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Abstract

This paper surveys the work on abductive inference within the field of artifi-
cial intelligence (AI), with particular attention to logic-based abduction. The paper
commences with a formal description of three popular characterizations of abductive
inference. This is followed by an examination of several specific logic-based abductive
frameworks, each of which applies syntactic restrictions to the formulation of the ab-
ductive reasoning problem and the resultant explanation. Mechanisms for computing
logic-based abductive explanations, and the complexity of variants of the abduction
task are examined in the sections to follow. This paper also surveys different applica-
tions of abduction in AI, and the connections between abduction and other types of
nonmonotonic reasoning. The paper concludes with a discussion of potential future
research areas.

*Revision of an earlier draft written while the author was a doctoral candidate at the University of Toronto.
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1 Introduction

“‘Dr. Watson, Mr. Sherlock Holmes,’ said Stamford, introducing us.
“‘How are you?’ he said cordially, ....‘You have been in Afghanistan, I perceive.’
“‘How on earth did you know that?’ I asked in astonishment.”
Later, Sherlock answers the question:
“‘You appeared to be surprised when I told you, on our first meeting, that you had come from Afghanistan.’
“‘You were told, no doubt.’
“‘Nothing of the sort. I knew you came from Afghanistan. From long habit the train of thought ran so swiftly
through my mind that I arrived at the conclusion without being conscious of intermediate steps. There were
such steps, however. The train of reasoning ran, Here is a gentleman of a medical type, but with the air of
a military man. Clearly an army doctor, then. He has just come from the tropics, for his face is dark, and
that is not the natural tint of his skin, for his wrists are fair. He has undergone hardship and sickness, as his
haggard face says clearly. His left arm has been injured. He holds it in a stiff and unnatural manner. Where
in the tropics could an English army doctor have seen such hardship and got his arm wounded? Clearly in
Afghanistan. The whole train of thought did not occupy a second....””
“‘It is simple enough as you explain it,” I said, smiling.”

— A Study in Scarlet [22]

Unbeknownst to either Sherlock Holmes, or to his creator A. Conan Doyle, Holmes was a master
of abductive reasoning, as he illustrates in the excerpt above. For abduction is “the process of form-
ing an explanatory hypothesis” from a set of observations. The term abduction was first introduced
by American philosopher Charles S. Peirce in the late 1800s [26] and reintroduced to the artificial
intelligence (AI) literature in the 1970s by Harry Pople Jr. [58]. Eugene Charniak popularized the
term abduction in his Al textbook [6] by ascribing to Peirce’s trichotomy for inference, which in-
cludes abduction. In attempting to define a basis for scientific inquiry, Peirce distinguished between
three forms of inference: deduction, induction and abduction. Simply described, given the major
premise a D b, the minor premise a, and the conclusion b Peirce asserted that: a deduction reasons
from a D b and a to produce the conclusion b; an induction reasons from a and b to produce the
plausible rule a D b; and finally, an abduction infers the plausible explanation a, from a D b and b.
Holmes demonstrates his mastery of abductive inference in the excerpt above by conjecturing that
Watson had injured his left arm from the observation holds_left_arm_stif f_and_unnatural and
the premise left_arm_injured D holds left_arm_stif f _and unnatural. From this rather simplistic
description, abduction looks like a reverse modus ponens inference rule. Peirce viewed it as the
selection of a preferred probationary explanation for the occurrence of b that would subsequently
be confirmed by scientific process. Within the field of artificial intelligence, abduction is defined as
inference to the best explanation, without subsequent confirmation. Further, its characterization is
not limited to the formulation provided by Peirce.

Definition 1 (Abductive Inference) Abductive inference is inference to the best abductive ez-
planation.

In the AI literature, there are three predominant characterizations of abductive inference: a
logic-based account (e.g., [57], [24], [11]), a set-covering account (e.g., [48] [1]) and a probabilistic
account (e.g., [47], [48]). They differ both is their definition of what constitutes an abductive
explanation and consequently what constitutes a best explanation. By far the most prevalent
definition of abductive inference is the logic-based characterization of abduction as theory formation.
Given a background theory and an observation to be explained, an abductive inference conjectures
one or more best explanations for the observation from the background theory. The abductive



explanation must be consistent with the theory and when conjoined to the theory must entail the
observation. Defining what constitutes a best explanation is a source of debate, often depending
upon the specific application domain. Generally, at least some notion of simplicity or minimality is
incorporated into the preference criterion. From this description, we see that abduction is unsound,
defeasible inference. Explanations are conjectured and may not be true. While consistent with the
theory at that point, they may become inconsistent with the addition of further observations. After
all, Watson may not have come from Afghanistan!

In contrast to the logic-based characterization of abduction is the set-covering account of ab-
duction, which is best represented by the Parsimonious Covering Theory (PCT) [48]. PCT uses
causal networks to represent the relationship between disorders (potential explanation primitives)
and manifestations (potential observations). Given an observation (one or more manifestations),
PCT infers explanations — sets of disorders which account for the observation. Each set of disorders
covers the observation and is parsimonious.

The probabilistic account of abduction characterizes abductive inference as the task of finding
the most probable explanation for the evidence observed. There are several probabilistic accounts of
abductive inference (e.g., [47] [48]). They combine causal networks with some notion of plausibility.
Accounts differ in their definition of plausibility.

At an intuitive level, abduction is a form of hypothetical reasoning and as such aids in the
characterization of many human reasoning tasks. In fact, it was early work on diagnostic problem
solving [58] which kindled interest in abduction within the AT community. In addition to diagnosis
(e.g., [6], [58], [67]), abductive inference has been applied to the problems of image understanding
(e.g., [14], [54]), plan formation [23], plan recognition [6], temporal reasoning [67], natural language
understanding (e.g., [33], [5]), database updates [35] and nonmonotonic reasoning (e.g., [25], [50]).
To illustrate the application of abductive inference, consider the problem of medical diagnosis. A
background theory may be created to capture the relationship between diseases and their manifested
symptoms. Given, the observation of certain symptoms, a disease can be abduced which accounts
for the occurrence of those symptoms. Similarly, tasks such as vision, plan recognition and aspects
of natural language understanding may all be conceived as abductive reasoning problems. From
the variety of applications, we see that the term ezplanation and for that matter observation are
used loosely, reflecting the origins of abductive inference in diagnostic problem solving. If logical
implication (or in the case of causal networks, the link) is used to capture the notion of causation,
then the term explanation is apparent, reflecting the cause of the observations. However, an
abductive explanation goes beyond the notion of a strictly causal account. For example, a theory
about our intrepid detective might state that Holmes either smokes a pipe or a cigar. If we observe
that Holmes smokes a pipe, an abductive explanation for this observation is that Holmes does not
smoke a cigar, even though we would not take this to be an adequate explanation in the colloquial
sense of the word.

This paper surveys the explicit work on abduction within artificial intelligence. Although a
survey of the abduction literature would not be complete without a description of all three popular
characterizations of abduction and their variants, the focus of this paper will be on logic-based
abduction. The notion of abduction was first addressed in the Al literature some twenty years
ago, but it has only become widespread within the last ten. Initial work on abduction addressed
the mechanization of abductive inference ([58], [14], [61]). Many of these systems were applied to
the task of diagnosis. Subsequent work attempted to define and formalize the notion of abductive
inference [52], [48] by proposing frameworks and formal characterizations. These formalizations
led to the realization that some previous work in AI, de Kleer’s ATMS [17] for example, and
Genesereth’s DART system [30], incorporated procedures from abductive inference. Following



formalization of the task of abduction, complexity results were established to confirm informal
suspicions that the general task of abductive inference was intractable ([4], [66]). At the same time,
abductive inference was being applied to many of the hypothetical reasoning tasks listed above.
This resulted in more formal characterization of certain tasks as well as further domain specific
definitions of best explanation. More recent work on abduction has established the relationship
between abduction and other areas of Al including nonmonotonic reasoning.

This survey attempts to identify and synthesize the important contributions of this body of
literature. We commence with a more formal presentation of the various characterizations of ab-
ductive reasoning. In Section 3, we examine several specific logic-based abductive frameworks.
Each framework incorporates some syntactic restrictions on the formulation of the abductive rea-
soning problem and on the resultant explanation. By restricting the form of the abductive reasoning
problem, some interesting results have been proven. Section 4 examines the problem of actually
computing logic-based abductive explanations, while Section 5 examines complexity results on gen-
erating abductive explanations. Applications of abduction in artificial intelligence are surveyed in
Section 6. Abduction has overlaps with many other areas of AI. Section 7 briefly notes some of
the fundamental relationships. The survey concludes with a discussion of potential future research
areas.

2 Characterizations of Abduction

In this section we expand upon discussion in the introduction and provide a more detailed char-
acterization of predominant accounts of abductive reasoning. We include a logic-based account, a
set-covering account and a probabilistic account. The focus of this survey paper is on logic-based
abductive reasoning. As a result, subsequent sections will focus on issues related to the logic-based
account.

2.1 Logic-based Accounts of Abduction

Abductive inference is inference to the best explanation. The original philosophical formulation
coined by Peirce resembled an unsound reverse modus ponens inference rule. Over the years, the
AT community has converged upon theory formation as the accepted logical characterization of
abduction. In this section we present this and other noteworthy logical definitions of abduction.

2.1.1 Abduction as Theory Formation

Abduction is generally defined with respect to an abductive framework. Many such frameworks
have been proposed (e.g., [9], [38], [52], [24]). Motivated by the trade-off between expressiveness and
ease of computation, they differ with respect to syntactic restrictions on the various components of
the framework and on the syntactic form of the resultant abductive explanations.

Below we take liberty with logic and define an intentionally vague generic abductive framework
from which we can define the concept of logic-based abductive explanation. In Section 3, we provide
more explicit definitions with respect to specific abductive frameworks.

A language £ is assumed.

Definition 2 (Generic Abductive Framework)
A generic abductive framework is a pair (X,E) where:

e 3 is a background theory,



o & is a distinguished set from which explanations are drawn. The elements of £ are sometimes
referred to as “abducibles”.

Note that £ can be the entire language £, but is generally restricted to a subset of distinguished
literals of the language.

Definition 3 (Abductive Explanation as Theory Formation)
Given an abductive framework (3,E) and observation O, E, drawn from & is an abductive ezpla-
nation for O iff

e UE =0, and
e Y UF is satisfiable.

The definition of best abductive explanation differs from application to application, but at very
least is comprised of some expression of minimality or simplicity. Such definitions are syntactic in
nature and consequently must be defined in the context of a language. For example,

Definition 4 (LITS (following [41]))
Let L be a propositional language, p range over the propositional letters of L and a and 8 range
over the propositional sentences of L.

The literals of o, LITS(«), is defined by: LITS(p) = {p}; LITS(—~a) = {m | m € LITS(a)};
LITS(aANB) = LITS(aV B) = LITS(a) U LITS().

Definition 5 (Simpler <)
E is simpler than E i.e., E < E , iff LITS(E) C LITS(E').

Intuitively, this says that F is simpler than E' if it contains a subset of the literals of E .
From these definitions, we define the notion of a minimal abductive explanation, which for many
applications suffices as a definition of best abductive explanation. Of course, there may be several
“best” explanations in this context. We do not favour the shortest explanations, but favour all
explanations that do not contain superfluous literals.

Definition 6 (Minimal Abductive Explanation)
FE is a minimal abductive explanation for O iff there is no E' which is an abductive ezplanation
for O and which is simpler than E.

Some specific abductive reasoning frameworks have extended their notion of best to include
other preference criteria such as probabilities or priority rankings. These will be presented in the
context of the specific frameworks.

2.1.2 Abduction in Terms of Models of Belief

Levesque provides a knowledge-level account of abduction [41] 1. A knowledge-level account [45]
enables abduction to be characterized without concern for the manner in which knowledge is rep-
resented, providing flexibility in representation and manipulation techniques at the symbol level.
Drawing from previous work on logics of implicit and explicit belief [40], Levesque characterizes

! As noted in the paper, the account is not strictly at the knowledge level. The notion of simplicity employed in
defining minimal abductive explanations is necessarily syntactic and therefore not at the knowledge level.



abduction in terms of a formal model of belief. Then, by altering the underlying notion of belief,
he provides several different forms of abductive reasoning. One of the resultant forms of abduction
is equivalent to the theory-formation characterization above. The other provides a limited notion
of abductive reasoning which enables computational machinery to find a tractable subset of the
theory-formation abductive explanations. The strength of this account over the theory-formation
account provided above is the simplicity with which different forms of abductive reasoning may be
characterized by changing the notion of belief. Furthermore, this account is very general. It does
not suffer the syntactic restrictions of so many of the formulations.

In defining abduction, Levesque provides a standard propositional language £, with the extra
constant O for falsity. All beliefs are expressed in £. A second language L£* is employed to talk
about what is believed or not believed. It is identical to £ except that atomic sentences are of the
form Ba, where « is a sentence in £. The subscript A is used to indicate different types of belief,
B)a. Both languages are interpreted in the standard fashion. In particular, atomic sentences of
L* are interpreted with respect to an epistemic state, e. Thus e = By« says that By« is true at
epistemic state e.

The general notion of abductive explanation is defined as follows.

Definition 7 (Abductive Explanation in Terms of Beliefs)
Given belief type A, a is an abductive explanation for B with respect to epistemic state e
(a exply B wrt e) iff e | [Ba(a D B) A =By—al.

As with the theory-formation definition of abduction minimal, abductive explanations are pre-
ferred. The best abductive explanation is the minimal abductive explanation.

Definition 8 (Minimal Abductive Explanation)
Given belief type A, a is a minimal abductive explanation for B with respect to epistemic state e
(o« min—exply [ wrt e) iff
a exply B wrt e and for no o < « is it the case that o exply B wrt e,
where < is as defined in Definition 5 and LIT(0O) = §.

Abduction under Implicit and Explicit Belief

Following these general definitions, two specific notions of belief are considered: implicit belief
where By = By and explicit belief where By = B [39]. Intuitively, something is explicitly believed
if it is actively held to be true by an agent. Something is implicitly believed if it follows from what
is actively held to be true by an agent.

Implicit belief is the classical notion of belief where beliefs are closed under logical consequence;
ie., E (Bra A Br(a D )) D Bif). The definition of abductive explanation under implicit belief
reduces to the theory-formation characterization of abductive explanation. Specifically,

Proposition 1
a exply B wrt e iff U {a} E B and LU {a} is consistent, where ¥ is some representation of the
epistemic state at the symbol level.

Explicit belief is a weaker sense of belief, originally conceived as a more computationally
tractable form of belief than implicit belief. It is not closed under logical consequence.

From characterizing abduction in terms of explicit belief, we get a limited notion of abductive
explanation which is tractable in certain instances where the theory-formation characterization is
not. This will be discussed in further detail in the section on computational complexity.



2.2 Set-covering Accounts of Abduction

The set-covering account of abduction ([48], [1]) is best represented by the Parsimonious Cover-
ing Theory (PCT), developed at the University of Maryland [48]. PCT claims to be restricted to
explanation problems in the diagnosis domain. Consequently, the abductive framework is defined
using diagnostic terminology. PCT uses causal networks to represent the relationship between dis-
orders (potential explanation primitives) and manifestations (potential observations). The simplest
PCT framework contains no intermediate states in the causal network and no numeric notion of
plausibility.

Definition 9 (Simple PCT Framework)
A diagnostic problem P is a j-tuple < D, M,C, M+ > where:

e D ={dy,ds,...,dn} is a finite, non-empty set of objects called disorders;

o M ={my,ma,...,mg} is a finite, non-empty set of objects called manifestations;

e C C D x M is a relation with domain(C) = D and range(C) = M, called causation; and
o MT C M is a distinguished subset of M which is said to be present.

Definition 10

For any d; € D and mj € M in a diagnostic problem P =< D, M,C,M™* >,
effects(d;) = {m; | < d;j,m; > € C}, the set of objects directly caused by d;; and
causes(m;) = {d; | < d;,m; > € C}, the set of objects which can directly cause m;.

There is an implicit independence assumption, so the effects of a set of disorders is the union
of the effects of individual disorders in the set.

Definition 11 (Cover) The set Dy C D is said to be a cover for My C M if My C effects(Dy).

From these definitions, we can define the notion of a PCT abductive explanation.

Definition 12 (PCT Abductive Explanation) A set E C D is said to be an abductive ezpla-
nation for Mt for a problem P =< D,M,C,M™* > iff E covers M+ and E satisfies a given
parsimony criterion.

Like the notion of “best”, the definition of parsimony is contentious. The simple PCT framework
has settled on the notion of irredundancy as the parsimony criterion.

Definition 13 (Parsimony Criterion) A cover Dr of My is said to be irredundant if none of
its proper subsets is also a cover of My; it is redundant otherwise.

This simple PCT model has been extended in several ways. There is a corresponding probabilis-
tic account which is described in the following section. Aside from adding plausibility measures,
the simple PCT framework has also been extended to include intermediate states between mani-
festations and disorders.

The simple PCT characterization of abductive reasoning is equivalent to the logic-based theory-
formation characterization for a syntactically restricted theory ¥. M™ corresponds to O, the
observation. D, the set of disorders corresponds to &, the set from which explanations are drawn.
Finally C, the causal relation between manifestations and disorders corresponds to a syntactically
restricted theory . Furthermore, the parsimonious criterion of irredundancy is equivalent to the
theory-formation notion of minimality. One drawback of the set-covering approach is that it is
limited in its expressive power and it is difficult to measure what impact a change in the theory
will have on the explanations.



2.3 Probabilistic Account of Abduction

A potential drawback of both the logic-based and set-covering accounts of abduction is that they
can generate a large number of minimal/parsimonious explanations, providing no other means of
preference. Probabilistic accounts of abduction address this problem by characterizing the best
abductive explanation as the instantiation of explanatory variables that attains the highest plausi-
bility, given the observations.

Probabilistic accounts integrate causal networks with some notion of plausibility. Specific ac-
counts differ in the expressiveness of their causal networks and in their conception of plausibility.

The simple PCT framework described above has been extended to incorporate plausibility. The
resultant characterization is referred to as a probabilistic causal model. In this model, a prior
probability p; is associated with each disorder d;. Each causal link from d; to m; has a causal
strength c;;, associated with it. c;; represents how frequently d; causes m;. The relative likelihood
L(Dy, M) of any potential abductive explanation Dj given the presence of M T can be calculated
using the relevant p;’s and ¢;;’s. Although this probabilistic causal model was only developed for
simple PCT causal networks, it has been extended by other researchers to apply to causal networks
with intermediate states.

Pearl’s belief networks [47] provide an alternative probabilistic account of abduction. Simple
belief networks are directed acyclic graphs (DAGS) where each node represents a proposition (or
variable) and the arcs represent direct dependency whose strength is captured by conditional proba-
bilities. Belief nets differ from the PCT extension in that they use probabilities and Bayes Theorem
to calculate the most likely abductive explanation. The interesting thing about Pearl’s approach
is that instead of making independence assumptions about the relationship between propositions,
the probabilistic dependencies are explicitly represented in the structure of the causal network. A
common criticism of probabilistic accounts of any sort is that the various probability values are
difficult to accurately estimate.

3 Frameworks for Logic-based Abduction

In the previous section we reviewed several different characterizations of abductive inference. In
this section we examine specific logic-based abductive reasoning frameworks. These frameworks
all view abduction as theory-formation, differing with respect to the syntactic restrictions they
place on the various components of the framework and on the form of the resultant best abductive
explanations. There are computational advantages to these restrictions which will be investigated
in a subsequent section. Here, we focus on several frameworks for abductive inference, interesting
properties of those frameworks, and noteworthy contribution towards semantics for abduction or
towards definitions of preferred abductive explanations.

The semantics of abduction is not well defined. Abductive inference is nonmonotonic. An
inferred explanation may no longer hold with the addition of new information. Qur current logic-
based theory-formation account of abduction is meta-logical. The nonmonotonicity combined with
the meta-logical characterization does not simplify the task of defining a semantics. As we will
see, some steps have been made towards defining a semantics for syntactically restricted abductive
frameworks.

Another issue that relates to abduction is the lack of a rigorous domain-independent compara-
tor for determining a best abductive explanation. Logic-based characterizations of abduction can
produce a large number of minimal abductive explanations and there is a need for further discrim-
ination. In this section we will see several alternative comparators for abductive explanations.



We examine three abductive frameworks: a causal framework, a logic programming framework
and the Theorist framework. In so doing, we adopt the notation used by the researchers. The
correspondence to our generic logic-based framework is noted in each case. Our objective is to
assist the reader when referring to the cited literature.

3.1 Causal Framework

A number of researchers (e.g., Poole ([51], [56]), Console [9], Konolige [38]) have investigated
properties of abductive inference for a syntactically restricted class of theories referred to in the
literature as causal theories (or in some cases, more specifically, fault theories). Although very
limited in their expressive power, causal abductive frameworks are sufficient for some applications,
particularly in the area of diagnosis.

Let £ be a standard propositional language.

Definition 14 (Causal Abductive Framework) The causal abductive framework is a triple (Causes, Effects,)
where:

o Causes, a set of atomic sentences of L, is the set of causes;

o Effects, a set of atomic sentences of L, is the set of effects we might observe and whose causes
we seek as explanations;

e 3, the causal theory is the background theory. It consists of a set of nonatomic definite
clauses whose directed graph is acyclic. Causes do not appear at the head of the definite
clauses; clauses of ¥ are of the form —c1V —cy...V —c, Ve, where ¢; € Causes and e €
Effects.

This framework differs from the generic logic-based framework not only in the syntactic re-
strictions it places on 3, but also in the designation of a distinguished set Effects from which all
observations O are drawn. Causes corresponds to £ in the generic framework.

Definition 15 (Abductive Explanation) Given a causal framework (Causes,Effects,X), an ab-
ductive explanation for O, a conjunction of literals drawn from Effects, is C, a conjunction of
literals drawn from Causes, such that XU C = O and ¥ U C is consistent.

As in Section 2, preference is given to minimal abductive explanations.

Interesting results have come out of investigation of this restricted abductive framework, namely,
a correspondence between abduction in the causal framework and consistency-based reasoning when
completion axioms augment the background theory of the causal framework. This has enabled ab-
ductive inference in causal abductive frameworks to be related to completion semantics, as discussed
in the subsection to follow.

Another interesting extension to this (approximate) framework is the incorporation of probabil-
ities enabling a best abductive explanation to be defined probabilistically. Poole has proposed an
account of probabilistic horn clause abduction. Further, he has shown a correspondence between
his work and Pearl’s belief nets. Although beyond the scope of this paper, the interested reader is
referred to [55], [56].

10



3.1.1 Relating Closure to Abduction for Causal Frameworks

The relationship between abduction, closure, consistency-based reasoning and deduction was orig-
inally observed by Reiter [63] and described by Poole [51] and Console [9], [10] in the context of
diagnostic reasoning with causal theories. It was generalized slightly and stated more clearly by
Konolige [38].

To properly describe the results, it is necessary to digress slightly and define consistency-based
reasoning. Consistency-based reasoning ([63], [18]) is arguably the most popular alternative to
abduction for defining a set of hypotheses which account for an observation. It is commonly applied
to diagnosis problems. We contrast a consistency-based hypothesis with an abductive explanation.

Definition 16 (Consistency-based Hypothesis) Given an abductive framework (£,€) and ob-
servation O, Eg drawn from £ is a consistency-based hypothesis for O iff XU E4 U O is consistent.

Note that the criterion defining a consistency-based hypothesis is less rigorous than the criteria
defining an abductive explanation. Every abductive explanation is a consistency-based hypothesis.

As with abductive explanations, preference is given to minimal consistency-based hypotheses
(see Section 2).

Proposition 2 Given a causal abductive framework (Causes,Effects,X.) and observation O € Ef-
fects, the minimal abductive explanations for O with respect to (Causes,Effects,¥) are equivalent
to the minimal consistency-based hypotheses for O with respect to (Causes,Effects,¥.* ), where ¥* is
the Clark completion [8] of the background theory X.

Intuitively, by completing the background theory with the addition of closure axioms, we are
saying that the causes of a particular effect, e are all and only the causes of that effect. For example,
if (¢t De) A (2 De)A... A (cn D e), then adding the closure axiom for e results in e = ¢1V
caV...Vcy.

We can also define the notion of a cautious explanation, as the disjunction of all of the minimal
abductive explanations.

Definition 17 (Cautious Abductive Explanation) Given a causal abductive framework (Causes,
Effects, ), a cautious abductive explanation for O is a formula Ecqutious Such that Ecqutious
=V, E;, VE; such that E; is a minimal abductive explanation for O.

Proposition 3 Given a causal abductive framework (Causes,Effects,Y.), ¥*, the Clark completion
of 3 and observation O € Effects, ¥* U O = Ecqutious-

This is an important result as we will see in the next section because it enables us to compute
cautious abductive explanations for causal theories deductively.

Console [10] demonstrates that abductive inference is based on a completion semantics by
relating abductive explanations to cautious abductive explanations.

Proposition 4 Given a causal abductive framework (Causes,Effects,X), observation O € Effects
and cautious abductive explanation, Fegytious- Let E2 C Causes and v be an assignment of truth
values to the abducible atoms, i.e. the elements of Causes, such that

v(ia) =true iffa € E
Then, E is an abductive explanation for O iff v E Ecqutious-

Stated more clearly, the individual abductive explanations for O are the abducible atoms con-
tained in the different minimal Herbrand models [42] of £* U O.

11



3.2 Logic Programming Framework

Researchers associated directly or indirectly with Imperial College have defined and studied a logic
programming framework for abductive reasoning ([35], [24], [25]). The framework is distinguished
from the generic logic-based framework not only by the syntactic restrictions it places on the com-
ponents of the framework, but by the explicit mention of integrity constraints on the abducibles of
the framework. The correspondence between the generic logic-based framework notation described
in Section 2 and the one employed by the logic programming framework is as follows: ¥ — P;
E—S A E—N;0—q.
Let £ be a first-order language.

Definition 18 (Logic Programming Abductive Framework) The logic programming abduc-
tive framework is a triple (P, A, IC), where:

e P is a set of clauses of the form H < L1,...Ly, kK > 0 where H is an atom and L; is a
literal.

o A is a set of predicate symbols, the abducible predicates. The abducibles, are then all ground
atoms with predicate symbols in A.

o IC, the integrity constraints, is a set of closed formulae.

This framework in essence extends a logic program with the inclusion of integrity constraints and
distinguished abducibles. The abducibles are the primitives from which explanations are drawn.
The integrity constraints are relations on the abducibles.

Definition 19 (Abductive Explanation) Given a logic programming abductive framework (P,A,IC),
an abductive explanation for q is A C atoms(A) such that PUA = q and PUA is consistent and
does not violate IC.

They adopt this definition, but claim it is not satisfactory because the semantics is unclear.
Logic programming uses negation-as-failure, not classic negation. Furthermore, the handling of
integrity constraints is not sufficiently defined.

To address this, a model-theoretic semantics is given for the logic programming abductive
framework and abductive explanation is defined in terms of this semantics. Just as stable model
semantics (SMS) can provide a semantics for logic programs with negation-as-failure [29], general-
ized stable model semantics [36], an extension of stable model semantics provides a semantics for
our abductive framework.

Definition 20 (Stable Model) Let P be a logic program and M a set of atoms from the Herbrand
base. Define Pys to be the set of ground horn clauses formed by taking ground(P), in clausal form,
and deleting:

1. each clause that has a negative literal =l in its body, and | € M.
2. all negative literals =l in the body of clauses, where [ & M.

M is a stable model for P if M is the minimal model of Pys.
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The intuition behind stable model semantics is that we take a logic program with negation
and transform it into a ground logic program without negation. M represents the atoms that we
believe to be true (which will become the minimal Herbrand model of the transformed program if
it is stable). Consequently, if =/ is in a clause, but [ € M, then according to M, we believe =l to
be false and we can remove any clauses mentioning it. Negative literals =/ for which [ ¢ M, may
be believed to be true, and thus can be removed from the body of clauses in P. If the minimal
Herbrand model of the resultant program coincides with our original “beliefs” (M), then M is a
stable model for the original program P.

The stable model semantics are generalized to deal with the abduction. The semantics for
abductive inference is then achieved by associating a set of general stable models with an abductive
framework and characterizing abductive explanation with respect to these models.

Definition 21 (Generalized Stable Model) Let (P, A,IC) be a logic programming abductive
framework, and A C atoms(A) be a set of abducibles. Then the set M(A) of ground atoms is
a generalized stable model (GSM) for (P, A,IC) iff it is a stable model for the logic program
PUA, it is a model for the integrity constraints IC, and A = AN M(A).

An observation has an abductive explanation if it is true in at least one of the general stable
models for the abductive framework.

Definition 22 (Abductive Explanation) Given a logic programming abductive framework (P,A,IC),
and observation q, a unit clause, A\ is an abductive explanation for q if there exists a generalized
stable model M (A\) in which q is true.

Thus, the objective of abductive reasoning is to find a set of abducibles, A such that M [ ¢,
M E IC and M is a stable model of P U A.

3.3 Theorist Framework

Theorist (e.g., [57], [57], [52]) is by far the best-known and most expressive abductive reason-
ing framework. It is capable of performing abductive reasoning as well as default reasoning and
prediction. Theorist is less syntactically restrictive than some of the other abductive frameworks
proposed, particularly in its use of closed first-order formulae as explanations. Conventionally,
abductive frameworks use distinguished literals, or conjunctions of distinguished literals as expla-
nations. By enabling flexibility in the syntactic form of explanations, Theorist can use default rules
as abductive explanations. This is particularly useful when developing applications where there is
uncertainty in the relationships between elements of the domain. For example, in medical diagnosis,
appendicitis generally causes pain in the lower right quadrant of the abdomen, but this is not al-
ways the case; sometimes the pain is not localized. Allowing appendicitis D low_rt_abdomen _pain
as a potential explanation rather than as an axiom in the background theory reflects the defeasible
nature of the formula, and enables it to act with appendicitis as an abductive explanation for
low_rt_abdomen_pain. Unfortunately, Theorist’s expressiveness makes defining a semantics more
difficult and no clear semantics has been defined to date. Also notable, the Theorist framework is
implemented as a programming language that sits on top of Prolog, and may be used as a testbed
or to develop applications.

Following [52], let £ be a standard first-order language. A formula is a well-formed formula
of a language. An instance of a formula refers to a substitution of terms in the language for free
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variables in the formula. The correspondence between the generic logic-based framework notation
described in Section 2 and the one employed by Theorist is as follows: ¥ — A; &€ — H; E — D;
0 —g.

Definition 23 (Theorist Abductive Framework) The Theorist abductive framework is a pair
(A, H), where:
e a background theory A is a set of closed formulae,

e q distinguished set H is a set of (possibly open) formulae which are taken to be the “possible
hypotheses” (the primitives which are used to compose explanations).

Definition 24 (Scenario) A scenario of (A, H) is a set D of ground instances of elements of H
such that D U A is consistent.

A scenario defines a set of hypotheses that qualify to be considered as potential explanations,
by virtue of the fact that they are consistent with our background theory.

Definition 25 (Abductive Explanation) Given a closed formula g, D is an abductive expla-
nation for g from (A, H) if D is a set of ground instance of elements of H such that D U A is
consistent and DU A |= g.

Definition 26 (Extension) An extension of (A, H) is the set of logical consequences of A together
with a mazimal (with respect to set inclusion) scenario of (A, H).

Theorem 1 There is an explanation of g from (A, H) iff g is in some extension of (A, H).

As with the generic account, minimality, as defined in Section 2 is the preference criterion for
selecting the “best” subset of abductive explanations.

3.3.1 Characterizing the Best Abductive Explanation

Poole and others have proposed several alternative comparators for defining the best abductive
explanation within the Theorist framework. Some have been proposed for use in other implemen-
tations of abduction (e.g., [14]). They are outlined below.

1. Least Presumptive Abductive Explanation:

Definition 27 Abductive explanation Dq is less presumptive than abductive explanation D'1 iff
AUD] E D.

That is to say that abductive explanation D; assumes less than Dll. The least presumptive
explanation is not the explanation of choice for all applications. For example, when abductive in-
ference is applied to the task of diagnosis, we prefer the most specific (most presumptive) diagnosis,
while in the case of an abductive learning application we may very well prefer the most general
(least presumptive explanation).

2. Most Specific Abductive Explanation:
An alternative notion of best explanation is thus the most specific explanation.
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Definition 28 Abductive explanation Dy is more specific than abductive explanation D'1 iff AU
D, E Dj.

3. Prioritized Abductive Explanation: Brewka [3] augmented the Theorist framework for
default reasoning by defining priorities on defaults. Van Arragon [69] extended this definition of
priorities to abductive explanations and implemented the extension in Theorist.

Let H',1 < i < n be a set of (possibly open) formulae representing the set of hypotheses of
priority i.

Definition 29 (Potential Prioritized Scenario) A potential prioritized scenario of (A, H', ...,
H™) is a set {d € D',i = 1,...,n | D" is a set of ground instances of elements of H* and
AUD'U...UD" is consistent}.

Definition 30 (Prioritized Scenario) A prioritized scenario of (A, H',...,H") is a potential
prioritized scenario that violates no priority constraints.

Definition 31 (Priority constraints) Priority constraints are violated in a potential prioritized
scenario (A, H',... H") iff for any D*,2 < i < n, there is a prioritized scenario of (A, H', ...,
H" 1) containing AUD' U...U D! that is inconsistent with D".

Finally, we are able to define a prioritized abductive explanation.

Definition 32 (Prioritized Abductive Explanation) Given a closed formula g, S is an ab-
ductive explanation of g from (A, H',..., H™) if S is a prioritized scenario of (A, H',...,H™), and
AUS Eg.

4 Computing Abductive Explanations

The previous section highlighted several specific frameworks for abductive reasoning. In this section
we examine the computing machinery required to mechanically generate abductive explanations.

Most implementations of abductive inference are based on some form of resolution theorem
proving, commonly used for deductive inference. Consequently, it is interesting to briefly contrast
abduction with deduction. As observed by Pople [58], deduction determines whether a given formula
is true, whereas abduction determines why a formula is true. Deduction returns yes/no, while
abduction returns one or more conjectured formulae, each of which logically accounts for the original
formula in question. In some sense, abduction subsumes deduction in that, in the process of
determining why a formula is true, we must determine whether it could be true. Abduction differs
from deduction in other ways. Derivation of an abductive explanation does not necessarily terminate
the abductive inference process. We may wish to investigate other explanations for an observation.
In contrast, once deduction has found a successful proof, it is finished.

The following steps are required to compute an abductive explanation for O from the abductive
framework (%, €):

1. Generate an explanation F for observation O from the background theory ..

2. Test the consistency of the explanation with respect to the background theory.
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Discussion proceeds in reverse order. We first examine the problem of consistency checking.
This is followed by a more lengthy overview of different techniques for generating the explanations
themselves.

We assume that explanations are conjunctions of ground literals. The existence of variables in
hypotheses is more problematic, because of the required reintroduction of quantifiers into gener-
ated explanations containing skolem constants. This in turn can lead to difficulty in consistency
checking of hypotheses ([49], [14]). Several solutions have been proposed to deal with the so-called
reverse skolemization problem. They will not be discussed here (see [27], [13]). Note also that in
the Theorist framework, explanations are not restricted to conjunctions. In particular, Theorist
sometimes employs default-rule-style explanations. These are implemented by naming the formulae
with atomic sentences and simply using the atomic sentences in the implementation. Consequently,
they are covered by our restriction.

4.1 Consistency Checking

> U FE is consistent iff 3 |/ =F. The general problem of computing abductive explanations does
not look promising at the outset because of this required consistency check. First-order logic is
semi-decidable. (i.e., Given first-order proof theory and a closed formula, a proof will be found
if the formula is valid, but the proof procedure may not terminate if the formula is not valid.)
Consequently, there is no decision procedure for determining the consistency of first-order formulae
in general. Fortunately, there are decidable first-order theories. In particular, first order Horn
theories without function symbols are decidable. Similarly, some applications with finite domains
may be rewritten as propositional theories, which are decidable. There are many examples in
practice. If all else fails, consistency checking can be approximated. For example, if after a certain
outlay of resources the formulae have not been proven to be inconsistent, then assume that they are
consistent. It is up to the developer of an individual application to ensure that consistency checking
is decidable either by syntactic restricitons on ¥ or by using some reasonable approximation of
consistency checking.

4.2 Generating Explanations

The problem of finding an explanation £ such that 3 A E'+ O may be computed several different
ways. We describe four mechanisms for generating abductive explanations.

4.2.1 Proof-tree Completion

XA EF O is equivalent to X A EA-O F 1. As such, the problem of generating an abductive
explanation for O may be recast as finding a refutation proof for O which employs literals £ drawn
from & (e.g., [58], [14], [15], [50], [57]). Currently the most popular mechanism for computing
abductive explanations, this technique is often referred to as proof-tree completion. The procedure
is performed by converting 3 and —O to clausal form and using linear resolution to attempt to derive
1. Of course, unless O is trivially explainable, it can’t be proven. Consequently, the proof either
does not terminate, or if it does, it terminates in so-called dead ends. If these dead ends can resolve
with elements drawn from £ to complete the proof tree derivation, then the elements of £ employed
to complete the partial proof trees are the explanations for O. The Theorist implementation differs
slightly in that the potential explanations £, (H in Theorist terminology) are added to the axioms
of ¥ and rather than deriving dead ends, Theorist merely notes the elements of £ (H) which were
employed in deriving L.
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4.2.2 Direct Proof Method

There are several ways of computing abductive explanations using a direct proof method. The
term “direct proof method” is often used to refer to the task of consequence-finding — finding the
consequences of a theory. In the case of abductive inference, > A F F O can be recast as ¥ - ~EVO
and so we can retrieve the abductive explanations of O by computing the logical consequences
of ¥. Similarly, ¥ A E F O can be recast as ¥ A =0 + —F (assuming ¥ A =0 is consistent).
In this case, we can acquire the abductive explanations for O from the logical consequences of
¥ A =0O. Unfortunately, while resolution is refutation complete (complete for proof-finding), it is
not deductively complete and so does not find all the logical consequences of a theory.

Fortunately, in the case of abduction, we are only interested in a subset of the logical conse-
quences of our theories. Specifically, we want the minimal ? clauses of the form —E V O and -F
respectively. Recent advances have been made in developing complete consequence-finding theorem
provers for first-order and propositional theories. In particular, Inoue [34] has developed a com-
plete resolution procedure for consequence-finding, generalized to finding only interesting clauses
having certain properties. A set of so-called characteristic clauses can be defined to specify both
a set of distinguished literals from which the characteristic clauses must be drawn and any other
conditions to be satisfied. In our case, the characteristic clauses would be of the form —FE VvV O and
—F respectively. The augmentation of the theorem prover with a skip rule allows it to focus on
generating only the characteristic clauses, rather than generating all minimal logical consequences
and further pruning to retrieve the desired subset of clauses.

Finger’s RESIDUE system ([28], [34]) used in the implementation of Genesereth’s well-known
Design Automated Reasoning Tool (DART) is also a first-order consequence-finding procedure. It
was employed in the DART system to generate potential diagnosis candidates by direct proof from
> A =0. The —E which were entailed were referred to as the residues of the proof procedure.
RESIDUE does not focus search as extensively as Inoue’s system.

When dealing with propositional theories, the task of finding the minimal logical consequences
of a theory is by definition equivalent to computing the prime implicates of that theory.

Definition 33 (Prime implicates) C is a prime implicate for ¥ iff ¥ = C, and for no proper
subset C' of C does % |= C'.

Much of the formal work on clause management systems ([64], [37]) and on consistency-based
and abductive diagnosis has been cast in terms of prime implicates [18]. Any such formalizations
can then be realized in the Assumption-based Truth Maintenance System (ATMS) [17].

The ATMS is arguably one of the best-known AI programs. It is frequently used for applications
of diagnosis, reasoning in multiple contexts and in our case, abductive reasoning. At the core of
the ATMS is the computation of the prime implicates of a propositional Horn theory, ¥ [64]. Thus,
the ATMS contains a propositional consequence-finding procedure for ¥, restricted to propositional
Horn theories. It does a great deal more than this though. The ATMS holds a distinguished set of
literals called assumptions. For our purposes, these assumptions can be thought of as equivalent
to our distinguished set of abducibles £. Given a unit clause query O, the ATMS returns minimal
support sets for that query, drawn from the set of assumptions. These minimal support sets are
exactly our minimal abductive explanations. We can formally characterize the computation of the
ATMS as follows.

2We use the term minimal as it was used in Definition 6.
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Definition 34 Given a set of propositional Horn clauses 33, a set of assumptions £, and proposi-
tional symbol O, called the query, the ATMS procedure returns E, a conjunction of literals drawn
from &, for all E such that ~E V O is a prime implicate of X.

E is called the minimal support for O with respect to 3.

Thus, the ATMS is truly a Horn clause abductive reasoning system. A drawback of the ATMS
algorithm is that it can only explain observations which are unit clauses. Kean et al. [37] have
developed a more extensive procedure for determining prime implicates which enables a generalized
clause management system to provide minimal support sets for conjunctions of clauses. Finally,
because of its formal characterization, the ATMS task has been used in the complexity analysis of
abductive inference.

4.2.3 Deduction on Closed Causal Theories

The final mechanism for generating abductive explanations is restricted to the causal abductive
framework described in Section 2. By computing the Clark completion 3* of the causal theory X,
we can compute the abductive explanations deductively. Recall, ¥* A O - \/ E;, where each E;
is an individual abductive explanation for O. From this description and the previous discussion
of direct proof method, we might conceivably use one of the computation mechanisms described
above, tailored to compute the disjunction of explanations, \/ E;.

An alternative is to use a model generation theorem prover ([43], [21]). Since the abductive
explanations for O are the abducible atoms in the minimal models of ¥* A O, we can generate the
set of minimal Herbrand models using a model generator and then retrieve the abducible atoms as
our abductive explanations.

5 The Complexity of Abduction

The task of computing an abductive explanations in the general case is NP-hard ([66], [65]). Even
with a Horn theory, the task of generating one explanation drawn from a set of abducibles £ is
NP-hard. Fortunately, tractable subclasses have been defined by placing syntactic restrictions on
the expressiveness of ¥ or by limiting the notion of abductive reasoning [41].

Contributions towards defining the complexity of abductive reasoning began with investigation
of the complexity of truth maintenance systems and in particular, the ATMS [60]. From Definition
34, we know that the ATMS performs propositional Horn clause abduction. As a consequence,
some researchers have based their complexity analysis of abduction on the ATMS task. The term
assumption in the complexity results to follow is derived from the ATMS and denotes the distin-
guished set of literals £ from which explanations are composed.

From the outset, it was clear that given a set of assumptions £ of size n, there could be an
exponential number of explanations which would take exponential time to list. de Kleer [17] argued
that in practice, most problems had only a few explanations, but Provan [60] countered by noting
that even if a problem didn’t have an exponential number of final solutions, it could still have an
exponential number of partial solutions. Subsequent research into the complexity of the ATMS
demonstrated that the source of complexity is much more deeply rooted than the problem of an
exponential number of partial or final solutions.

Selman and Levesque ([66], [65]) analyzed the complexity of abductive reasoning for propo-
sitional theories by further examing the ATMS task. In their work, they distinguished between
looking for abductive explanations which are drawn from an assumption set £ and abductive ex-
planations which are simply comprised of literals of the language. We refer to the former as
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assumption-based explanations and the latter as non-assumption-based explanations. In their anal-
ysis, Selman and Levesque assume a small number of explanations and focus on the underlying task.
The highlights of their results follow.

Proposition 5 If ¥ is a conjunction of arbitrary clauses, the problem of finding any explanation
18 NP-hard.

This is because an explanation must be consistent, and so an explanation procedure could be
used to test the satisfiability of a set of clauses, which we know to be NP-complete for arbitrary
clauses. Fortunately, when X is restricted to Horn clauses, a non-assumption-based explanation
can be computed efficiently.

Proposition 6 Given a set of Horn clauses ¥ and a letter g, a non-trivial explanation for q can
be computed in time O(kn), where k is the number of propositional letters and n is the number of
occurrences of literals in 3.

This positive result relies on finding clauses in ¥ which are explicitly of the form —¢g; V —gs V
Vg, Vq. g1 Aga N\ ... A g, explains ¢q. It can be minimized in linear time to ensure it doesn’t
minimize to .
In an effort to extend the analysis to assumption-based explanations, the following negative
result is shown. Even for Horn clause theories, it is difficult to find an abductive explanation
containing a particular letter.

Proposition 7 Given a set of Horn clauses X and a letters p and q, the problem of generating an
explanation for q that contains p is NP-hard.

This negative result extends to the generation of assumption-based explanations.

Proposition 8 Given a set of Horn clauses X, a set of assumptions A, and a query letter q, finding
an assumption-based explanation for q is NP- hard.

From these results, we conclude that even for Horn clause theories, the task of generating one
of the assumption-based explanations discussed throughout this paper is NP-hard. Proposition 6
shows that finding certain non-assumption-based explanations is easy, in particular, explanations
that are explicitly represented in ¥ as —=F V O. Explanations F retrieved from clauses of this form
correspond to the the explanations found by limiting abductive reasoning to reasoning with explicit
belief, as discussed in Section 2 [41]. Finding an abductive explanation when abductive reasoning
is limited to explicit belief is thus a tractable abductive reasoning task.

Though not explicitly investigated by Selman and Levesque, we conjecture that these negative
results do not hold for the case when 3 is a positive Horn theory. In particular,

Proposition 9 Given a set of positive Horn clauses 33, a set of assumptions A, and a query letter
q, a non-trivial explanation for q, drawn from A, can be computed in polynomial time.

The justification of this proposition is as follows. Selman and Levesque prove Proposition 8 by
reduction to the path with forbidden pairs. Since there are no forbidden pairs in a positive Horn
theory, we do not have the same difficulty with the consistency of our explanations.

Finally, Bylander et al. [4] also analyzed the complexity of abduction, using a more simplistic
definition of abductive explanation. Although their negative results are comparable to those iden-
tified above, they further investigated the effect of plausibility and also how the inter-relationship
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between potential explanations affected the task of generating abductive explanations. In so doing,
they identified two new classes of tractable abduction problems relevant to us here.
The following simplified definition of abduction was used in the analysis.

Definition 35 (Abductive Framework) An abductive framework is a quadruple (D qy,Hgy,e,pl)
where:

e D,y is a finite set of all the data to be explained,

e Hyy is a finite set of all the individual hypotheses from which abductive explanations are
composed,

e e is a map from subsets of Hyy to subsets of Dyy (H explains e(H)),

e pl is a map from subsets of Hyy to a partially ordered set (H has plausibility pl(H)).

Definition 36 (Abductive Explanation) Given an abductive framework (Dyy, Hay,e,pl), H C
Hy,y; is an abductive explanation for Dy if e(H) = Dy and no subset H' of Hyy exists such that
e(H') = Dgy. e is said to explain Dy if e(H) = Dy, regardless of whether it is minimal.

The relation e is a simplified representation of what is contained in 3 and is assumed to be
simple to compute. Since we are only focussing on logic-based abduction, we will not review the
complexity results related to the use of plausibility.

Two tractable abduction problems follow. The intuition behind their tractability is to put
constraints on the interaction between potential explanations which in turn constrains search.
Although fairly stringent, these restrictions are reasonable in certain domains.

Proposition 10 (Single Fault Assumption) Given an abductive framework (Dgy, Hay,e,pl),
where abductive explanations are restricted to single-element explanations, finding an abductive
explanation for Dy takes polynomial time (if one exists).

Proposition 11 (Independent Hypothesis Assumption) Given an abductive framework (Dgyy,
Hgy, e, pl), where data explained by the set H is the union of the data that each of the individual
members of H explains, then finding an abductive explanation for Dy takes polynomial time (if
one exists).

This assumption of independent hypotheses reduces the framework to the PCT framework of
Section 2.

6 Applications of Abduction

At first glance, abduction does not have much to recommend it. It is intractable for all but the most
trivial problems and for many first order theories, the consistency check makes it undecidable. Yet,
abduction has been used for a number of different applications as we will see listed below. In its
favour, abduction has a logical characterization; several accessible systems in which an application
can be implemented (e.g., Theorist, ATMS, Prolog); and some well-defined complexity results,
including the definition of some tractable, though fairly trivial abduction problems.

Intuitively, abduction captures the notion of hypothetical reasoning and as such provides us
with a means of reasoning hypothetically with incomplete information. The task may be described
as follows:
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Given a theory ¥, describing some state of affairs, and an an observation O, conjecture some
hypotheses which account for the observation in the context of the theory. The hypotheses may be
drawn from a predetermined set of potential hypotheses, &.

Before enumerating specific problems that fall within this task description, we examine issues
relevant to the application of abduction.

6.1 Issues

There are several important issues that impact the characterization and implementation of a prob-
lem using abduction.

The Suitability of Abduction: Given an observation, the expectation that a theory 3 can gen-
erate an abductive explanation for it, assumes that the encoding of the domain in 3 has anticipated
all possible observations. In the case of logic-based abduction, either E explains an observation,
or it does not. For example, in a medical diagnosis setting, if a patient is observed to have swollen
glands and be female (swollen_glands A female), mumps is not an abductive explanation, because
although ¥ U mumps = swollen_glands, it does not explain the observation that the patient is
female, and thus mumps is rejected as an explanation. female was not anticipated as a symptom
by the axiom writer.

This problem can be addressed in several ways. Identifying suitable observations a priori is the
simplest solution, but limiting. The causal abductive framework employs this tactic [9]. Defining a
notion of partial explanation is also a solution, but introduces another set of problems with respect
to differentiating preferred partial explanations. Introducing “dummy causes” ([50], [53], [19]) for
unexplainable observations would prevent partial explanations from being rejected as abductive
explanations, but would suffer some of the same problems as partial explanations. Probabilistic
accounts of abduction overcome the problem of explaining all observations by simply selecting the
most likely explanation given the observations [47]. This of course depends on the availability of
probabilty distributions and may require a compromise in the expressiveness of the logic.

Another alternative is to substitute consistency-based reasoning for abduction ([18], [12]). As
discussed in Section 3, a consistency-based hypothesis accounts for an observation if it is consistent
with the observation conjoined to the theory. The set of abductive explanations is a subset of the
set of consistency-based hypotheses. Thus, consistency-based reasoning is less exacting. It would
not have rejected mumps in the example above. Unfortunately, it also can result in a far greater
number of hypotheses. A compromise is to employ consistency-based reasoning with an abductive
bias [44] so that hypotheses must at least be consistent with the observation, but are preferred if
they explain the observation.

Representing the Space of Hypotheses: In applications with a potentially large number of
explanations, simply enumerating all explanations can be expensive. In ([63], [18]) proposals were
put forth for characterizing the space of abductive and consistency-based hypotheses in terms of
the set minimal or kernel hypotheses. They depend on syntactic restrictions placed on the axioms
of 3.

Knowledge Representation: Axiomatizing the domain is a nontrivial task. In addition to
accurately representing the relationship between elements of the domain, the resultant theory must
be decidable or the consistency check modified. If closure axioms can be added to the domain, this
will simplify computation. The problem is likely to be intractable, so if the problem space is large
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and time is of concern then some satisfactory notion of limited reasoning should be defined.

Preference: As previously mentioned, logic-based abduction has the potential to produce a large
number of minimal explanations. Many applications lend themselves to further problem-specific
or domain-specific preference criteria. For example, in the case of diagnosis, we may want the
most-specific explanations, or the most-likely explanation. In the case of language understanding,
the most coherent explanation [46] may be desirable; whereas, in the case of object recognition,
the single-explanation assumption may be invoked. Selecting and incorporating domain-specific
preference criteria is an important issue.

6.2 Specific Applications

Abduction provides a characterization for many human reasoning tasks. Examples of application
domains which have been characterized using abductive inference are provided below. The list is
not exhaustive but serves to identify some of the specific application areas for the interested reader.
Although not included in the list, given the relationship of the ATMS to abduction, much of what
passes as qualitative reasoning is likely to encompass some form of abductive inference.

Diagnosis is by far the most prevalent application of abduction. In general, given a theory
describing how a system malfunctions and some observation of erroneous behavior, abduction
conjectures malfunctioning components which explain the observation. Preference is generally
given to the minimal explanation and where relevant, to the most specific explanation. Popular
application domains are medical diagnosis (e.g., [52], [68]) and logic circuit diagnosis (e.g., [15],
[54)).

Abduction has been used both to characterize diagnosis (e.g., [18], [12], [64], [59]) and as a tool
for developing diagnosis systems (e.g. [68]). In the diagnosis research community, the most popular
procedure for diagnostic reasoning is the General Diagnostic Engine (GDE) [20] which employs
the ATMS to compute consistency-based hypotheses. In general, abduction is used with a theory
of faulty behavior in order to explain observed faulty behavior of a system. Consistency-based
reasoning is used with a theory of correct behavior, to find components of a system which must
be malfunctioning given the observation of incorrect behavior. This rule of thumb is not always
adhered to though ([18], [44]). In the diagnostic monitoring of a process, abduction can be used
with a theory of correct behavior and an observation of correct behavior to generate an explanation
that a component must be behaving correctly, given the observation of correct behavior. In this
way, components can be systematically observed and exonerated.

Model-based vision is another research area to which abduction is relevant. For example, given a
theory of how features in a scene relate to features in an image, abduction can be used to conjecture
scene objects which explain features in the image. Examples in the literature include ([14], [54],
31]).

Recently, researchers have used abduction as a tool to characterize the task of plan recognition
(e.g., [2], [7], [32]). Given a theory describing how actions relate to goals and an observation of
agent action, agent goals can be conjectured to account for the actions. Natural language is a
particularly challenging domain, both for abductive plan recognition and for abductive natural
language understanding (e.g., [5], [33], [6], [16]).

Finally, as a demonstration of the diversity of abductive inference, some other problems that
have been characterized abductively are: user modeling (e.g., [69], [57]), temporal reasoning [67],
planning [23] and database updates [35].
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7 Abduction and Nonmonotonic Reasoning

Like much of commonsense reasoning, abductive inference is nonmonotonic; however, the relation-
ship between abduction and other forms of nonmonotonic reasoning has not been fully investigated.
In Section 3, we saw how abductive inference in a causal framework related to predicate completion.
We also saw that by using abducibles to represent default rules, the Theorist framework could per-
form default reasoning. In this section we briefly highlight the work of several researchers who have
drawn correspondences between abductive inference and other forms of nonmonotonic reasoning.

7.1 Abduction and Default Reasoning

Both Poole ([50], [54]) and Selman and Levesque [66] independently noted the strong relationship
between abduction and default logic.

Poole showed that default logic could be viewed as theory formation in the same way that
abduction is characterized as theory formation. Given a default theory (D, W) with default rules
restricted to normal defaults of the form : §/4, : §/d in Reiter’s default logic [62] corresponds exactly
to § € H in the Theorist framework.

More generally, Selman and Levesque demonstrated that there was a computational core,
namely the Support Selection Task which is shared between abduction and default logic. Re-
call from Section 4 that the ATMS computes minimal support sets for O with respect to ¥ and
that these are identical to the minimal abductive explanations for O, given (%,€). The Support
Selection Task as defined below is equivalent to our definition of abductive explanation (Defini-
tion 3), for the restricted abductive framework, and thus is equivalent to the ATMS computation,
without the minimality requirement.

Definition 37 (Support Selection Task) Given a set of Horn clauses W, a set of letters A C
P, and a letter q, find a set of units clauses a, called a support set, such that the following conditions
hold:

e WUalkg¢q
o W U« is consistent, and

e « contains only letters from A.
The task of finding a support set is also NP-hard.

Proposition 12 Given a Horn theory W, a set of letters A C P, and a letter q, finding a support
set for q is NP-hard.

It is confirmed that the inherent complexity of ATMS-style abductive inference does not depend
on the minimization of the explanations, and that the Support Selection Task is at the core of its
complexity.

The Support Selection Task can be related to goal-directed default reasoning.

Definition 38 (Goal-directed Default Reasoning) The task of goal-directed default reasoning
is defined as follows: Given an acyclic Horn theory W, a set of elementary defaults D, and a letter
q, find an extension of (D, W) that contains q.

To demonstrate the correspondence to default logic, consider the following result from [63].
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Proposition 13 Let W be a Horn theory, q be a letter, A C P be a set of letters, and let D =
{:p/p|p € A}. Then, Th(W U «) is an extension of (D,W) that contains q iff o is a mazimal
support set of q.

Every extension of (D, W) is just Th(X U «). Thus, the Support Selection Task is also at the
computational core of goal-directed default logic and as with abduction, the source of complexity.
The fact that goal-directed default logic requires maximal support does not impact the complexity.

7.2 Abduction and Negation by Failure

The relationship between abduction and negation by failure (NAF) has also been examined by
recasting NAF as an abduction problem [25]. Just as Poole represented the consequent of certain
normal defaults as abducibles, negative literals in a logic program can be represented as abducibles.

This is performed in the context of the logic programming abductive framework of Section 3.
A logic program P is transformed into a corresponding ground logic program without negation in
the logic programming abductive framework (P*, A, IC). The transformation is as follows:

1. Replace every occurrence of a negative condition —¢(z) by a new predicate ¢*(z). Add ¢* to
the set of abducibles, A.

2. Define IC as the set of all denial < ¢(z),¢*(z) for all ¢* € A

Inference in the abductive framework (P*, A,IC) produces the same results as NAF in the
original program P.

From this brief discussion, there seems to be potential for other nonmonotonic reasoning prob-
lems to be reformulated in terms of abductive inference.

8 Future Work

We have examined a wide range of issues relating to abduction: characterizations of abductive
inference, frameworks for logic-based abduction, the computation of abductive explanations, the
complexity of abduction, applications of abduction, and finally the relationship between abduction
and other forms of nonmonotonic reasoning. Although a great deal of research has been done in
the area of abductive inference, a number of research problems remain — some big, some small. In
what follows we briefly outline a few potential areas of future research.

e Testing
Peirce’s original conception of abduction was as inference to a best probationary hypothesis
which would be confirmed by scientific experiment. In a similar spirit, we can define the notion
of testing for hypothetical reasoning, to assist in identifying a best abductive explanation. In
its simplest form, a test consists of a query to the user to ascertain the truth or falsity of
a particular predicate which would in turn discriminate a set of (abductive) hypotheses. In
more complex domains, such as medical diagnosis, the notion of a test is more involved. A
test can be viewed as a knowledge-producing action whose execution may be preconditioned
on the performance of other actions which have effects in the world. Of course the design and
selection of tests is nontrivial. They should be achievable, provide maximal discriminatory
power, and not result in any undesirable side effects in the world; this all conditioned on the
notion that any of the (abductive) hypotheses might be true. Generating tests can itself be
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viewed as an abductive reasoning task and thus is intractable in the general case. The subject
of testing for hypothetical reasoning is rich with research problems which have applications
in many diverse areas including diagnosis, active vision and databases.

Semantics

The semantics of abductive inference, like so many nonmonotonic reasoning systems is unclear.
The demonstrated correspondence to theory completion, stable model semantics, as well as
the relationship between abduction and other forms of nonmonotonic reasoning, indicates
that there is probably much more to be said on this subject.

Relationships

On a related note, many areas of Al can be reformulated as abductive inference. It is worth
investigating the relationships between abduction and other areas of Al, and in turn bringing
to bear the computational machinery and complexity results. In particular, the relationship
between abduction and nonmonotonic reasoning, abduction and belief revision, and abduction
and induction appear worthy of further investigation.

Preference

The issue of preference was interleaved into discussion of specific abductive reasoning frame-
works and some application domains, but was perhaps not given the prominence it deserves.
Although it is unlikely that there is an infallible domain independent explanation comparator,
there is still work required in examining the representation and computation of preference
criteria for abductive inference. In particular, two preference criteria briefly discussed here
deserve further attention. The first is coherence. Long cited in the philosophy and cognitive
science literature, coherence has been investigated by AI researchers with respect to belief
revision and natural language understanding among others. It should play an important role
in the selection and persistence of explanations, but as yet, little formal work has been done
in this area. The other preference criterion deserving of more research is probability. The
incorporation of some notion of probability into logic-based abductive inference is desirable
to add discriminating power to the expressiveness of logic.

Applications of Abduction

Section 6 enumerated some of the many domains in which abductive inference can be applied.
Certainly there are other problems to which abduction is relevant. More principled work is
needed on the characterization, implementation and analysis of domain specific preference
criteria. Additionally, research is needed into how to limit reasoning or trade-off expressiveness
to achieve tractability in specific application domains.

General Computational Paradigm

From the discussion in Section 7, it seems possible that many nonmonotonic reasoning tasks
could be reformulated in terms of abductive inference. The relationship between abduction
and deduction, as realized through resolution theorem proving indicates that perhaps some
general computing paradigm could be developed which would encompasses much of AT prob-
lem solving.
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