A Heuristic Search Approach to Planning with Temporally
Extended Preferences

Jorge Baie?P*, Fahiem Bacchud Sheila A. Mcllraith?

aDepartment of Computer Science, University of Toronto,a@an
bDepartment of Computer Science, Pontificia Universidachliz de Chile, Chile

Abstract

Planning with preferences involves not only finding a plaat thchieves the goal, it requires findingoeeferred plan that
achieves the goal, where preferences over plans are speadfigart of the planner’s input. In this paper we provide argpie
for accomplishing this objective. Our technique can de&hwairich class of preferences, including so-catkdporally extended
preferenceg§TEPs). Unlike simple preferences which express desiredepties of the final state achieved by a plan, TEPs can
express desired properties of the entire sequence of statessed by a plan, allowing the user to express a muchrragteof
preferences. Our technique involves converting a planpnogplem with TEPs into an equivalent planning problem cioitg
only simple preferences. This conversion is accompishealigynenting the inputed planning domain with a new set ofipatels
and actions for updating these predicates. We then provicalection of new heuristics and a specialized search dlgor
that can guide the planner towards preferred plans. Undee dairly general conditions our method is able to find a most
preferred plan—i.e., an optimal plan. It can accomplish #ithout having to resort to admissible heuristics, whitteroperform
poorly in practice. Nor does our technique require an assompf restricted plan length or make-span. We have impteet
our approach in the HRN-P planning system and used it to compete in the 5th IntenmaltiPlanning Competition, where it
achieved distinguished performance in @ealitative Preferencesack.

Key words: Planning with preferences, temporally extended prefagrieDDL3

1 Introduction

Classical planning requires a planner to find a plan that aebiawspecified goal. In practice, however, not every
plan that achieves the goal is equally desirable. Preferenioes thle user to provide the planner with information
that it can use to discriminate between successful plansinfloisnation allows the planner to distinguish successful
plans based on plan quality.

Planning with preferences involves not just finding a plan tbhieves the goal, it requires finding one that achieves
the goal while also optimizing the user’s preferences. Unforeipdinding an optimal plan can be computationally
expensive. In such cases, we would at least like the planrdirect its search towards a reasonably preferred plan.

In this paper we provide a technique for accomplishing thisaihje. Our technique is able to deal with a rich class
of preferences. Most notably this class inclutemporally extended preferenc@EPS). The difference between a
TEP and a so-callesimplepreference is that a simple preference expresses some desired pofpbeyinal state
achieved by the plan, while a TEP expresses a desired propettg skgjuence of states traversed by the plan. For

* Corresponding author.
Email addressesjabaier@cs.toronto.edu (Jorge Baier)fbacchus@cs.toronto.edu (Fahiem Bacchus),
sheila@cs.toronto.edu (Sheila A. Mcllraith).

Preprint submitted to Atrtificial Intelligence 27 November 2008

example, a preference that a shift worker work no more than 2 overtiifts ;1 a week is a temporally extended
preference. It expresses a condition on a sequence of daily debabat might be constructed in a plan. Planning
with TEPs has been the subject of recent research (e.g. Delgraade26€04; Son and Pontelli, 2004; Bienvenu et al.,
2006). It was also a theme of the 5th International Planning Cttigre(IPC-5).

The technique we provide in this paper is able to plan with ascti# preferences that includes those that can be
specified in the planning domain definition language PDDL3ré@eai and Long, 2005). PDDL3 was specifically
designed for IPC-5. It extends PDDL2.2 to include, among othieg#h facilities for expressing both temporally
extended and simple preferences, where the temporally extendéztgmces are described by a subset of linear
temporal logic (LTL). It also supports quantifying the value ofiaeng different preferences through the specification
of a metric function. The metric function assigns to each planlaevénat is dependent on the specific preferences
the plan satisfies. The aim in solving a PDDL3 planning instas to generate a plan that satisfies the hard goals and
constraints while achieving the best possible metric valpgnuzing this value if possible or at least returning a high
value plan if optimization is infeasible.

Our technique is a two part approach. The first part exploitsiegistork (Baier and Mcllraith, 2006) to convert
planning problems with TEPs to equivalent problems contgiwinly simple preferences defined over an extended
planning domain. The second part, and main contribution ofwmrk, is to develop a set of new heuristics, and a
search algorithm that can exploit these heuristics to guidpldreer towards preferred plans. Many of our heuristics
are extracted from a relaxed plan graph, a technique that has mhvimeen used to compute heuristics in classi-
cal planning. Previous heuristics for classical planning, évax, are not well suited to planning with preferences.
The heuristics we present here are specifically designed to adtieesradeoffs that arise when planning to achieve
preferences.

Our search algorithm is also very different from previous algorithsedun planning. As we will show, it has
a number of attractive properties, including the ability to fomtimal plans without having to resort to admissible
heuristics. This is important because admissible heurisgoemlly lead to unacceptable search performance. Our
method is also able to find optimal plans without requiring arie&in on plan length or make-span. This is important
because such restrictions do not generally allow the planniéndaa globally optimal plan. In addition, the search
algorithm is incremental in that it finds a sequence of plans eae improving on the previous. This is important
because in practice it is often necessary to trade off compnotétie with plan quality. The first plans in this sequence
of plans can often be generated fairly quickly and provide the wéth at least a working plan if they must act
immediately. If more time is available the algorithm can camtiio search for a better plan. The incremental search
process also employs a pruning technique to make each incr@nseatch more efficient. The heuristics and search
algorithm presented here can easily be employed in other pigsyistems.

An additional contribution of the paper is that we have browihdf these ideas together into a working planning
system called HPAN-P. Our planner is built as an extension of the TR system (Bacchus and Kabanza, 1998).
The basic TLRAN system uses LTL formulae to expredsmain control knowledgehus, LTL formulae serve to
prune the search space. However, TRR has no mechanism for providing heuristic guidance to the sebrcion-
trast, our implementation extends TLAN with a heuristic search mechanism that guides the plannerdsvpdans
that satisfy TEPs, while still pruning those partial plans thakate hard constraints. We also exploit TLA&N’s abil-
ity to evaluate quantified formulae to avoid having to convestgtreference statements (many of which are quantified)
into a collection of ground instances. This is important beeagrounding the preferences can often yield intractably
large domain descriptions. We use our implementation tauaet@lthe performance of our algorithm and to analyze
the relative performance of different heuristics on problems from th@hP C-5SimpleandQualitative Preferences
tracks.

In the rest of the paper we first provide some necessary backgrobigdintludes a brief description of the fea-
tures of PDDL3 that our approach can handle. In Section 3 we desitre first part of our approach—a method for
compiling a domain with temporally extended preferences in®tbat is solely in terms of simple (i.e., final state)
preferences. Section 4 describes the heuristics and searchlalgevé have developed. It also presents a number
of formal properties of the algorithm, including characterizingaas conditions under which the algorithm is guar-
anteed to return optimal plans. Section 5 presents an extemsip&ical evaluation of the technique, including an
analysis of the effectiveness of various combinations of #eiktics presented in Section 4. Section 7 summarizes
our contributions and discusses related work after which we gecsd®me final conclusions.

2 Background

This section reviews the background needed to understandahpér.pSection 2.1 presents some basic planning
definitions and a brief description of the planning domain digdimlanguage PDDL. Section 2.2 describes a variation
of the well-known approach to computing domain-independeutistics based on the computation of relaxed plans
that is used by our planner to compute heuristics. As oppaseabst well-known approaches, our method is able
to handle ADL domains directly without having to pre-compile thomain into a STRIPS domain. Section 2.3
describes the planning domain definition language PDDL3, entegersion of PDDL that enables the definition of
hard constraints, preferences, and metric functions.

2.1 An Overview of Planning Formalisms and Languages

A classical planning instance is a tufle= (Objs Oper, Init, Goal), whereObjsis a finite set of object®peris a
finite set of planning operatorB)it is the initialstate i.e., a finite set of ground literals—or simpfacts—describing
the initial state, an&Goal describes the set of goal states.

In STRIPS planning instances (Fikes and Nilsson, 1971), th®get contains operator descriptions of the form
(pre(o0),add(o),del(0)), wherepre(o) is a list of precondition facts for operatoyadd(o)—theadd list—is a list of
facts that are positive effects of operatpranddel(o)—the delete list—is a list of facts that are negative effects of
operator. Finally, Goal is a set of goal facts.

In the more expressive ADL formalism (Pednault, 1989), operatotsdssicribe preconditions and effects, but
these can now be more than simple lists of ground literals. ADlcqrditions can be arbitrary boolean formulae,
existentially or universally quantified over the set of obgggbjs. ADL effects can beonditional which means that
adds and deletes can be conditioned on the satisfactionitfaytboolean formulae. Effects can alsol@versalin
the sense that they affeall objects that satisfy a certain condition. For example, assuenare describing a domain
where objects can contain other objects. Further, assunumawdivé x, y, z) moves objeck from locationy to location
zand in the process moves all objectito zas well. The precondition for this action is ju(x,y); i.e., the object
x has to be at locatiop, while its effects can be defined by the list:

Eff = {add at(x, z), Vv[in(v,x) = add at(v,z)],del at(x,y), Vv[in(v,x) = del at(v,y)] }

Thus, the location of the objegtand all objects insidg changes ta@

In addition to more expressive preconditions and effects, AD& al®ws for the representation of functions. This
means that states can contain, in addition to propositi@uas f sentences of the forffic) = z, wheref is a function
namec is a tuple of objects i©bjs andzis an object inObjs Actions can change the functions by assignitig) a
different value as an add effect.

Finally, in ADL, Goal can be any formula (possibly quantified) that describes a conditiat must be satisfied by
a goal state. For more details on ADL we refer the reader to (PetlA880).

Although STRIPS and ADL can be used to provide formal descriptafrclassical planning instances, they can-
not be used as a standard input language for planners sincertbase syntactical form has never been standardized.
The Planning Domain Definition Language (PDDL) (McDermott,89%n the other hand, was specifically designed
to provide a uniform syntax for describing planning problems incthretext of the 1998 International Planning Com-
petition. PDDL is currently ale factostandard for describing planning problems, and it has beendedesnd used
in all subsequent versions of IPC.

Recent versions of PDDL enable the definition of planningansés in a superset of ADL. For example, PDDL2.1 (Fox
and Long, 2003) extends ADL by enabling explicit represeaitatif time. Among other features, it allows the spec-
ification of actions with duration. On the other hand, PDDL@E#elkamp and Hoffmann, 2004) extends PDDL2.1
by allowing derived predicates (i.e., predicates defined axically), and timed literals (i.e., literals that will be-
come true at a specified time instant). PDDL3, as we describecitin®e?.3, extends PDDL2.2 with hard constraints,
preferences, and metric functions.

The planning problem in both the STRIPS and the ADL settinglesproblem of finding a legal sequence of
actions—ground operators—that, when executed in the initiéé swill lead to a state in which the goal condition
Goalis satisfied.

2.2 Planning as Heuristic Search

Many state-of-the-art domain-independent planners use domagpendent heuristics to guide the search for a
plan. Heuristics estimate the cost of achieving the goal frorartain state. They can be used with standard search
algorithms, and are usually key to good performance. They areatjpicomputed by solving a relaxed version of
the original problem. One of the most popular domain-indepehndgaxations corresponds to ignoring the negative
effects of actions. This is the approach taken by many planngrsHepr(Bonet and Geffner, 2001) amd (Hoffmann
and Nebel, 2001), among others). In the STRIPS formalism, this games to ignoring delete lists.

In this paper we exploit heuristic search to plan with preferenties.heuristics presented here are based on the
well-known technique of computingralaxed planning grapliHoffmann and Nebel, 2001), which is the graph that
would be generated by GAPHPLAN (Blum and Furst, 1997) on the STRIPS relaxed planning instdratdgnores
negative effects. This graph is composed of fact layersfelaxed worlds—and action layers. The action layer at
level n contains all actions that are possible in the relaxed world jgtihde The relaxed world at depti+ 1 contains
all the facts that hold at layer+ 1 and is generated by applying all the positive effects of astia action layen.

The graph is expanded until the goal is satisfied by the finakeelavorld or a fixed point is reached.

Once the graph is expanded, one can compuddexedplan for the goals by regression from the goal facts in the
graph to the initial state. The length of this plan can thendezlas a heuristic estimator of the cost for achieving the
goal. In the rest of the paper we assume familiarity with the etitra of relaxed plans. For more details we refer the
reader to the article by Hoffmann and Nebel (2001).

2.2.1 Relaxed Plans for Function-Free ADL Domains

To compute heuristics for function-free ADL domains one can firstsfiam the domain to STRIPS, using a
well-known procedure described by Gazen and Knoblock (1997) leerddompute the heuristic as usual. This is the
approach taken by some systems (er).but unfortunately this procedure can lead to a considerable bjoin the
size of the original instance.

Our planner handles ADL domains, but takes a different apptdagarticular, it computes the relaxed planning
graph directly from the ADL instance, using an approach similthabtaken by the MRvVIN planning system (Coles
and Smith, 2007). To effectively handle relaxed ADL domains (iricl effects can be conditioned on negative facts),
the relaxed worlds represent both the facts that bedoneeand the facts that beconfielse after executing a set of
actions. To that end, the relaxed worlds are divided into twasparpositive part, that represents added facts, and a
negative part, that represents deleted facts.

When computing a relaxed graph for a stajehe set of relaxed worlds is a sequence of pairs of fact sets
(R, Fy), (R, Fy), with Ry = sandF, = %, wheres® is the set of facts not is (i.e., the complement of
s). Furthermore, if actiora appears in the action layer at depthall facts that are added kgyare included in the
positive relaxed world at depffy ;, whereas facts that are deletedébgre added té,_ ,. Moreover, all facts in layer
k are copied to layek+ 1 (i.e.F,” C R, andF_ C R ,).

Special care has to be taken in the evaluation of preconditiadsconditions in conditional effects for actions,
because negations could appear anywhere in those condifimesaluate a formula in a relaxed world, we evaluate
its negation normal fornNNF) instead. In NNF, all negations appear right in front of atmformulae. A formula can
easily be converted to NNF by pushing negations in using #restrd rules-3. f =V.—f, =V.f =d.-f, - (fy A f) =
—|f1\/—|f2, _‘<f1\/ fz) = —|f1/_\f2, and——f = f.

Now assume we want to determine whether or not the fornguia true in the relaxed staté=",F.) in the
graph with relaxed world$F,",Fy) -+~ (R, F.) -+ (R, F;). Furthermore, lety’ be the NNF ofg. To evaluatep
we instead evaluatg’ recursively in the standard way, interpreting quantifiers anddawobinary operators as usual.
When evaluating a positive faét we return the truth value df € F.". On the other hand, when evaluating a negative
fact ~f, we return the truth value of € F_. In short,—f is true at depttk if f was deleted by an action or was
already false in the initial state. More formally,

Definition 1 (Truth of an NNF formula in a relaxed statd)et the relaxed planning graph constructed from the initial
states in a problem where the set of objects of the proble®igs be (F,",F;) --- (F.",F.). The following cases
define whenp is true at levek of the relaxed graph, which is denoted(&s ,F, ") = ¢.

e if @is an atomic formula the(R,",F") = @iff p € R.

if @ =—f, wheref is an atomic formula, the(F,",F,) E @iff p€ F

if o=y A&, then(R".R7) = iff (R™,F7) Fyand(R',F7) =&.

if g=yVvé& then(R"F) = oiff (R™F) Ewor(R',F) ¢

if @=Vvx.y,then(FR",F) [@iff for every o € Objs (F.",F.) = @(x/0), wherey(x/0) is the formulay with

all free instances of replaced byo. !

e if @ =3x.y, for someo € Objs(F",F.) = y(x/0).

The standard relaxed plan extraction has to be modified sligbtlyhe ADL case. Now, because actions have
conditional effects, whenever a fattis made true by actioa there is a particular set of facts that is responsible
for its addition, i.e. those that made both the preconditioa afid the condition in its conditional effect true. When
recursing from a subgodl we add as new subgoals all those facts responsible for theaddftf (which could be
in either part of the relaxed world).

As is the case with STRIPS relaxed planning graphs, whenewat & fs reachable from a state by performing a
certain sequence of legal actions, theeventually appears in a fact layer of the graph. The same happehese
relaxed graphs. This is proven in the following proposition.

Proposition 2. Let s be a planning state, R (Fy",F;)(F,",F;)+ (R4, Fy) be the relaxed planning graph con-
structed from s up to a fixed point, agbe an NNF formula. Ifp is true after performing a legal sequence of actions
a1 -+ @, in s, then there exists somekm such thatF,",F.) = .

Proof. See Appendix A.

This proposition verifies that the relaxed planning graph is @b darelaxation of the problem. In particular, it says
that if the goal is not reachable in the relaxed planning graph this not achievable by a real plan.

Besides being a desirable property, this reachability resukkyst&k some interesting properties of our search al-
gorithm. In particular, as we see later, it is essential to pigtirat some of the bounding functions we employ will
never prune an optimal solution (under certain reasonable ggEuNs).

2.3 Brief Description of PDDL3

PDDL3 was introduced by Gerevini and Long (2005) for the 5th Intéonal Planning Competition. It extends
PDDL2.2 by enabling the specificationmfeferencesindhard constraintslt also provides a way of definingraetric
functionthat defines the quality of a plan dependent on the satiefaofithe preferences.

The current version of our planner handles the non-temporal anchameric subset of PDDL3, which was the
language used for thHgualitative Preferencesack in IPC-5. In this subset, temporal features of the languadeasic
durative actions and timed fluents are not supported. Moreonedgnence formulae that mention explicit times (e.qg.,
using operators such asthin andalways-within) are not supported. Numeric functions (PDDL fluents) are not
supported either. The rest of this section briefly describesaheatements introduced in PDDL3 that we do support.

2.3.1 Temporally Extended Preferences and Constraints

PDDL3 specifies TEPs and temporally extended hard constraigtsubset of a quantified linear temporal logic
(LTL) (Pnueli, 1977). These LTL formulae are interpreted otrajectories which in the non-temporal subset of
PDDL3 are sequences of states that result from the executionegah $equence of actions. Figure 1 shows the

1 In our implementation, bounded quantification is used sbtttia condition can be checked more efficiently. In parécuihis
means that not every object@bjsneed be checked.

1. S-S | (always @) iff Vi:0<i<nsk¢o

2. 0SS [(sometime @) iff Ji:0<i<nsko

3. S-S = (at end @) iff siF@

4. %81+ = (sometime-after @) iff ViifspEe@thendj:i<j<n sy

5. %S1---S = (sometime-before @) iff ViifskE=g@thendj:0<j<i, sj=y

6. S5 -S = (at-most-once @) iff Vi:0<i<n, ifSEe@thendj:j>i, Vk:k>j, sc|=-¢

Fig. 1. Semantics of PDDL3’s temporally extended formutest o not mention explicit time. The trajectags; - - - sh represents
the sequence of states that results from the execution @segof actionsy - - - an.

semantics of LTL-based operators that can be used in temporddiynded formulae. The first two operators are
standard in LTL; the remaining ones are abbreviations that caletieed in terms of standard LTL operators.

2.3.2 Temporally Extended Preferences and Constraints
Preferences and constraints (which can be viewed as being prefeteatenust be satisfied) are declared using

the : constraints construct. Each preference is given a name in its declaratiotipto f@r later reference. By way
of illustration, the following PDDL3 code defines two preferenaed one hard constraint.

(:constraints

(and

(preference cautious

(forall (7o - heavy-object)
(sometime-after (holding 7o)
(at recharging-station-1))))

(forall (?1 - light)
(preference p-light (sometime (turn-off ?71))))
(always (forall ?x - explosive) (not (holding ?x)))))

The cautious preference suggests that the agent be at a recharging statietireerafter it has held a heavy ob-
ject, whereap-1light suggests that the agent eventually turn all the lights offaliinthe (unnamed) hard constraint
establishes that an explosive object cannot be held by et afany point in a valid plan.

When a preference mxternallyuniversally quantified, it defines a family of preferences, dairig an individual
preference for each binding of the variables in the quantifierréfbee, preference-1ight defines an individual
preference for each object of typéght in the domain. Preferences that are not quantified externakyctiktious,
can be seen as defining a family containing a single preference.

Temporal operators cannot be nested in PDDL3. Our approach eavéohandle the more general case of nested
temporal operators.

2.3.3 Precondition Preferences

Precondition preferences are atemporal formulae expressing amsdttiat should ideally hold in the state in
which the action is performed. They are defined as part of the &fwacondition. For example, the preference
labeledecon below specifies a preference for picking up objects that are neyhea
(:action pickup :parameters (7b - block)

(:precondition (and (clear ?b)

(preference econ (not (heavy 7b)))))
(:effect (holding 7b)))

Precondition preferences behave something like conditioni@racosts. They are violated each time the action is
executed in a state where the condition does not hold. In theeab@mpleecon will be violated every time a heavy
block is picked up in the plan. Therefore these preferences camlaged a number of times.

2.3.4 Simple Preferences
Simple preferences are atemporal formulae that express a preferenegdar conditions to hold in the final state
of the plan. They are declared as part of the goal. For examgédollowing PDDL3 code:

(:goal (and (delivered pckl depotl)
(preference truck (at truck depotil))))

specifies both a hard goaldk1 must be delivered atepot1) and a simple preference (thatuck is atdepot1).
Simple preferences can also be externally quantified, in whisé tteey again represent a family of individual prefer-
ences.

2.3.5 Metric Function

The metric function defines the quality of a plan, generally ddpey on the preferences that have been achieved
by the plan. To this end, the PDDL3 expressids-violated name), returns the number of individual preferences
in thename family of preferences that have been violated by the plan. Wiaewe refers to a precondition preference,
the expression returns timeimber of timeshis precondition preference was violated during the execufitimeoplan.

The quality metric can also depend on the functi@tal-time, which, in the non-temporal subset of PDDL3,
returns the plan length, and the actual duration of the plan irereppressive settings. Finally, it is also possible to
define whether we want to maximize or minimize the metric, and ve want to weigh its different components. For
example, the PDDL3 metric function:

(:metric minimize (+ (total-time)

(* 40 (is-violated econ))
(¥ 20 (is-violated truck))))

specifies that it is twice as important to satisfy preferemcen as to satisfy preferenceruck, and that it is less
important, but still useful, to find a short plan.

In this article we focus on metric functions that mention otdftal-time or is-violated functions, since we
do not allow function symbols in the planning domain.

3 Preprocessing PDDL3

As described in the previous section, PDDL3 supports the definif temporally extended preferences in a subset
of LTL. A brute force method for generating a preferred plan would beetoegate all plans that realize the goal
and then to rank them with respect to the PDDL3 metric functionvéi@r, evaluating plans once they have been
generated is not efficient because there could be many plahadhizve the goal. Instead, we need to be able to
provide heuristic guidance to the planner to direct it towardsdhneration ohigh-quality plans. This involves
estimating the merit of partial plans by estimating which & TEPs could potentially be satisfied by one of its
extensions (and thus estimating the metric value that couleingially be achieved by some extension). With such
heuristic information the planner could then direct the searfdnteébwards growing the most promising partial plans.

To actively guide the search towards plans that satisfy the @nobITEPs we develop a two-part approach. The
first component of our approach is to exploit the techniquesepted by Baier and Mcllraith (2006) to convert a
planning domain containing TEPs into one containing anvedent set of simple (final-state) preferences. Simple
preferences are quite similar to standard goals (they express sid) ggnd thus this conversion enables the second
part of our approach, which is to extend existing heuristic aggnes for classical goals to obtain heuristics suitable
for guiding the planner toward the achievement of this newfs&taple preferences. The development and evaluation
of these new heuristics for simple preferences is one of the mainiloations of our work and is described in the next
section. That section also presents a new search strategyg #ftedtive in exploiting these heuristics.

In this section we describe the first part of our approach: how titentques of Baier and Mcllraith (2006) can be
exploited to compile a planning domain containing TEPs attbmain containing only simple preferences. Besides
the conversion of TEPs we also describe how we deal with the éeheures of PDDL3 that we support (i.e., those
described in the previous section).

3.1 Temporally Extended Preferences and Constraints

Baier and Mcllraith (2006) presented a technique that can cansiruautomator, from a temporally extended
formulag. The automato, has the property that it accepts a sequence of states (e.guensecpf states generated
by a plan) if and only if that sequence of states satisfies thggnal formula ¢. The technique works for a rich
subset of first-order linear temporal logic formulas that inclualesf PDDL3’s TEPSs. It also includes TEPs in which
the temporal operators are nested, which is not allowed in PDDa3®ncode PDDL3 preference formulae, each
preference formula is represented as an automaton. Reaching atiragcendition of the automaton corresponds to
satisfying the associated preference formula.

The automatory can then be embedded within the planning domain by extertdeadomain with new predicates
representing the state of the automaton. Thus, in the intage ®f the planning problem these predicates will capture
the fact that the automaton, starting from its initial state,jbat inputed the initial state of the problem. The technique
also modifies the domain’s actions so that they can properlgitedgtie “automata-state” predicates. When a sequence
of actions is applied starting in the initial state, the alatarstate predicates are updated to capture the progress these
actions have made towards satisfying the preference formula tchwhé automaton corresponds. Hence we can
determine if a sequence of actions has satigpidry simply testing if the automata-state predicates in the &tak
arising from these actions indicate that the automaton is incaeping state. In other words, the technique allows
one to convert a temporally extended conditign {nto a condition on the final state (the automaton state paéelc
indicate that is in a accepting state).

One important feature of the compilation technique we expddhat it can construgtarameterizeéutomata. That
is, we do not need to expand a quantified first-order temporal @steformulag into a larger propositional formula
(by computing all ground instantiations). This means that &ohntique generates compact domains, by avoiding
grounding of quantified preferences. Generating a compact cedymibblem is key for good performance, as we will
see in Section 5. Although in general the size of the automis@irresults from compiling an arbitrary LTL formula
¢ can be exponential ifp|, in case of the restricted subset of LTL allowed by PDDL3 (in whicrmulae do not
allow nestings of temporal operators) an exponential blowmmagoccur.

Baier and Mcllraith’s original paper was aimed at planning wéimporally extended goals, not preferences. Up to
the construction of the automata for each temporally extendeulda, our approach is identical to that taken by them.
However, Baier and Mcllraith (2006) then propose ugilegived predicateso embed the automata in the planning
domain. In our work we have chosen a different approach that is nmmpatible with the underlying TLEAN
system we employed in our implementation. In the rest of the@eave give some more details on the construction
of automata and the way we embed these automata into a ptadamain. Further details on automata construction
can be found in (Baier and Mcllraith, 2006).

3.1.1 Parameterized Finite State Automata

The compilation process first constructs a parameterized nonueistic finite-state automaton (PNFA&, for
each temporally extended preference or hard constraint expressedld L formula¢. The PDDL3 operators pre-
sented in Fig. 1 that are abbreviations are first expanded imdatd LTL operators following Gerevini and Long
(2005).

The PNFA represents a family of nondeterministic finite-stateraata. Its transitions are labeled by first-order
formulae, and its input language is the set of all strings of ptates. A PNFAA, accepts a sequence of plan states
iff such a sequence satisfigs Figure 2 shows some examples of PNFA for first-order LTL formulae.

Parameters in the automaton appear when the LTL formula is eltjeguantified (e.g., Figure 2(b)). The intuition
is that differenbjects(or tuples of objects) can be in different states of the automdataples of objects can transition
from a stateg to a stateq’ when the automaton reads a plan skiff there is a transition betweegpandq that is
labeled by a formula that is satisfiedsn

As an example, consider a transportation domain with two pgek@ and B, which are initially not loaded in
any vehicle. Focusing on the formula of Figure 2(b), we see thdt bbjects start off in the initial statgy. Then
the automaton inputs the initial state of the planning probl€hat state satisfies the formulamplies (loaded
?x) (delivered 7x)) for both package#é andB since neither is loaded in the initial state. Hence the pge&a
transition to state, as well as stay in statg (the automata is nondeterministic). This means that initlzdih objects

(true)
(delivered 7x)

(true)
(exists (7c)

(delivered 7x)
(and (cafe ?C) (loaded ?7x)
(at 7¢)))
‘li!il’
(implies (loaded 7x)
(\“//> (delivered 7x))
— :> (true)
(implies (loaded 7x)
(a)

(delivered ?7x))
(b)

Fig. 2. PNFA for (a) (sometime (exists (?c) (and (cafe ?c) (at ?c)))), and (b) (forall (?x) (sometime-after
(loaded ?7x) (delivered ?7x))). In both PNFA(Qp is the initial state and the accepting states are indicayea #oouble cir-
cle border.

satisfy the temporal formula, since both are in the automatosing state),. That is, the null plan satisfies the
formula (b) of Figure 2. Now, assume we perform the actaad(A, Truck). In the resulting stateéB stays ingo and
moves once again fromy to g, while A now moves frongg to g;. Hence A no longer satisfies the formula; it will
satisfy it only if the plan reaches a state wheediveredA) is true.

A PNFA is useful for computing heuristics because it effectivelgresents all the different paths to the goal that
can achieve a certain property; its states intuitively “matiitbe progress towards satisfying the original tempo-
ral formula. Therefore, while expanding a relaxed graph for computegistics, one is implicitly considering all
possible (relaxed) ways of satisfying the property.

3.1.2 Representing the PNFA Within the Planning Problem

After the PNFA has been constructed it must be embedded wiiBiplanning domain. This is accomplished by
extending the original planning problem with additional poadés that represent the state of the automaton in each
plan state. If the planning domain has multiple TEPs (as isllysthee case), a PNFA is constructed for each TEP
formula and then embedded within the planning domain withraaton-specific automata-state predicates. That is,
the final planning problem will contain distinct sets of autdeastate predicates, one for each embedded automaton.

To represent an automaton within the domain, we define a predipatifying the automaton’s current set of states.
When the automaton is parameterized, the predicate has artgymepresenting the current set of automaton states
for a particulaituple of objectsln our example, the fadtaut-state q0 A) represents that objestis in automaton
stateq0. Moreover, for each automaton we definesmaepting predicateThe accepting predicate is true of a tuple of
objects if the plan has satisfied the temporal formula for thestupl

Rather than modify the domain’s actions so that the autontata san be properly updated as actions are executed
(as was done by Baier and Mcllraith (2006)) we instead modified tidlerlying TLR.AN system so that after every
action it would automatically apply a specified sebotomata updatesAutomata updates work like pseudo-actions
that are performed automatically while a new successor is geaefdthen generating the successos dter per-
forming actiona, the planner builds the new stateby adding and deleting the effects afWhen this is finished,
it processes the automata updates aegenerating a new successr The states” is then regarded as the actual
successor o§f after performinga. The compilation process can then avoid changes to the danzaitions and in-
stead insert all of the conditions needed to transition theraata state in one self-contained addition to the domain
specification.

Syntactically, the automata updates are encoded in the dasdirst-order formulae that contain théd anddel
keywords, just like regular TLEAN action effect specifications. For the automata of Figure 2(le) uftdate would
include rules such as:

(forall (?x) (implies (and (aut-state qO0 7x) (loaded 7x))
(add (aut-state ql ?x))))

That is, an objectx moves from statgO to q1 whenever(loaded ?7x) is true.

Analogously, we define an update for the accepting predicdtehws performed immediately after the automata
update—if the automaton reaches an accepting state thendibeadccepting predicate to the world state.

In addition to specifying how the automata states are updatedlso need to specify what objects are in what
automata states in the initial state of the problem. This m@smust augment the problem’s initial state by adding
a collection of automata facts. Given the original initigtstand an automaton, the planner computes the states that
every relevant tuple of objects can be in after the automatompased the problem’s initial state, and then adds the
corresponding facts to the new problem. In our example, thairstate of the new compiled problem contains facts
stating that bott\ andB are in statesp andds.

If the temporally extended formula originally described a hard tairg, the accepting condition of the automaton
can be treated as an additional mandatory goal. During searclswase TLRAN's ability to incrementally check
temporal constraints to prune from the search space those plamatesalready violated the constraint.

3.2 Precondition Preferences

Precondition preferences are very different from TEPs: they are atelngodaare associated with the execution of
actions. If a precondition preferenpas violatedn times during the plan, then the PDDL3 functiQhs-violated
p) returnsn.

Therefore, the compiled problem containgeavdomain functionis-violated-counter-p, for each precondi-
tion preference family. This function keeps track of how many times the preference haswelated. It is initialized
to zero and is (conditionally) incremented whenever its assediaction is performed in a state that violates the atem-
poral preference formula. In the case where the preference is quarttigefdinction is parameterized, which allows
us to compute the number of times different objects have \é@dltie preference.

Flor egalljmple, consider the PDDIp3 ckup action given above. In the compiled domain, the original detian is
replaced by:

(:action pickup :parameters (7b - block)
(:precondition (clear 7b))
(:effect (and (when (heavy 7b)
(increase (is-violated-counter-econ) 1)))
(holding ?b))) ;; add (holding 7b)

3.3 Simple Preferences

As with TEPs, we add neaccepting predicate® the compiled domain, one for each simple preference. We also
define updates, analogous to the automata updates for thesgting predicates. Accepting predicates become true
iff the preference is satisfied. Moreover, if the preference is dfieshtthese accepting predicates are parameterized:
they can be true of some tuples of objects and at the same tifia¢skbdor other tuples.

3.4 Metric Function

For each preference familgame, we define a newdomainfunction is-violated-name. The return values
of these functions are defined in terms of the accepting predidate temporally extended and simple prefer-
ences) and in terms of the violation counters (for preconditiofepeaces). If preferencg is quantified, then the
is-violated-p function counts the number of object tuples that fail to $atise preference.

By way of illustration, the TLIRAN code that is generated for the preference p-light defined in Sezt®oh is:
(def-defined-function (is-violated-p-light)

(local-vars 7x) ;3 ?x is a local variable
(and (:= 7x 0) ;3 ?x initialized to O
(forall (71) (light ?71)
(implies (not (preference_p-light_satisfied 71))
(:=7x (+ ?7x 1)))) ;5 increase 7?x by 1 if preference not satisfied
(:= is-violated-p-light 7x))) ;3 return total sum

10

wherepreference_p-light_satisfied is the accepting predicate defined for preference p-light. Notérans-
lation avoids grounding by using quantification to refer to &ljlects of typelight.

If the original metric function contains the PDDL3 functidrtotal-time), we replace its occurrence by the
TLPLAN function (plan-length), which counts the number of actions in the plan. Thus, asteme implicitly
associated a unitary duration.

The metric function in the resulting instance is defined jushaké PDDL3 definition but by making reference to
these new functions. If the objective was to maximize the fmatve invert the sign of the function body. Therefore,
we henceforth assume that the metric is always to be minimized.

In the remainder of the paper, we use the notatistviolated(p,N) to refer to the value of s-violated-pin
a search nodbl. We will sometimes refer to the metric function lsls and we will useM(N) to denote the value of
the metric in search nods.

4 Planning with Preferences via Heuristic Search

Starting with the work ofunPoP (McDermott, 1996) Hsp (Bonet and Geffner, 2001), armk (Hoffmann and
Nebel, 2001), forward-chaining search guided by heuristics has@rtav be a powerful and useful paradigm for
solving planning problems. As shown above, the automatadémg@f temporally extended preferences allows us to
automatically augment the domain with additional predigdtet serve to keep track of the partial plans’ progress
towards achieving the TEPs. The central advantage of this aplpris that it converts the planning domain to one
with simple preferences. In particular, now the achievement dE iE marked by the achievement of an accepting
predicate for the TEP, which is syntactically identical toansiard goal predicate.

This means that, in the converted domain, standard techniquesmputing heuristic distances to goal predicates
can be utilized to obtain heuristic distances to TEP accgmtiedicates. For example, the standard technique based
on a relaxed planning graph (Hoffmann and Nebel, 2001), which appates the distance to each goal and each
TEP accepting predicate can be used to heuristically guide afdrahaining search.

Nevertheless, although the standard methods can be fairly sasiified in this manner, our aim here is to develop
a search strategy that is more suitable to the problem of plamithd EPs. In particular, our approach aims to provide
a search algorithm with three main features. First, the planneitéfind good plans, which optimize a supplied metric
function. Second, it should be able to generate optimal ptaret, least be able to generate an improvement over an
existing plan. Finally, since in some contexts it might bepeard to achieve an optimal plan—and hence a great deal
of search effort could be required—we want the algorithm to findastlene plan as quickly as possible.

Heuristic search with non-admissible heuristics, like the edagoal distances employed in planners kkean be
very effective at quickly finding a plan. However, they offer res@rances about the quality of the plan they find. On
the other hand, if an admissible heuristic is used, the pland@iguaranteed to be optimal (assuming the heuristic is
admissible with respect to the supplied plan metric). Unforelgahdmissible heuristics typically perform poorly in
practice (Bonet and Geffner, 2001). Hence, with an admissibldadieuthe plan often fails to find any plan. This is
typically unacceptable in practice.

In this section we develop a heuristic search technique thdviexthe special structure of the translated planning
domains in order to (a) find a plan fairly rapidly using a non-adibiesheuristic and (b) generate a sequence of
improved plans that, under some fairly general conditions, itextes with an optimal plan by using a bounding
technique. In particular, our search technique allows onenergge better plans—or even optimal plans—if one has
sufficient computational resources available. It also allomesto improve on an existing plan and sometimes prove a
plan to be optimal.

In the rest of the section we begin by describing a set of differentiktic functions that can serve to guide the
search towards satisfying goals and preferences. Then, we deearilsearch algorithm and analyze some of its
properties.

11

4.1 Heuristics Functions for Planning with Preferences

Our algorithm performs a forward search in the space of states guydeelivistics. Most of the heuristic functions
given below are computed at a search nNd®y constructing a relaxed graph as described in Section 2.2€lgfEHph
is expanded from the planning state correspondirg &md is grown until algoal facts and alpreferencdacts (i.e.,
instances of the accepting predicates) appear in the reléaedes a fixed point is reached. The goal facts correspond
to the hard goals, and the preference facts correspond to instamgiaf the accepting predicates for the converted
TEPs.

Since in our compiled domain we need to update the automadéptes, the procedure in Section 2.2.1 is modified
to apply automata updates in action layers after all regulamrachave been performed. On the other hand, because
our new compiled domain has functions, in addition we modig/ pihocedure in Section 2.2.1 ignore all effects
that directly affect the value of a function. This means thah&relaxed worlds, all preference counters will have the
same value as in the initial stageNote that since preference counters do not appear in the comslitf conditional
effects or in the preconditions of actions, Proposition 2 cw@s to hold for relational facts; in particular, it holds for
accepting predicates.

Below we describe a suite of heuristics that can be computed fiemetaxed graph and can be used for planning
with preferences. They are designed to guide the search towardatigfyiag the goal, and (2) satisfying highly
valued preferences, i.e., those preferences that are given a Wigigét in the metric function. However, highly valued
preferences can be very hard to achieve and hence guiding theeptamrards the achievement of such preferences
might yield unacceptable performance. To avoid this problem,approach tries to account for the difficulty of
satisfying preferences as well as their value, ultimately gitamg to achieve a tradeoff between these two factors.

4.1.1 Goal Distance Function (G)

This function returns an estimate of the number of actions reamlachieve the goal (planning problems often
contain a hard “must achieve” goal as well as a collection digpemces)G is the same as the heuristic used by the
FF planner but modified for the ADL case. The value returnedstg the number of actions contained in a relaxed
plan that achieves the goal.

4.1.2 Preference Distance Function (P)

This function is a measure of how hard it is to reach the various preferiacts. It is based on a heuristic proposed
by Zhu and Givan (2005) for conjunctive hard goals, but adaptede case of preferences. l78tbe the set of pref-
erence facts that appear in the relaxed graph, artt fgtbe the depth at which first appears during the construction
of the graph. TheR(N) = 3 ;. d(f)¥, for some parametés Notice that unreachable preference facts (i.e., those not
appearing in the relaxed graph) do not affiestvalue.

4.1.3 Optimistic Metric Function (O)

The O function is an estimate of the metric value achievable from a keawdeN in the search spac€@ does
not require constructing the relaxed planning graph. Rather,ongate it by assuming (1) no further precondition
preferences will be violated in the future, (2) TEPs that are vidlatel that can be proved to be unachievable fkom
are regarded as false, (3) all remaining preferences are regardedsfiscsadind that (4) the value ¢fotal-time)
is evaluated to the length of the plan correspondindtd@o prove that a TER is unachievable fronN, O uses a
sufficient condition. It checks whether or not the automatarpf@s currently in a state from which there is no path
to an accepting state. Examples of LTL formulae that can bectigtdy this technique as always being falsified in
the future are those of the forfalways ¢).Indeed, as soon gsbecomes false, from no state in the automaton’s
current set of states will it be possible to reach an acceptatg.st

Although O clearly underestimates the set of preferences that can be ddigtany plan extendind it is not
necessarily a lower bound on the metric value of any plan ekigrid. It will be a lower bound when the metric
function is non-decreasing in the number of violated preferercgsve will see later, lower bounds for the metric
function can be used to soundly prune the search space and gpsedrah.

12

Definition 3 (NDVPL metric functions) Let Z be a (preprocessed) PDDL3 planning instance, let th€ sentain
its preferences, and leéength(N) be the length of the sequence of action that genefdtedl metric functionM is
non-decreasing in the number of violated preferences andaim [pngth(NDVPL) iff for any two nodesN andN’ it
holds that:
(1) If length(N) > length(N’), and for everyp € I, is-violated(p,N) > is-violated(p,N’), thenM(N) >
M(N’), and
(2) If (total-time) appears inM, andlength(N) > lengthN’), and for everyp € I', is-violated(p,N) >
is-violated(p,N’), thenM(N) > M(N’).

NDVPL metrics are natural when the objective of the problem isitimize the metric function (as in our prepro-
cessed instances). Problems with NDVPL metrics are those irhwintating preferences never improves the metric
of the plan. Furthermore, adding more actions to a plan thatdaiatisfy any new preferences can never improve its
metric. Below, in Remark 16, we see thatditive metrics, which were the only metrics used in IPC-5, satisfy this
condition.

Proposition 4. If the metric function is NDVPL, then(@®) is guaranteed to be a lower bound on the metric value of
any plan extending N.

Proof. The optimistic metric only regards as violated those preferemzgsate provably violated in every successor
of N (i.e., in every state reachable frafhby some sequence of actions). It regards as satisfied all rematrefey-
ences. Thatig) is evaluating the metric in a hypothetical nddg such that for any nodd’ reachable fronN and for
everyp el is-violated(p,No) < is-violated(p,N’). Furthermore, becaus@evaluates the plan length to that
of N, our hypothetical node is such thiadngth(No) = length(N) and hence we havieength(No) < length(N’).
Since the metric function is NDVPL, it follows from Definition 3 thfar every successady’ of N, M(Ng) < M(N').

It follows thatO(N) returns a lower bound on the metric value of any plan extending O

The O function is a variant of théoptimistic weight” heuristic in the PPAN planner (Bienvenu et al., 2006).
PR.AN progressed TL preferences (as defined by Bacchus and Kabanza (1998)) throegh rade of the search
space. The optimistic weight assumes as falsified only thokereferences that have progressed to false.

4.1.4 Best Relaxed Metric Function (B)

The B function is another estimate of the metric value achievablexignding a nod#\. It utilizes the relaxed
planning graph grown from the state correspondingyl tm obtain its estimate. In particular, we evaluate the metric
function in each of the relaxed worlds of the planning graph akd Bato be the minimum among these values.
The metric function evaluated in a relaxed wondM (w), evaluates thés-violated functions directly orw, and
evaluategtotal-time) as the length of the sequence of actions that corresporidss to

For the case of NDVPL metric functionB,is similar toO, but can return tighter estimates. Indeed, note that the last
layer of the relaxed graph contains a superset of the preferertsettiat can be made true by some successor to the
current state. Also, because the counters for precondition prefseme not updated while expanding the graph, the
value of theis-violated functions for precondition preferences is constant over the rélsbedes. This represents
the implicit assumption that no further precondition preferengitisbe violated. The metric value of the relaxed
worlds does not increase (and sometimes actually decreases)tlsnnumber of preference facts increases in deeper
relaxed worlds. As a result, the metric of the deepest relaxed weotle one that will be returned . This value
corresponds to evaluating the metric function in a relaxed sthgFav (1)is-violated functions for precondition
preferences are identical to the onedin(2) preference facts that do not appear in the relaxed graph areedgssd
violated, and (3) all remaining preferences are regarded as satiBfisdcondition (2) is stronger than condition (2)
in the definition ofO above. Indeed, no preference that is detected as unsatisfiatble byethod described f@ can
appear in the relaxed graph, since there is no path to an acgejite of that preference. Hence, no action can ever
add the accepting predicate for the preference.

By using the relaxed grapB, can sometimes detect preferences that are not satisfiable byesgssor oN but
that cannot be spotted l6ys method. For example, consider we have a prefergnee(sometime £), and consider

13

further that factf is not reachable from the current state. The mydpifunction would regard this preference as
satisfiable, because it is always possible to reach the fiatd sf the automaton for formul@ (the automaton for
f looks like the one in Figure 2(a)). On the other hafidnight not appear in the relaxed graph—becafise
unreachable from the current state—and thereBoneuld regardp as unsatisfiable.

These observations lead to the conclusion Biat) will also be a lower bound on the metric value of any successor
of N under the NDVPL condition.

Proposition 5. If the metric function is NDVPL, then(Rl) is guaranteed to be a lower bound on the metric value of
any plan extending N.

Proof. Proposition 2 implies that all preference facts that could eweathieved by some successorsNofvill
eventually appear in the deepest relaxed world. Because thrie iseNDVPL, this implies that the metric value of
the deepest relaxed world is also the minimum, and therefore sualua will be returned by th8 function. Now
we can apply the same argument as in the proof for Propositiomee ¢he returned metric value corresponds to
evaluating the metric in a hypothetical node in whichialtviolated counters are lower or equal than those of any
plan extendingN. O

4.1.5 Discounted Metric Function (D))

TheD function is a weighting of the metric function evaluated in tHaxed worlds. Assumeig, ws, ..., W, are the
relaxed worlds in the relaxed planning graph, wherés at depth and thewp = (s,5°), i.e., the positive and negative
facts of the state wheif®(r) is being evaluated. Then the discounted meBig,), is:

n—1
D(F) =M(Wo) + 5 (M(w1) ~M W)Y)

whereM(w;) is the metric function evaluated in the relaxed wasidandr is a discount factor (& r < 1).

The D function is optimistic with respect to preferences that appedieean the relaxed graph (i.e., preferences
that seem easy) and pessimistic with respect to preferenceapipedr later (preferences that seem hard). Intuitively,
the D function estimates the metric value of plans extending the oustate by “believing” more in the satisfaction
of preferences that appear to be easier. ObserveMbat, ;) — M(w;) is the amount of metric valugainedwhen
passing from relaxed worlg; to wi_.1. This amount is then multiplied by, which decreases asncreases. Observe
also that, although the metric gains are discounted, preferéhaeare weighted higher in the PDDL3 metric will
also have a higher impact on the valudbfThat is,D achieves the desired tradeoff between the ease of achieving a
preference and the value of achieving it.

A computational advantage of thi& function is that it is easy to compute. As opposed to other ambres, this
heuristic never needs to make an explicit selection of the prrées to be pursued by the planner.

Finally, observe that whenis close to 1, the effect of discounting is low, and when it sel to 0, the metric
is quickly discounted. When is close to 0 theD function is myopic in the sense that it discounts heavily ¢hos
preferences that appear deeper in the graph.

4.2 The Planning Algorithm

Our planning algorithm searches for a plan in a seriespisodesThe purpose of each of these episodes is to find
a plan for the goal that has a better value than the best fourat.dm each planning episode a best-first search for a
plan is initiated using some of the heuristics proposed abidwe episode ends as soon as it finds a plan whose quality
is better than that of the plan found in the previous episode.sEarch terminates when the search frontier is empty.
The algorithm is shown as Algorithm 1.

When search is started (i.e., no plan has been found), the algoulesithe goal distance functioB)(as its
heuristic in a standard best-first search. The other heuristicgrasegd in this first planning episode. This is motivated
by the fact that the goal is a hard condition that must be sadisfin some problems the other heuristics (that guide the

14

Algorithm 1 HPLAN-P’s search algorithm

1: function SEARCH-HPLAN-P(initial stateinit, goal formulagoal, a set of hard constraint€Constraints metric function
METRICFN, heuristic function $ERHEURISTIC)

2: frontier «— INITFRONTIER(init) > initialize search frontier
3 closed«

4: bestMetric—worst case upper bound
5: HEURISTICFN <+ G
6.

7

8

9

while frontier is not emptydo
current«— Best element fronfrontier according to HURISTICFN
if =CLOosED?(current,closed and current satisfieshConstraintshen

: if METRICBOUNDFN(current) < bestMetricthen > pruning by bounding
10: if current satisfiegyoal and its metric is< bestMetricthen
11: Output plan focurrent
12: if this is first plan foundhen
13: HEURISTICFN «+ USERHEURISTICFN
14: frontier < INITFRONTIER(init) > search restarted
15: ReinitializeclosedList
16: end if
17: bestMetric— METRICFN(current)
18: end if
19: succ— successors afurrent
20: frontier — mergesuccinto frontier
21: closed«— closedu{current}
22: end if
23: end if

24: end while
25: end function

planner towards achieving a preferred plan) can conflict withexiing the goal, or might cause the search to become
too difficult.

After finding the first plan, the algorithm restarts the search frontaeraut this time it uses some combination of
the above heuristics to guide the planner towards a preferredlatlseRHEURISTIC() denote this combination.
UserRHEURISTIC() could be any combination of the above heuristic functioreue\theless, in this paper we consider
only a small subset of all possible combinations. In particwle consider onhprioritized sequences of heuristics,
where the lower priority heuristics are used only to break tieserhigher priority heuristics.

Since achieving the goal remains mandatorgeBHEURISTIC() always uses$s as the first priority, together with
some of the other heuristics at a lower priority. For examplesitter the prioritization sequen&D(0.3)0. When
comparing two states of the frontier, the planner first looks @i@Hunction. The best state is the one with lower
G value (i.e., lower distance to the goal). However, if there igathen it use®(0.3) (the best state being the one
with a smaller value). Finally, if there is still a tie, it usé® function to break it. In Section 5, we investigate the
effectiveness of several such prioritized heuristics sequences

4.2.1 Pruning the Search Space

Once we have completed the first planning episode (uSihg/e want to ensure that each subsequent planning
episode yields a better plan. Whenever a plan is found, itomily be returned if its metric is lower than that of the
last plan found (line 10).

Moveover, in each episode we can use the metric value of théopisdy found plan to prune the search space, and
thus improve search performance. In each planning episode, thetlahy prunes from the search space any ndde
that we estimate cannot reach a better plan than the best plad & far. This estimate is provided by the function
METRICBOUNDFN(), which is given as an argument to the search algorithmETiMcBOUNDFN(N) must compute
or estimate a lowerbound on the metric of any plan extenbling

Pruning is realized by the algorithm in line 9, when the conditiotheif becomes false. As the valuelzéstMetric
gets updated (line 17), the pruning constraint imposes a tipotend causing more partial plans to be rejected.

The O andB heuristic functions defined above are well-suited to be usederxRMBOUNDFN(). Indeed, we tried
both of them in our experiments. On the other hand, it is alspk to “turn-off” pruning by simply passing a null

15

function as METRICBOUNDFN().

4.2.2 Discarding Nodes in Closed List

Under certain conditions, our algorithm will also prune nodes tevisit a plan state that has appeared in a previ-
ously expanded node. This is done for efficiency, and alloesatgorithm to avoid considering plans with cycles.

The algorithm keeps a list of nodes that have already been dgpan the variablelosed just as in standard
best-first search. Furthermore, whamnrentis extracted from the search frontier, its state is checked aghmset of
closed nodes (line 8). If there exists a node in the closed list thig same state and a better or equal heuristic value
(i.e., GQLoseD?(current closed is true), then the nodeurrentwill be pruned from the search space.

Note that for two states to be identical in the compiled plagrinstance every boolean predicate has to coin-
cide and, moreover, values assigned to each ground functiorhalge to coincide. In particular, this means that
is-violated counters in two identical states are also identical, i.e.pteéerences are equally satisfied. Neverthe-
less, two search nodes with identical states can still bgr@edidifferent heuristic values. Given the way we have
defined WLERHEURISTIC(), different heuristic values will be assigned to nodes witntital states only when the
metric function depends oftotal-time). If the (total-time) function appears positively in the metric (i.e., the
metric is such that for otherwise equally preferred plans, longes @ne never preferred to shorter ones), then dis-
carding of nodes cannot prune any node that leads to an optiamal\e discuss this further in the next section.

Finally, note that the cycles we are eliminating are thosedbaitir in the compiled instanceotthose occurring in
the original instance. Indeed, in the original instance theghtrbe LTL preferences that can be satisfied by visiting
the same state twice. For example consider the preferemeatually turn the light switch on and sometime after turn
it off. Any plan that contains the actidtrn-onimmediately followed byurn-off satisfies the preference but also visits
the same state twice. In our compiled domains however sudmanll not produce a cycle, and therefore will not be
pruned. This is because the set of current states of the prefegseutematon—represented by the automata domain
predicates—changes when performing those actions; indeedngels from a non-accepting state to an accepting
state.

4.3 Properties of the Algorithm

In this section we show that under certain conditions our seal@brithm is guaranteed to retuoptimal and
k-optimal plans. We will prove this result without imposing any restrintion the USERHEURISTIC() function. In
particular, we can still ensure optimality even if this funatis inadmissible. In planning this is important, as inad-
missible heuristics are typically required for adequate seandhrp@ance.

The first requirement in our proofs is that the pruning performed bylgwithm issound

Definition 6 (Sound Pruning) The pruning performed by Algorithm 1 soundiff whenever a nodeN is pruned
(line 9) the metric value of any plan extendiNgexceeds the current boubdstMetric

When Algorithm 1 uses sound pruning, no state will be incorrgmtiyned from the search space. That is, nNde
not pruned from the search space if some plan extending it caav@caimetric-value superior to the current bound.
To guarantee that the algorithm performs sound pruning it suffacesavide a lowerbound function as input to the
algorithm.

Theorem 7. If METRICBOUNDFN(N) is a lower bound on the metric value of any plan extending Nn tAlgo-
rithm 1 performs sound pruning.

Proof. If nodeN is notin closed and is pruned from the search space thengarRMBOUNDFN(N) > bestMetric If
METRICBOUNDFN() is a lower bound on the metric value of any plan extendinthen (b) METRICBOUNDFN(N) <
M(N,) for any solution nodéN, extendingN. By putting (a) and (b) together we obtain thalifis not in closed and
it is pruned, theM (Np) > bestMetri¢ for every solution nod&l, extendingN, i.e., pruning is sound. O

As proven previously in Section 4.1, if the metric function is NBlV O andB will both be lower bound functions,

16

and therefore provide sound pruning. Notice also that “turningmfiining by having METRICBOUNDFN() return a
value that is always less théwestMetri¢ also provides sound pruning.

The second requirement for optimality has to do with the disoardf closed nodes performed in line 8. To preserve
optimality, the algorithm must not remove a node that can leadglan that is more preferred than any plan that can
be achieved by extending nodes that are not discarded. Formally

Definition 8 (Discarding of Closed Nodes Preserves Optimalififie discarding of nodes by Algorithm 1 preserves
optimality iff for any nodeN that is discarded in line 8, there is either already an optimder(@e., plan)\o in the
closed list or there exists a notlein frontier that can be extended to a plan with optimal quality.

The condition defined above holds when using NDVPL metricseurfigrly general conditions. In particular, it
holds for any NDVPL metric that is independent(@otal-time). It also holds if the NDVPL metric depends on
(total-time), andO or Bis used as a first tie breaker aft@or P in USERHEURISTIC(). Finally, it will hold if D is
used as the first tie breaker for NDVPL metric functions thateaiditive on total-time

Definition 9 (Additive on total-time (ATT)) A metric functionM is additive on total time (ATT) iff it is such that
M(N) = Mp(N) + M1 (N), whereMp(N) is an expression that does not mention the functiostal-time), and
M+ (N) is an expression whose only plan-dependent functighdsal-time).

Intuitively, an ATT metric is a sum of a function that only depsmh theis-violated functions, and a function
that includeqtotal-time) but does not include anis-violated functions. Now we are ready to state our result
formally.

Theorem 10. The discarding of nodes done by Algorithm 1 preserves ofitymiithe Algorithm performs sound
pruning, the metric function M is NDVPL and:
(1) Mis independent dftotal-time), or
(2) M is dependent oftotal-time) and O or B are used as the first tie breaketiisERHEURISTIC() after G or
P, or
(3) Mis ATT and D is used as the first tie breaketdlsERHEURISTIC() after G or P.

Proof. See Appendix.

An important fact about sound pruning is that it never prunesy@tplans from the search space, unless another
optimal plan has already been found. An important consequdtbédact, is that the search algorithm will be able
to find optimal plans under fairly general conditions. Our firgufesays that, under sound pruning, optimality is
guaranteed when the algorithm terminates.

Theorem 11. Assume Algorithm 1 performs sound pruning, and that its rdisiearding preserves optimality. If it
terminates, the last plan returned, if any, is optimal.

Proof. Each planning episode has returned a better plan, and thetatgatiops only when the final planning episode
has rejected all possible plans. Since the algorithm neveeprandiscards a node that can be extended to an optimal
unless an optimal plan has already been found then no plam tiettethe last one returned exists. O

Theorem 11 still does not guarantee that an optimal solutidhbeifound because the algorithm might never
terminate. To guarantee this we must impose further conditioatsréestrict the explored search space to be finite.
Once we have these conditions, optimality is easy to prowedgime search must eventually terminate.

Theorem 12. Assume the following conditions hold:
(1) The initial value of bestMetric (worst case upper boundjigorithm 1 is finite;

17

(2) The set of cycle-free nodes N such the#TRICBOUNDFN(N) is less than the initial value of bestMetric is
finite;
(3) Algorithm 1 performs sound pruning;
(4) Node discarding in Algorithm 1 preserves optimality.
Then Algorithm 1 is guaranteed to find an optimal plan, if orists.

Proof. Each planning episode only examines nodes with estimatedcrvalue—given by METRICBOUNDFN—
that is less thatestMetric By assumption 2, this is a finite set of nodes, so each episag# complete and the
algorithm must eventually terminate. Now the result follows fronedrem 11. O

In Theorem 12, condition 1 is satisfied by any implementatiathefalgorithm that uses a sufficiently large number
for the initial value ofbestMetric Moreover, Theorem 7 shows how condition 3 can be satisfiedTaedrem 10
shows how condition 4 can be satisfied. Condition 2, howesaan, sometimes be falsified by a PDDL3 instance.
In particular, the metric function can be defined in such a way iteatalueimprovesas the number of violated
precondition preferences increases. Under such a metric funti@opléans’ metric values might improve without
bound as the plan length increases. This would mean that thberof plans with metric value less than the intitial
bound bestMetri¢ becomes unbounded, and condition 2 will be violated. Weawaid cases like this when the metric
function isbounded on precondition preferences

Definition 13 (BPP metrics) Let the individual precondition preferences for a planning ins¢d® bel”, and letU
denote the initial value dfestMetric A metric function isbounded on precondition preferend®&PP) if there exists
a valuer; for each precondition preferenpee I such that in every nodd with METRICBOUNDFN(N) < U, p; is
never violated more than times.

BPP metrics are such that the-violated functions are always smaller than a fixed bound in every node with
metric value lower thaktl. This property guarantees that there are only a finite number p§ pléh value less than
U, and ultimately enables us to prove another optimality result

Corollary 14. Assume that the metric function for planning instance P i® BRd assume conditions 1, 3, and 4 in
Theorem 12 hold. Then Algorithm 1 finds an optimal plan for P.

Proof. We need only prove that the set of nodésvith METRICBOUNDFN(N) < bestMetricis finite. This will
satisfy condition 2 and allow us to apply Theorem 12. The BPRIitiom ensures that each precondition functfmn

in N can only have a value in the rangerPdor some fixed valueg;). Since the precondition functions are the only
functions in the planning instance (the remaining elementse$tate are boolean predicates), this means that only a
finite number of different states can have this property. O

Note that the NDVPL property, which we could use to satisfy ctodi(4) in Theorem 12¢oes notimply nec-
essarily the BPP property. As an example suppose a domain plrerPref is a precondition preference, and
goalPrefl andgoalPref2 are final-state preferences. Assume we are using faaction as METRICBOUNDFN
and that the metric for a nodeis defined as:

M(N) = is-violated(goalPref1,N)*is-violated(precPref,N)+is-violated(goalPref2,N). (2)

M is clearly NDVPL since it cannot decrease as plans violate mategnces. Howevel does not necessarily
increaseas more preferences are violated, which can lead to situationsiaghwe have an infinite set of goal nodes
with the same metric value. Indeed, assymelPref2 is an unreachable preference that cannot be detected by the
relaxed graph (i.e., it is such that it won't be detected by Binounding function). Moreover, assume the planner
has found a node that satisfigsalPref1. AssumingprecPref can be violated by some action in the planning
instance, there might be infinite plans that could be genethtgd/iolateprecPref repeatedly while still satisfying

18

goalPrefl. Because thes-violated functions are represented within the state, those plans caaredinbinated
by the algorithm since they will not produce cycles.

The BPP and NDVPL properties are quite natural conditions on tigierfunction. Indeed, it is reasonable to
assume that violated preferences are undesirable. Hence, ahplald ecome (arbitrarily) worse as the number of
preferences it violates becomes (arbitrarily) larger. Such a projsestfficient to guarantee both the NDVPL and the
BPP conditions. Thadditivefamily of metric functions satisfies both conditions, and iésined as follows.

Definition 15 (Additive metric function) A PDDL3 metric function isadditive if it has the formM = 3! ;¢ x
is-violated(p;), wherec; > 0.

Remark 16. Additive metric functions satisfy the NDVPL condition and sétithe BPP condition when K-
RICBOUNDFN is eitherB or O.

Additive metric functions were used in all of the problems in thalgative preference track of IPC-5. Therefore,
our algorithm—when usin@ or B for pruning—is guaranteed to find an optimal solution for thes®lgros, given
sufficient time and memory. In practice, however, due to resiristiof time and memory, the algorithm finds the
optimal solution only in the most simple problems. On the olakger problems it returned the best plan its completed
planning episodes found in the time alloted.

4.3.1 k-Optimality

Instead of searching for an optimal plan among the set of altly@hns, one might be interested in restricting
attention to a subset of the valid plans. For example, theghinide resource usage limitations that might further
constrain the set of plans that one is willing to accept. Thighinbe the case when a shift worker cannot be asked
to work more than one overtime shift in three days, or a plane cdagahore than a certain number of continuous
kilometers. If the set of plans one is interested in can be chaiaet by a temporally extended property, it suffices
to add such a property to the set of hard constraints. The optymnefiults presented above, will allow the planner to
find the optimal plan from among the restricted set of plans, regssdif the property used.

For some interesting properties, however, we can find optinaalpinder weaker conditions on the metric function
than those required in the general case above. This is the cagxafople, when we are interested in plans whose
length is bounded by a certain value.

Several existing preference planners are able to find plans thaptineabamong the set of plans with restricted
length or makespan. For example,lRR (Bienvenu et al., 2006) when given a bouqid able to find an optimal plan
among those with lengtk or less. Similarly, both the system by Brafman and Chernyavsk95pand 3TPLAN-P
(Giunchiglia and Maratea, 2007) return optimal plans amongetipdens of makespam wheren is a parameter. It
should be noted, however, that such plans need not be gtalg@lmal. That is, there could be plans of longer length
or makespan that have higher value than the plan returned bg #ystems. Our algorithm, on the other hand, can
return the globally optimal plan under conditions describeul/ablf we are interested, however, in plans of restricted
length then our algorithm can retukroptimal plans under weaker conditions.

Definition 17 (k-optimal plan) A plan isk-optimaliff it is the optimal among the set of plans of lengtk k.

To achievek-optimality, we force the algorithm to search in the space of plamsse length is smaller than or equal
to k, by imposing an additional hard constraint that restricts thgtkeof the plan.

Theorem 18. Assume Algorithm 1 uses sound pruning, and that the settiafl imard constraints contains the formula
(total-time) < k. Then, the returned plan (if any) is k-optimal.

Proof. Since the space of plans of length upkt@s finite, each planning episode will terminate with an impbve

plan (if any exists). Because of sound pruning, no node can beglyrpruned from the search space. Hence, the last
returned plan (if any) is optimal. O

19

Note that this result does not require restrictions on the metrictium such as condition 2 in Theorem 12. Thus,
this result is satisfied by a broader family of metric functiorantthose that satisfy Theorem 12; for example, it is
satisfied when using NDVPL metrics such as the one in Equation 2

5 Implementation and Evaluation

We have implemented our ideas in the plannerLl¥-P. HRLAN-P consists of two modules. The first is a pre-
processor that reads PDDL3 problems and generates a planniigmneiih only simple preferences expressed as a
TLPLAN domain. The second module is a modified version of TA# that is able to compute the heuristic functions
and implements the algorithm of Section 4.

Recall that two of the key elements in our algorithm are the tii@aruning strategy and the heuristics used for
planning. In the following subsections we evaluate the effengss of our planner in obtaining good quality plans
using several combinations of the heuristics. As a testbedyseehe problems of the qualitative preferences track
of IPC-5, all of which contain TEPs. The IPC-5 domains are compa$ddo transportation domains: PP and
trucks, a production domairmpenstacks, a domain which involves moving objects by using machineteuseveral
restrictions:storage, and finally, rovers, which models a rover that must move and collect experimentsnifme
details, we refer the reader to the IPC-5 booklet (Dimopoulos,&@06)). Each domain consists of 20 problems. The
problems in thetrucks, openstacks, androvers domains have hard goals and preferences. The remaining problems
have only preferences. Preferences in these domains imposetintgrestrictions on plans, and usually there is no
plan that can achieve them all.

At the end of the section, we compare our planner against tiex ptanners that participated in IPC-5. The results
are based on the data available from IPC-5 (Gerevini et al., 2006)w@wmaivn experiments.

5.1 The Effect of Iterative Pruning

To evaluate the effectiveness of iterative pruning we compdredpéerformance of three pruning functions: the
optimistic metric ©O), the best relaxed metriB), and no pruning at all. From our experiments, we conclude that mo
of the time pruning can only produce better results than no pgyind that, overall, pruning witB usually produces
better results than pruning with.

To compare the different strategies, we ran all IPC-5 problems@idimd no pruning, with a 30-minute timeout.
The heuristics used in these experiments were the four top-perfgpstretegies on each domain, under pruning with
B.

The impact of pruning varies across different domains. In three efdtimains, the impact of pruning is little.
In the storage and TPP domains, pruning has no effect, in practice. In theers domain, the impact is slimO
performs as good a does, and no pruning, on average, produces solutions with &0 ease on the metric.
An increased impact is observed in tiracks domain, where the top-performing heuristics improve the metricef th
first plan found by 30.60% und& pruning, while unde© pruning the metric is improved by 28.02% on average,
and under no pruning by 21.33% on average. Finally, the graaipstt can be observed on tbpenstacks domain.
Here,B produces 13.63% improvement on average, while both no prunigigpaming withO produce only 1.62%
improvement.

In general, pruning has a noticeable impact when, during seaozamn be frequently proven that certain preferences
will not be satisfied. In the case of tlgenstacks domain for example, most preferences require certain products
(which are associated wittrderg to bedelivered On the other hand, the goal usually requires a number of orders to
beshippedTo ship an order one is required to start the order, and then shiputever, to deliver a product associated
with ordero, one needs tmakethe product afteo has been started and before theas been shipped. Thus, whenever
an ordero is shipped, thé function automatically regards as unsatisfiable all preferefzdrivolved the delivery
of an unmade product associated withThis occurs frequently in the search for plans for this domain. ifttial
solution, which ignores preferences, produces a plan witmake-productctions. As the search progresses, states
that finish an order early are constantly pruned away, which infamours addingnake-productctions.

20

Domain 1Plan | >1Plan Best heuristics Worst heuristics
openstacks | 18 14 BP[13.77], DO(1)[13.63],| D(0)B[7.56], forr € {0.01,0.05,0.1}:
DB(1)[13.63], BD(1)[13.63], B[13.63] | DO(r)[7.63] and DB()[7.63]
trucks 5 4 D(0)0[30.68], OD(0)[30.68] PB[5.35], OPJ[5.35], PO[5.35]
0[12.02]
storage 16 9 BO[37], OBJ[37], B[37], O[37],| PO[21.04], PB[21.04], BP[24.18],
BD(0.05)[35.62], 0OD(0.05)[35.55]| OP[24.18]
BD(0)[35.42]
rovers 11 9 D(0.1)O[17.15], D(0.1)B[17.15], BP[6.97], OPJ[7.16], B[10.85]
D(0.3)B[16.91], D(0.3)0[16.91], OBJ[10.85], BO[10.85], O[10.85]
0(0.01)D[16.47], O(0.05)D[16.47]
TPP 20 20 0[40.32],B0O[32.02],B[32.02],0B[33.97]for r < 09 BD(r)[9.03],
0D(0.9)[10.98]

Table 1

Performance of different heuristics in the problems ofGhalitative Preferencesack of IPC-5. The second column shows the
number of problems where at least one plan was found. The, 8itiows how many of these plans were subsequently improved
upon by the planner. The average percent metric improvementhe first plan found is shown in square brackets.

A side effect of pruning is that it can sometimes prove (when timglitions of Theorem 11 are met) that an optimal
solution has been found. Indeed, the algorithm stops on mokedfilmplest problems across all domains (therefore,
proving it has found an optimal plan). If no pruning was used thecbeaould generally never terminate.

5.2 Performance of Heuristics

To determine the effectiveness of various prioritized heurigtipiences (Section 4.1) we compared 42 heuristic se-
guences usinB as a pruning function, allowing the planner to run for 15 minutes each of the 80 IPC-5 problemin-
stances. All the heuristics h&las the highest priority (therefore, we or@ifrom their names). Specifically, we exper-
imented withO, B, OP, PO, BP, PB, andBD(r), D(r)B, OD(r), D(r)Ofor r € {0,0.01,0.05,0.1,0.3,0.5,0.7,0.9,1}.

In general, we say that a heuristic is better than another if ilyres plans with better quality, where quality is
measured by the metric of the plans. To evaluate how good a tieusiswe measure the percent improvement of
the metric of the last plan found with respect to the metric of tret filan found. Thus, if the first plan found has
metric 100, and the last has metric 20, the percent improvem80a#4s Since a first plan is always found usi@gits
metric value is always the same, regardless of the heuristic m@seh Hence this measure can be used to objectively
compare performance.

Table 1 shows the best and worst performing heuristics in eactealdmains tested. In many domains, several
heuristics yield very similar performance. Moreover, we concliiég the heuristic functions that use the relaxed
graph are key to good performance. In all problems, §&vB, the heuristics that used the relaxed graph had the best
performance. The case ®PP is pathological in the qualitative preference track. Howeveonuooking at the actual
plans traversed during the search we observed that it is not thele® is agoodheuristic for this problem, indeed
O is almost totally blind since in most stat€sis equal to 0. Rather, it turns out that heuristics based on thre@
graph argpoor in this domain, misguiding the search. In Section 6, we expaanarios in which our heuristics can
perform badly, and give more details on wih{?P is one of these cases.

5.3 Comparison to Other Approaches

We entered HPAN-P in the IPC-5Qualitative Preferencesrack (Gerevini et al., 2006), achieving 2nd place
behind SGPlan(Hsu et al., 2007). Despite HRN -P’s distinguished standing, SGPi&performance was superior
to HPLAN-P’s, sometimes finding better quality plans, but generallyisg more problems and solving them faster.
SGPlag'’s superior performance was not unique to the preferences trackdag@®minated all 6 tracks of the
IPC-5satisficing plannecompetition. As such, we conjecture that their superior perface&an be attributed to the

21

partitioning techniques they use, which are not specific torptay with preferences, and that these techniques could
be combined with those of HRN-P. This is supported by the fact that HiN-P has similar or better performance
than SGPlagon simple planning instances, as we see in experiments shda end of this section.

HPLAN -P consistently performed better tharps-sbD (Edelkamp et al., 2006) andliPs-xxL (Edelkamp, 2006);
HPLAN-P can usually find plans of better quality and solve many mooblpms.MIPS-BDD and MIPS-XXL use
related techniques, based on propositionathd automata, to handle LTL preferences. We think that part of ou
superior performance can be explained because our compilaiesribt ground LTL formulae, avoiding blowups,
and also because the heuristics are easy to compute. For exanmys-xxL andMIPS-BDD were only able to solve
the first two problems (the smallest) of tygenstacks domain, whereas HRAN - P could quickly find plans for almost
all of them. In this domain the number of preferences was tygidagih (the third instance already contains around
120 preferences). On the other hand, something similar occung éttdrage domains. In this domain, though, there
are many fewer preferences, but these are quantified. More detailsecibund on the results of IPC-5 (Gerevini
et al., 2006).

While we did not enter th&imple Preferencesack, experiments performed after the competition indicate that
HPLAN-P would have done well in this track. To perform a comparison, wetaplanner for 15 minuteson the
first 20 instance$ of each domain. In Table 2, we show the performance of A\RP’s best heuristics compared to
all other participants, in those domains on which all four pkns solved at least one problem. ENR -P was able
to solve 20 problems in all domains, excepicks, where it could only solve the 5 simpler instances (see Table 3
for details on thetrrucks domain). In the table, #S is the number of problems solved by apptoach, andRatiois
the average ratio between the metric value obtained by the plartjglanner and the metric obtained by our planner.
Thus, values over 1 indicate that our planner is finding betens, whereas values under 1 indicate the opposite. The
results for HRAN-P were obtained on an Intel(R) Xeon(TM) CPU 2.66GHz machine ngnhhinux, with a timeout
of 15min. Results for other planners were extracted from the IPC-&alffiesults, which were generated on a Linux
Intel(R) Xeon(TM) CPU 3.00GHz machine, with a 30 min. timeouerbry was limited to 1GB for all processes.

We conclude that SGPIartypically outperforms HPAN-P. SGPlag, on average, obtains plans that are no more
than 25% better in terms of metric value than those obtained PyaN-P. Moreover, in the most simple instances
usually HR.AN-P does equally well or better than SGRJdsee Table 3). HPAN-P can solve more instances than
those solved byvocharf®, mips-xxL and MIPs-BDD. Furthermore, it outperform¥ocharf> and MIPS-XXL in
terms of achieved plan quality. HRN-P’s performance is comparable to thatvaPs-BDD in those problems that
can be solved by both planners. Finally, we again observedhbadiest-performing heuristics in domains other than
TPP are those that use the relaxed graph, and, in particulaD tieuristic.

We ran a final comparison between SGRlamd HRAN-P on theopenstacks-nce domain (Haslum, 2007).
openstacks-nce is a re-formulation of the originabpenstacks simple-preferences domain that does not include
actions with conditional effects. These two domains are eisdigrequivalent in the sense that plans in one domain
have a corresponding plan with equal quality in the other. Thglt®are shown in Table 4. We observe that Wie-P
consistently outperforms SGPlaacross all instances of this domain, obtaining plans that smally at least 50%
better in quality. We also observe that the performance af4#RP is consistent across the two formulations, which
is not the case with SGPlan

6 Discussion

In previous sections, we proposed a collection of heuristicsdh@a be used in planning with TEPs and simple
preferences in conjunction with our incremental search algorithmour experimental evaluation we saw that in most
domains the heuristics that utilize the relaxed planning geaptthose that provide the best performance. Given the
limited number of domains in which we have had the opportuwitest the planner, it is hard—and might be even be
impossible—to conclude which is the best combination ofriséias to use. It is even hard to give a justified recipe

2 In IPC-5, planners where given 30 min. on a similar machine.
3 Only thepathways domain has more than 20 problems.

22

Domain HPLAN-P SGPlag Yochar® MIPS-BDD MIPS-XXL
#S | Ratio | #S | Ratio | #S Ratio #S Ratio #S Ratio

TPP 20 1 20| .78-.8 | 11 | 1.02-1.07] 9 | 0.94-0.99] 9 | 1.68-1.78
openstacks | 20 1 20 | .89-92| * * 2 2.5 18 | 6.45-6.81
storage 20 1 20| .74-76] 5 | 3.86-3.95| 4 1 4 15.41

pathways 20 1 20 T7 4 1.02 10 0.79 16 | 1.19-1.21

Table 2

Relative performance of HRAN -P’s best heuristics for simple preferences, comparedierdPC-5 participantfRatiocompares
the performance of the particular planner andWR-P’s. Ratio> 1 means HPAN -P is superior, and Ratia 1 means otherwise.
#S is the number of problems solved. “*” means the plannendiccompete in the domain.

for their use. However, some situations in which our heusgtierform poorly can be identified and analyzed. Below
we describe two reasons for potential poor performance.

The first reason for potentially poor performance is due to our ehoiiaising prioritized sequences of heuristics.
We have chosen the goal distar@do appear as the first priority to guide the planner towards satgsfyre must-
achieve goals for a pragmatic reason: the goal is the most inmpahiaig to achieve. However, this design decision
sometimes makes the search algorithm focus excessively oragbi@vement to the detriment of preference satis-
faction. This issue becomes particularly relevant when therénggeactions between the goal and the preferences.
Consider, for example, a situation in which a preferemcanonly be achieveafter achieving the goal. Furthermore,
assume the god is the conjunctionf, A f,, and assume that prior to achievipgne has to maké, false. In cases
like this, after the algorithm finds a plan for the goal, it can hafuhd a plan that also satisfigs When extending
any plan forg, the planner will always choose an action that does notioetd the subgoal, over an action that
invalidatesf,, if such an action is available. This is because the goahwulist G) of any search node in which is
false is strictly greater than the goal distance in which Hgtand f, are true. As a consequence, the algorithm will
have trouble achieving, and actually will only achieve when extending a plan fgrwhenno actionghat invalidate
f, are available. Unfortunately the only way of getting into suditaation implies exhausting the search space of
plans that extend a plan fgrwithout invalidatingg.

The second source for poor performance is the loss of structure ichwié incur by computing our heuristic
in a planning instance in which the action’s deletes (i.egatige effects) are ignored. The inaccurate reachability
information provided by this relaxation might significantly affehe performance of all our heuristics based on the
relaxed planning graph (i.&?, B, andD). Consider for example an instance in which there are no hard godlithere
are two preferencep; andp,. Assume further thap, is a preference that is rather easy to achieve from any state but
that has to be violated in order to achigwe Assume that we are in a state in whiphis satisfied bup; is not, and
in which we need to perform at least three actions to achieve jpo#nd p,. Let those actions ba, b, andc, such
thata makesp, false andp; true, and finally actioi followed by c reestablistp;, as shown in Figure 3. Moreover,
assume that actioais applicable ins, and that it leads tg,—a state from whichp; and p, can be reached by the
same sequence of three actions. BecausB theuristic is computed on the delete relaxatibrwill always prefer to
expands; instead ofs;. A relaxed solution ors, may achieve both preferences at depth 1, since the prefepgrise
already satisfied at depth 0. On the other hand, a relaxed@oluis,; may achieve both preferences at depth 2, since
in s; two actions are needed to reestablishOnce the algorithm expandg there could be another action applicable
in s, analogous te, that would steer the search away fregn

It is precisely a situation similar to that described above thakes the heuristics based on the relaxed graph
(especiallyD andP), perform poorly in thelT PP domain.TPP is a transportation problem in which trucks can move
between markets and depots transporting goods. A good can bdgtlte truck by performing bbad followed by a
store Stored goods can be unloaded from the truck performingndémad Once in a market, one haslioyan object
before it becomes ready to load. In problems of TP domain there is a preference that states that any good must
be eventually loaded on some trugl). On the other hand, there is a preference that states that alstshckild be
unloaded at the end of the plap,]. Once we have considered moving a truck to a market and boughtisénogood,
saygoodl, our plan prefix has achieveah but notp;. A reasonable course of action to achieve both preferences
would be toload good1 on the truck, followed by atore and followed by amunload However, the state that results

23

Instance Yocharf’®| mips-BDD | MIPS-XXL | SGPlag HPLAN-P

o | op(=0.5) | 0D(=0) | OD(=1)
TPP-01 22 16 16 16 16 16 16 16
TPP-02 36 24 24 24 24 24 24 24
TPP-03 24 29 29 29 29 29 29 29
TPP-04 45 35 35 35 39 35 35 42
TPP-05 103 89 223 79 | 103 79 87 105
TPP-06 133 110 275 101 | 120 118 114 120
TPP-07 124 126 322 100 | 124 135 135 135
openstacks-01 * 12 63 13 6 6 6 6
openstacks-02 * 12 63 16 4 4 4 4
openstacks-03 * ns 88 12 36 30 36 30
openstacks-04 * ns 98 26 47 44 45 49
openstacks-05 * ns 133 36 25 21 25 21
openstacks-06 * ns 133 33 21 18 21 18
openstacks-07 * ns 285 67 87 74 87 74
trucks-01 0 1 0 0 0 0
trucks-02 3 0 0 0 0 0
trucks-03 0 0 0 0 0 0
trucks-04 0 ns 0 3 1 3 4
trucks-05 1 ns ns 0 0 0 0 0
storage-01 6 18 5 3 3 3 3
storage-02 11 5 37 8 5 5 5 5
storage-03 49 6 158 14 6 6 6 6
storage-04 51 9 197 17 9 9 9 9
storage-05 165 ns ns 87 97 130 130 97
storage-06 ns ns ns 124 | 161 195 195 161
storage-07 ns ns ns 160 | 274 281 307 274
pathways-01 2 3 2 2 2 2 2
pathways-02 3 5 3 3 4 4 4
pathways-03 3 4.7 3 3 3.7 3.7 3.7
pathways-04 2 3 2 2 2 2 2
pathways-05 ns 7 10.2 6.5| 8.5 9 10.2 10.2
pathways-06 ns 8 12.9 10 | 12.9 12.9 12.9 12.9
pathways-07 ns 11 12.5 8| 125 12.5 12.5 12.5

Table 3

Plan quality (metric) of three of HRAN-P’s heuristics compared to the IPCStmple Preferencegarticipants on the simpler,
non-metric problems. “ns” means that the instance whatoloed by the planner. “*” means the planner did not competién
domain.

24

openstacks-nce openstacks
HPLAN-P HPLAN-P
Instance SGPlan SGPlan
o | op(5) | op() | op() o | op(5) | oD(O) | oD(L)
01 70 11 11 11 11 13 6 6 6 6
02 70 7 11 7 11 16 4 4 4 4
03 90 38 42 37 41 12 36 30 36 30
04 100 48 49 46 49 26 47 44 45 49
05 140 48 48 48 48 36 25 21 25 21
06 140 35 41 34 41 33 21 18 21 18
07 300 98 98 98 98 67 87 74 87 74
08 620 | 140 152 148 148 123 86 78 86 78
09 620 154 155 154 154 121 109 123 109 123
10 120 30 25 30 20 20 19 11 10 13
11 120 36 26 36 22 21 19 22 23 12
12 153 80 81 80 73 23 52 45 45 51
13 223 | 190 172 181 174 48 | 171 167 167 167
14 65 47 22 47 24 6 32 23 21 21
15 210 125 123 125 126 0 74 67 67 67
16 210 | 133 133 133 133 0 74 63 67 63
17 450 | 224 255 269 254 0 209 179 179 180
18 930 | 588 558 929 557 0| 557 464 464 493
19 1581 | 1581 1581 1581 1581 254 | 1581 1581 1581 1581
20 1348 | 1348 1348 1348 1348 424 | 1348 1348 1348 1348
openstacks-nce openstacks
Table 4
Metric values obtained by four of HRN-P’s heuristics and SGPlaron theopenstacks and openstacks-nce (Haslum, 2007)
domains.
{Pp1,~p2} {Pp1,—p2} {p1, P2}
) ()
b N c
a
{_'pb pZ}
o~ U7Pup2b o {pumP2y PP {PuPe)
(S3) N
2 ()), O
a b C

Fig. 3. A situation in which oub heuristics prefers a node that does not lead to the quickfaetiion of bothp; and p».

from performing doad s never preferred by the planner, since just like in Figurel@adinvalidatesp, while making

p. true. Instead, an action that preservespgh@roperty (e.g., duyof another good) is always preferred. This leads

the planner to consider all possible combinations of secg®thabuya good before considering@ad. Even worse,

after performing all possible buys, for a similar reason the seaeflens to use other truck to move to another market

to keep on buying products.

7 Related Work

There is a significant amount of work on planning with preferencasis related, in varying degrees, to the method
we have presented here. We organize this work into two groups:diestners that are able to plan with preferences
in non-PDDL3 preference languages or using soft goals; second, that focuses on the PDDL3 language. In the
rest of the section we review the literature in these two categjorie

7.1 Other Preference Languages

PPR.AN (Bienvenu et al., 2006) is a plannning system that exploitgnession to plan directly with TEPs using
heuristic search. In contrast to H&N -P, which is incremental, RRRN always returns an optimal plan whose length
is bounded by a plan-length parameter (i.e., k-gptimal). Unfortunately, PEAN uses an admissible heuristic that is
far less informative than the heuristics proposed here. As stisHar less efficient. The heuristic in BRN is similar
to ourO heuristic, and thus does not provide an estimate of the coshiexang unsatisfied preferences. IR was
developed prior to the definition of PDDL3 and exploits its ogqumlitative preference languagéPP, to define
preferencesLPP supports rich TEPs, including nested LTL formulae (unlike PDDaf)l rather than specifying a
metric objective function, thePP objective is expressed as a logical formulaLRR’s LPP language is an extension
and improvement over theP language proposed by Son and Pontelli (2004).

The HR.AN-QP planner (Baier and Mcllraith, 2007) was proposed as an answsame of the shortcomings
of PPLAN. It is an extension to the HRAN-P system, allowing planning fajualitative TEPs guided by heuristics
similar to those that have been proposed in this paper. Thererefelanguage is based oRAP, the language used by
PR.AN. HPLAN-QP guides the search actively towards satisfaction of prefesgfunlike PRAN), and like HR.AN -

P, guarantees optimality of the last plan found given suffiaiesources.

Also related is the work opartial satisfaction planning problem@SPs) (over-subscription planning) (van den
Briel et al., 2004; Smith, 2004). PSPs can be understood as mipdgproblem with no hard goals but rather a collec-
tion of soft goals each with an associated utility; actios® &lave costs associated with them. Some existing planners
for PSPs (Sanchez and Kambhampati, 2005; Do et al., 2007) arsnatemental and use pruning techniques. How-
ever in general, they do not offer any optimality guaranteeseRiy, Benton et al. (2007) developed an incremental
plannergBOP-LP, that uses branch-and-bound pruning for PSP planning, simitarttapproachssop-LpP is able to
offer optimality guarantees given sufficient resources. Howéweontrast to HPAN-P, it uses very different tech-
niques for obtaining the heuristics. To compute heuristicsst felaxes the original planning problem and creates an
integer programming (IP) model of this new problem. It then conmgpb®ristics from a linear-programming relax-
ation of the IP model. Lastly, Feldmann et al. (2006) proposear@r for PSPs that iteratively invokessWRic-FF
to find better plans.

Bonet and Geffner (2006) have proposed a framework for planningagtibn costs and costs/rewards associated
with fluents. Their cost model can represent PSPs as well afntipdespreferences subset of PDDL3. They propose
admissible heuristics and an optimal algorithm for plannindeurihis model. Heuristics are obtained by compiling a
relaxed instance of the problem to d-DNNF, while the algorithia msodification ofA*. The approach does not scale
very well for large planning instances, in part because of ieglrie employ an admissible heuristic.

Finally, there has been work that casts the preference-basedrgarblem as an answer set programming prob-
lem (ASP), as a constraint satisfaction problem (CSP), and asséiadaitity (SAT) instance. The paper by Son and
Pontelli (2004) proposed one of the first languages for preferersedh@anningPP, and cast the planning problem
as an optimization of an ASP problem. Thel language includes TEPs expressed in LTL. Brafman and Chernyavsk
(2005) proposed a CSP approach to planning with final-statetativgi preferences specified using TCP-nets. Addi-
tionally, Giunchiglia and Maratea (2007) proposed a compitatf preference-based planning problems into SAT.
None of these approaches exploits heuristic search and thusnalenfentally different form the approach proposed
here. The latter two approaches guide the search for a solutiongmsing a variable/value ordering that will attempt
to produce preferred solutions first. Because these works are rectsiproblem into a different formalism, they
explore a very different search space than our approach. Notehalisthe conversion to ASP, CSP or SAT requires
assuming a fixed bound on plan length limiting the approach best findingk-optimal plans.

26

7.2 IPC-5 competitors

Most related to our work are the approaches taken by the planradrsaimpeted in IPC-5, both because they used
the PDDL3 language and because many used some form of heueatchsYocharf® (Benton et al., 2006) is a
heuristic planner for simple preferences based on thePSapstem (van den Briel et al., 2004). Our approach is sim-
ilar to theirs in the sense that both use a relaxed graph to obtaéuristic estimaterocharf’® is also an incremental
planner, employing heuristics geared towards classical gbalsever, to compute its heuristic, it explicitly selects
a subset of preferences to achieve then treats this subset assigallgoal. This process can be very costly in the
presence of many preferences.

MIPS-XXL (Edelkamp et al., 2006) andiPs-BDD (Edelkamp, 2006) both uselBhi automata to plan with tem-
porally extended preferences. While the approach to compiliray dae TEPSs also constructs an automata (as in our
approach), their translation process generates grounded preféoemegae. This makes the translation algorithm
prone to unmanageable blow-up. Further, the search technigadsruboth of these planners are quite different from
those we exploitMIPs-xXL iteratively invokes a modified BTRIC-FF (Hoffmann, 2003) forcing plans to have de-
creasing metric valuestiPs-BDD, on the other hand, performs a cost-optimal breath-first searchdbatbt employ
a heuristic.

Finally, the winner of the preferences tracks at IPC-5, SGRldBu et al., 2007), uses a completely different ap-
proach. It partitions the planning problem into several subprobldt then uses a modified version fex to solve
those subproblems and finally integrates these sub-solutitma solution for the entire problem. During the integra-
tion process it attempts to minimize the metric function. S@iga not incremental, and seems to suffer from some
non-robustness in its performance as shown by the results givetbia Z (where its performance on an reformulated
but equivalent domain changes quite dramatically).

8 Conclusions and Future Research

In this paper we have presented a new technique for planningvatarences that can deal with simple preferences,
temporally extended preferences, and hard constraints. The citre tefchnique, our new set of heuristics and incre-
mental search algorithm, are both amenable to integration wittriaty of classical and simple-preference planners.
The compilation technique for converting TEPs to simple prefegsican also be made to work with other planners,
although the method of embedding the constructed automat#ilize here might need some modification, depen-
dent on the facilities available in that planner. Our metbbembedding the constructed automata utilized TAR'S
ability to deal with numeric functions and quantification. Irrtaular, TLPLAN's ability to handle quantification
allowed us to utilize the parameterized representation of thienemces generated by the compilation, leading to a
considerably more compact domain encoding.

We have presented a number of different heuristics for plannittypveferences. These heuristics have the feature
that some of them account for the value that could be achieveddrsatisfied preferences, while others account for
the difficulty of actually achieving these preferences. Ourhmétfor combining these different types of guidance is
quite simple (tie-breaking), and more sophisticated combinatid these or related heuristics could be investigated.
More generally, the question of identifying the domain featuresvlach particular heuristics are most suitable is an
interesting direction for future work.

We have also presented an incremental best-first search pladgorgran. A key feature of this algorithm is that
it can use heuristic bounding functions to prune the search shag®y its incremental planning episodes. We have
proved that under some fairly natural conditions our algoritlam generate optimal plans. It is worth noting that
these conditions do not require the algorithm to utilize adiissheuristics. Nor do they require imposing a priori
restrictions on the plan size (length or makespan) which wdldd/ahe algorithm to only achievk-optimality rather
than global optimality.

The algorithm can also employ different heuristics in each inergal planning episode, something we exploit
during the very first planning episode by ignoring the preferencdsoaty asking the planner to search for a plan
achieving the goals. The motivation for this is that we warieast one working plan in hand before trying to find
a more preferred plan. In our experiments, however, the remainimgipig episodes are all executed with one fixed

27

heuristic. More flexible schedules of heuristics could be itigated in future work.

Finally we have implemented our method by extending the TANPplanning system and have performed extensive
experiments on the IPC-5 problems to evaluate the effectiveffiess beuristic functions and search algorithm. While
no heuristic dominated all test cases, several clearly proadpdrior guidance towards good solutions. In particular,
those that use the relaxed graph in some way proved to be the ffexgive in almost all domains. Experiments
also confirmed the essential role of pruning when solving largblpms. HRAN-P scales better than many other
approaches to planning with preferences, and we attribute muittisc§uperior performance to the fact that we do
not ground our planning problems.

Although the proposed heuristics perform reasonably well in mdriiieobenchmarks we have tested, we have
identified cases in which they perform poorly. In some cases, congpbeuristics over the delete relaxation can
provide bad guidance in the presence of preferences. The resabfitome of the issues we have raised above open
interesting avenues for future research.

Acknowledgements

We gratefully acknowledge funding from Natural Sciences and Egging Research Council of Canada (NSERC)
and from the Ontario Ministry of Research and Innovation Early Resea Award. We also thank Christian Fritz for
helpful discussions during the development of our plannetthe anonymous reviewers for their useful feedback.

A Proof for Proposition 2

In this section we prove Proposition 2. First, we prove three intdiate results that will be used by the final proof.

The firstintermediate result says that if an NNF formglaverP is true in a stats (denoted as |= @), theng will
also be true in a relaxed staie ™, F) if every proposition that is true igis also true in such a relaxed state. This is
proven in the following lemma.

Lemma 19. Let P be a set of propositiong, be an NNF formula, and,&*,F~ C P be states. Then if|s- ¢, and
(F*,F~)is such that:

(1) (F*,F7) = p, for every pc s, and

(2) (F*,F7) = —p, for every pe <,
then(F™,F~) &= o.

Proof. The proof that follows is by induction on the structuregof

Base caseg(= p or ¢ = =p) They both follow directly from the conditions of this Lemma.

Induction We have the following cases

o if =y A&, thens= ¢ ands = €. By inductive hypothesis, alsg=",F~) = ¢ and(F*,F~) = &. It follows
from Definition 1 thatF*,F) |= ¢.

e if o=V &, then the proof is analogous to the previous case.

e if @ =Vx.y, then for everyo € Objswe have that |= /(x/0). By inductive hypothesis, for everye Objsthen
(F*,F7) E @(x/0), hence by Definition 1, we have thd& ", F~) = ¢.

e if ¢ = Ix.y, the proof is analogous to the previous case. 0

The final intermediate result is actually a version of Propasifidut for simple facts.

Lemma 20. Let s be a planning state,R (F,", Fy) (F;",F) -+ (Ft_1,Fn_1) (P, Fy) be the relaxed planning graph
constructed from s up to a fixed point. Moreover, lebe the state that results after performing a legal sequelfice o
actions @ - - a, in s, then there exists somekm such thatF,",F,”) = f, for every fe s, and such thatF,",F,”) =

—f for every fe <.

28

Proof. SinceR has been constructed to a fixed poif, ; = F; andF, ; = F,, andm > 0. Moreover, assume
that the set of states generated by performing the action segusecsis s;--- S, (i.e., states is generated after
performing the sequence of actioas - - a overs). The following proof for the lemma is by induction on the length
of the action sequenca,

Base Case (a= 0) We prove that in this case we can consiklet 0. In this case the sequence of actions performed
onsis empty. By definition of the construction B F,” = F;” = sandF, = F = <°. Let f be an arbitrary fact.

(1) f €s Then, by Definition 1(F.;",F") |= f, for k = 0 concluding the proof for this case.

(2) f €s°. Then, again by Definition 1, we obtajf,",F) & —f, fork=0.

Induction Let us assume that the theorem is truerier 1. We now prove that it is also true for We divide this
proof into four cases. Again, assurhés an arbitrary fact.

(1) f € syandf € s,_;. This case is trivial, since by inductive hypothesis we hénat tF.",F,) = f for some
k<m

(2) f €s,andf € s,_1. Again, by induction hypothesig,",F.) = —f for somek < m.

(3) f esyandf ¢ s,_1. Then,a, must have added fadtwhen performed irs,_;. We now prove that actioa, is
executable at some levigl < m— 1 of the relaxed graph, and that it will add fdcto the relaxed graph at level
kK+1<m

Let us assume that the precondition of actigtis ¢p and that the condition of the conditional effect that adds
f is ¢c. Then since both formulae are satisfiedin,, we have that

S1 = Pp A e (A1)

Moreover, by inductive hypothesis, we have that there exiktsiam such that
(Fe,Fe) E b for everyp € s,_1 (A.2)
(R, Fk, = -p, foreverype s ; (A.3)

At this point, we can safely assume also tklat: m, because ik’ were equal tan, then (A.2) and (A.3) also
hold fork’ = m— 1, because the graph has been constructed to a fixed point.

Now, we combine equations (A.2), (A.3), and (A.1) with Lemma 19 ¢adiude that(F; R,) = ¢p A
¢.. Action a, is therefore executable at leviél of the relaxed graph, and the conditigg, which enables the
conditional effect that add$ is also true at levek’. Therefore,f is added to the relaxed graph at lekek
k' +1 < m, concluding the proof for this case.

(4) f €s,andf € s,_;. Proof is analogous to previous case. O

Now we are ready to prove our result.

Proof. [Proof for Proposition 2] By Lemma 20, we know that there exists € m such that for eaclp € s,,
(R, Fo) E p and for eaclp € s° then(F", F.) = —p. Becauss, = @it follows from Lemma 19 thatF,", F.) = @.
O

B Proof for Theorem 10

Before we start our proof we prove a lemma which establishes thdgrithe conditions of Theorem 10, if two
nodes with exactly the same state have diffeBeiit, or O metric value, then their lengths must also differ analogously

Lemma 21. Let N, and N, be two search nodes that correspond to the same planning std&urthermore, let the
metric M of the instance be NDVPL and depend ootal-time). If R(N;) < R(N;), and:

(1) Ris either O or B, or

(2) MisATT and R is D.
thenlength(N;) < length(N,).

29

Proof. We divide the proof in two cases.
Case 1:Ris eitherO or B. ThenR(N;) = M(N;), whereN; is a hypothetical node with the sarhength asN; but in
which possibly more preferences are satisfied. AnalogoRéN;) = M(N5) for a nodeN; with the samé ength as
N,. Therefore,

M(Nj) < M(N3). (B.1)

Because the planning state associateditandN, are identical, we know that; andN; are such that they satisfy
exactly the same preferences, i.e.['ifis the set of preferences of the planning instance, fopatl ' we have
thatis-violated(p,N;) = is-violated(p,N5). Now, using the contra-positive of implication (2) in the NDVPL
definition (Def. 3) and Equation B.1, we have thaingth(N;) < length(N;). This implies thatlength(N;) <
length(N;), and concludes the proof for this case.

Case 2:RisD andM is ATT. BecauséM is ATT, then by Equation ID(N;) = M(N;) + Ry, whereR; is an expression
that does not depend @motal-time), i.e. itonly depends oM;’s state. LikewiseP(N;) = M(N;) + R, whereR,
only depends on the state Nf. Since both the states correspondind\NioandN, are equal, we have th&; = R.
Hence, becaudg(N;) < D(N,) we have thaM(N;) < M(N,), which by the contra-positive of implication (2) in the
NDVPL definition (Def. 3) implies thatength(N;) < length(N,). This concludes this case, finishing the prdof.

Now we are ready to prove our result. First, note that the searchtertexs from scratch after the first plan is
found. This also means that the closed list is reinitializestd®d, note that if two nodds; andN, have the same
state associated to them then both@@nd theP functions evaluated on these nodes return the same value. Tigerefo
if USERHEURISTIC(N;) < USERHEURISTIC(Ny), then this means that the tie breaker functions usedRs&ysuch
thatR(N;) < R(N) whereRis eitherO, B or D.

The sketch of the proof is as follows. We assume that a mbtleat leads to an optimal plan is discarded by the
algorithm. Then we prove that if this happens then either thiengh was found or there is a node in the frontier that
can be extended to another optimal plan.

Assume there exists an optimal plen= a;a, - - - a, that traverses the sequence of stages - - s,. LetN; be a node
formed by applyingp; onsy. Because the metric is NDVPL, we assume that this plan cantaircycles (otherwise,
had the plan contained any cycles, by removing them we coulthake it worse). Suppose further that at some point
in the search, there is a nodiethat is generated by applyira, - - - a; in the initial state (withj < n) and that is
discarded by the algorithm in line 8. This means that there aisbther closed node, shly that is associated the
same state a¥, and that is such that

USERHEURISTIC(N:) < USERHEURISTIC(N). (B.2)

Both nodes are associated the same stateence theis-violated counters are identical for each preference. This
means thal\c is constructed frongy by a sequence of actiofigb, - - - b,. This sequence of actions gets to the same
states;, hence the sequenge = b;b,---baj,1---a, is also a plan.
Let N, be a node that would be constructed by applymgn s,. Now we prove thalN, also corresponds to an
optimal plan. We have two cases.
Case 1:The metric depends oftotal-time). Because the Inequality B.2 implies tHR(iNc) < R(N), whereR is
eitherO, D or B, by Lemma 21, we have thaength(Nc) < length(N), and thereforé < j. We clearly have that
length(N;) < length(N;), furthermore because all precondition counters are identicallotfe from the NDVPL
condition thatM(N;) < M(N;). Given thatN; represents an optimal plan, we conclude tk&N,) = M(N;), and
thereforeN, also represents an optimal plan.
Case 2:The metric does not depend ¢rotal-time). Therefore, because noble reaches the same stateNysdoes
andM only depends on properties encoded in the sMt®&;) = M(N,) and hencé\, also represents an optimal plan.
This concludes case 2.
Now, we know that sincéc, a predecessor dfl, was expanded by the algorithm, one of the following things
happen:
(1) A successor dfic is in frontier. In this case, the condition of Def. 8 follows immediately.
(2) N;isin the closed list. This implies that the condition of Defs&lso satisfied.

30

(3) A successor olN: has been discarded by the algorithm. In this case, such a soced¢ss leads to an optimal
plan. This means that we could apply the same argument irptbi for such a node, leading to eventually
satisfy the condition of Def. 8 since the algorithm has visitaddly many nodes.

References

Bacchus, F., Kabanza, F., 1998. Planning for temporally eiegmgoals. Annals of Mathematics and Artificial Intel-
ligence 22 (1-2), 5-27.

Baier, J. A., Mcllraith, S. A., 2006. Planning with first-order tgonally extended goals using heuristic search. In:
Proceedings of the 21st National Conference on Artificial Irgefice (AAAI). Boston, MA, pp. 788—-795.

Baier, J. A., Mcllraith, S. A., 2007. On domain-independentrtgties for planning with qualitative preferences. In:
7th Workshop on Nonmonotonic Reasoning, Action and Chang&A@yR

Benton, J., Kambhampati, S., Do, M. B., July 2006. YocharfP3DL3 simple preferences and partial satisfaction
planning. In: 5th International Planning Competition BooKIBXC-2006). Lake District, England, pp. 54-57.

Benton, J., van den Briel, M., Kambhampati, S., September.28thybrid linear programming and relaxed plan
heuristic for partial satisfaction problems. In: Proceedingshef 17th International Conference on Automated
Planning and Scheduling (ICAPS). Providence, RI, pp. 34—41.

Bienvenu, M., Fritz, C., Mcllraith, S., 2006. Planning with tjteive temporal preferences. In: Proceedings of the
10th International Conference on Knowledge Representation aaddRing (KR). Lake District, England, pp.
134-144.

Blum, A., Furst, M. L., 1997. Fast planning through planningafranalysis. Artificial Intelligence 90 (1-2), 281-300.

Bonet, B., Geffner, H., 2001. Planning as heuristic searchfiéidi Intelligence 129 (1-2), 5-33.

Bonet, B., Geffner, H., 2006. Heuristics for planning with péea and rewards using compiled knowledge. In:
Proceedings of the 10th International Conference on KnowledgeeRentation and Reasoning (KR). pp. 452—
462.

Brafman, R., Chernyavsky, Y., June 2005. Planning with goal peates and constraints. In: Proceedings of the 15th
International Conference on Automated Planning and Sched(i@®PS). Monterey, CA, pp. 182—-191.

Coles, A. I., Smith, A. J., February 2007. Marvin: A heuristic shgotanner with online macro-action learning.
Journal of Artificial Intelligence Research 28, 119-156.

Delgrande, J. P., Schaub, T., Tompits, H., June 2004. Donpeioiftc preferences for causal reasoning and planning.
In: Proceedings of the 14th International Conference on AutonflEthing and Scheduling (ICAPS). Whistler,
Canada, pp. 63-72.

Dimopoulos, Y., Gerevini, A., Haslum, P., Saetti, A., Juh0BOThe benchmark domains of the detrministic part of
ipc-bhttp://zeus.ing.unibs.it/ipc-5/.

Do, M. B., Benton, J., van den Briel, M., Kambhampati, S., 260&nning with goal utility dependencies. In: Proceed-
ings of the 20th International Joint Conference on Artificial ligeince (IJCAI). Hyderabad, India, pp. 1872—-1878.

Edelkamp, S., July 2006. Optimal symbolic PDDL3 planninghwIPS-BDD. In: 5th International Planning Com-
petition Booklet (IPC-2006). Lake District, England, pp. 31-33.

Edelkamp, S., Hoffmann, J., 2004. PDDL2.2: The language ferctassical part of the 4th international planning
competition. Tech. Rep. 195, Computer Science Departmemetsity of Freiburg.

Edelkamp, S., Jabbar, S., Naizih, M., July 2006. Large-soptémal PDDL3 planning with MIPS-XXL. In: 5th
International Planning Competition Booklet (IPC-2006). Laketiiy England, pp. 28—-30.

Feldmann, R., Brewka, G., Wenzel, S., July 2006. Planning pitoritized goals. In: Proceedings of the 10th Inter-
national Conference on Knowledge Representation and Reas@{®). Lake District, England, pp. 503-514.

Fikes, R., Nilsson, N. J., 1971. STRIPS: A new approach to tipdicgtion of theorem proving to problem solving.
Artificial Intelligence 2 (3/4), 189—-208.

Fox, M., Long, D., 2003. PDDL2.1: An extension to PDDL for exgsimg temporal planning domains. Journal of
Artificial Intelligence Research 20, 61-124.

Gazen, B. C., Knoblock, C. A., September 1997. Combining#tpressivity of UCPOP with the efficiency of graph-
plan. In: ECP97. Toulouse, France, pp. 221-233.

31

Gerevini, A., Dimopoulos, Y., Haslum, P., Saetti, A., July0BO5th International Planning Competitianttp://
zeus.ing.unibs.it/ipc-5/.

Gerevini, A, Long, D., 2005. Plan constraints and preferenceRBidL3. Tech. Rep. 2005-08-07, Department of
Electronics for Automation, University of Brescia, Brescia,Jital

Giunchiglia, E., Maratea, M., 2007. Planning as satisfigbiiith preferences. In: Proceedings of the 22nd AAAI
Conference on Artificial Intelligence (AAAI). Vancouver, British @mbia, pp. 987-992.

Haslum, P., 2007. Openstacks SP-NCE domain.

URL http://users.rsise.anu.edu.au/~patrik/ipc5.html

Hoffmann, J., 2003. The Metric-FF planning system: Translatiggoring delete lists” to numeric state variables.
Journal of Artificial Intelligence Research 20, 291-341.

Hoffmann, J., Nebel, B., 2001. The FF planning system: Fast generation through heuristic search. Journal of
Artificial Intelligence Research 14, 253-302.

Hsu, C.-W., Wah, B., Huang, R., Chen, Y., January 2007. Consfpaititioning for solving planning problems with
trajectory constraints and goal preferences. In: Proceedings @0thdnternational Joint Conference on Artificial
Intelligence (IJCAI). Hyderabad, India, pp. 1924-1929.

McDermott, D. V., 1996. A heuristic estimator for means-enddyaigin planning. In: AIPS96. pp. 142—-149.

McDermott, D. V., 1998. PDDL — The Planning Domain Definitioariguage. Tech. Rep. TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control.

Pednault, E. P. D., May 1989. ADL: Exploring the middle grouetiteen STRIPS and the situation calculus. In: Pro-
ceedings of the 1st International Conference of Knowledge Reptatson and Reasoning (KR). Toronto, Canada,
pp. 324-332.

Pnueli, A., 1977. The temporal logic of programs. In: Proceedaidhe 18th IEEE Symposium on Foundations of
Computer Science (FOCS). pp. 46-57.

Sanchez, R., Kambhampati, S., 2005. Planning graph hesristiselecting objectives in over-subscription planning
problems. In: Proceedings of the 15th International Conferenceubordated Planning and Scheduling (ICAPS).
Monterey, CA, pp. 192-201.

Smith, D. E., 2004. Choosing objectives in over-subscripfitanning. In: Proceedings of the 14th International
Conference on Automated Planning and Scheduling (ICAPS). \®hig&thnada, pp. 393—-401.

Son, T. C., Pontelli, E., 2004. Planning with preferences usigig programming. In: Lifschitz, V., Niemela, I. (Eds.),
Proceedings of the 7th International Conference on Logic Prograghamd Nonmonotonic Reasoning (LPNMR).
No. 2923 in LNCS. Springer, pp. 247-260.

van den Briel, M., Nigenda, R. S., Do, M. B., Kambhampati, 8042 Effective approaches for partial satisfaction
(over-subscription) planning. In: Proceedings of the 19th Matdi€Conference on Artificial Intelligence (AAAI).
pp. 562-569.

Zhu, L., Givan, R., July 9-13 2005. Simultaneous heuristicdeor conjunctive subgoals. In: Proceedings of the
20th National Conference on Atrtificial Intelligence (AAAI). Pittsigh, Pennsylvania, USA, pp. 1235-1241.

32

