedings of the20th International Joint Conference on Artificial
Intelligence (IJCAI). Hyderabad, India, pp. 1924–1929.

McDermott, D. V., 1996. A heuristic estimator for means-ends analysis in planning. In: AIPS96. pp. 142–149.
McDermott, D. V., 1998. PDDL — The Planning Domain Definition Language. Tech. Rep. TR-98-003/DCS TR-1165,

Yale Center for Computational Vision and Control.
Pednault, E. P. D., May 1989. ADL: Exploring the middle ground between STRIPS and the situation calculus. In: Pro-

ceedings of the 1st International Conference of Knowledge Representation and Reasoning (KR). Toronto, Canada,
pp. 324–332.

Pnueli, A., 1977. The temporal logic of programs. In: Proceedingsof the 18th IEEE Symposium on Foundations of
Computer Science (FOCS). pp. 46–57.

Sanchez, R., Kambhampati, S., 2005. Planning graph heuristics for selecting objectives in over-subscription planning
problems. In: Proceedings of the 15th International Conference on Automated Planning and Scheduling (ICAPS).
Monterey, CA, pp. 192–201.

Smith, D. E., 2004. Choosing objectives in over-subscriptionplanning. In: Proceedings of the 14th International
Conference on Automated Planning and Scheduling (ICAPS). Whistler, Canada, pp. 393–401.

Son, T. C., Pontelli, E., 2004. Planning with preferences usinglogic programming. In: Lifschitz, V., Niemela, I. (Eds.),
Proceedings of the 7th International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR).
No. 2923 in LNCS. Springer, pp. 247–260.

van den Briel, M., Nigenda, R. S., Do, M. B., Kambhampati, S., 2004. Effective approaches for partial satisfaction
(over-subscription) planning. In: Proceedings of the 19th National Conference on Artificial Intelligence (AAAI).
pp. 562–569.

Zhu, L., Givan, R., July 9-13 2005. Simultaneous heuristic search for conjunctive subgoals. In: Proceedings of the
20th National Conference on Artificial Intelligence (AAAI). Pittsburgh, Pennsylvania, USA, pp. 1235–1241.

32

